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Abstract - In paper the analytical design method of the systems with 

control on output and impacts is offered. The resulting system has 

partially given structure, desirable performances, lowered dimension 

and increased robustness. Parameters of the system’s controller are the 

solutions of the linear algebraic equations systems. Standard transfer 

functions are used for maintenance of the desirable quality parameters 

such as: the astatic orders to reference input and external disturbances; 

overshoot and settling time. Increase of the robustness is achieved by a 

reduction of the plant model and inclusion of a part of its poles and 

zero in roots of the closed system characteristic polynomial. The sug-

gested method of analytical design can be applied in aggregate with the 

dynamic decomposition method for creation of the multivariable con-

trol systems. Efficiency of the analytical design method and the robust-

ness increase method of the control systems by the reduction of the 

plant model are shown on the numerical examples. These methods can 

be used for creation of the systems with less complex, but more robust 

for plants of chemical, textile, food and other branches of production.  

Key words: plant, control system, design, performance, astatic, invari-

ancy, reduction, robustness 

I. INTRODUCTION 

The scope of control systems is very wide now [1-4]. 

Therefore they should be created with the minimal applica-

tion of manual skills as it is the least effective. In this con-

nection the computer aided design systems are the most 

effective way for qualitative of the control systems creation 

[1, 4]. Creation of such systems demands development of 

the analytical design methods, in particular, the systems 

with the direct quality parameters such as: the astatic order 

to reference input and external disturbances; overshoot, 

settling time and small fluctuation. These quality parame-

ters full reflect of the engineering requirements to the con-

trol systems.  

Now the simple laws of control P, PI, PD, etc. are ap-

plied more often [5-7]. Usually these laws get out a priori, 

but quality of a received control systems not always meets 

to requirements, because the possibility of these laws is 

bounded. Besides these simple control laws do not allow to 

use a possibility of the modern computer technologies to 

the full. Methods of a LQG control demand the formation 

of the quadratic criterion which parameters are connected 

with the direct quality parameters very uncertain. The 

method of modal control is analytical also [8-11]. Its pa-

rameters can be found or by the Ackerman formula, or by 

transformation of the system model to canonic controlled 

form [10, 12]. However modal control allows changing 

poles placement, leaving non change zeros of the plant’s 

transfer function, therefore maintenance of the required 

values of quality parameters, similarly the optimal control 

is possible only by the iterative way. Frequently numbers of 

these iterations are big, that generate delays at creation of 

the effective control systems. 

In report the rather new method of the analytical design 

of the control systems with partially given structure is con-

sidered. This method is focused on controllers which use a 

new control principle: «control on output and impacts» [12-

17]. This principle differs from frequently used control 

principle on a deviation that the reference input and output 

variable are processed in the controller by different opera-

tors. Therefore even if the plant is one-dimensional and full 

the controller on output and impacts, generally, has several 

inputs and the closed control system is not full. The con-

trollers on output and impacts are a little bit more complex-

ity, than controllers on a deviation. But they allow to carry 

out independent control of the poles and zero of the closed 

system and to provide desirable values of the quality pa-

rameters in transitive and the steady-state mode. Control on 

output and impacts also allows taking into account condi-

tions of a physical realizability of the controller. On the 

other hand, this control allows using more full the possibili-

ties of the modern computer technologies at solution of the 

control problems. Parameters of the controller on output 

and impacts are determined analytically, i.e. by solution of 

the algebraic equations systems [13, 15, 16]. Considered 

method of the analytical design of the systems with control 

on output and impacts (ADS with COI) allows providing 

desirable performances in the transitive and the steady state 

mode [15-17]. Known standard transfer functions are used 

at design of control systems by this method [12, 19]. 

In practice factors of the plant model are known not pre-

cisely usually. Therefore control systems should be robust 

stable. This property is reduced with increase of the sys-

tem’s order [3, 10, 21-26]. It is offered to apply a reduction 
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of the closed control systems to increase of their robust 

stability. One of the reduction methods is downturn order of 

the plant mathematical models that allows increasing in 

two-three times robustness of the control systems. In the 

report it is shown, that the most effective way increasing of 

the control systems robustness is a modal reduction method 

[27]. In aggregate with a method of dynamic decomposition 

method ADS with COI can be applied and in case of multi-

variable plants. Efficiency of the considered analytical 

design of the control systems is illustrated by numerical 

examples. Higher robust stability of the reduced control 

systems also is shown on the numerical examples.  

II. STATEMENT OF PROBLEM 

It is supposed, that a plant is described by the equations: 

 0 1 1 2 2x Ax b u b f b f    , (1) 

 0 1 1 2 2
Ty c x u f f    ,  (2) 

where 1[ . . . ]Tnx x x  is the vector of state variables; 

1 1( )f f t  and 2 2 ( )f f t  are the measured and unmeas-

ured disturbances; A  and 0b , 1b , 2b , с  are numerical 

matrix and vectors; 0β , 1β , 2β  are numbers [12, 13, 18, 

20]. 

The equations of the controller, forming control on out-

put and impacts (COI), look like: 

 0 1 1fz Rz q g du ly q     , (3) 

 0 1 1
T fu k z g u y     ,  (4) 

where z is a state vector; g is reference input of the con-

trol system; 1f  is measured disturbance; R and 0q , d, l, 

1q , k are constants matrix and vectors; 0 , θ, λ and 1  

are factors. 

The closed system (1) – (4), Fig. 1, is described with 
1

0 0γ 1 θ λβ 0      by the equations: 

 1 2 20 1 f fw Dw h g h h    ,  (5) 

 1 1 2 20
Ty a w g f f    ,  (6) 

where w is the state vector with dimension sysn .  
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Fig. 1 The circuit of system with control on output and impacts 

 

The matrix D, vectors 0 1 2, , ,h h h a  and numbers 

1 20 , ,    are determined in (5), (6) by the following 

expressions: 
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0 0 0 0( )1T T Tа c k    

 
  , 0 0 0 0    , 

 1 1 0 0 1 1( )       , 2 2 0 0(1 )     .  (7) 

 sysn n r  .  (8) 

Parameters of the of the closed system (5), (6), the plant 

(1), (2) and the controller (3), (4), contain in expressions 

(7), therefore these expressions can be used for definition 

of the structure and parameters of the controller. In this 

case for solution of the design problem it is necessary to 

form matrixes and vectors of the equations (5), (6) [8, 18]. 

However, first, the desirable kind of the matrixes and 

vectors (7) is difficult for substantiation. Second, the 

solution of the design problem as the equations (3), (4) 

is no unique since many equivalent systems are de-

scribed by these equations. 

With the purpose of narrowing set of the design problem 

solution it is expedient passing to the equations "input-

output". The operational "input-output" equations of the 

plant (1), (2), the controller (3), (4) and the closed system 

(5), (6) look like: 

 0 1 1 2 2( ) ( ) ( ) ( )A p y B p u B p f B p f   ,           (9) 

1 10( ) ( ) ( ) ( )R p u Q p g L p y Q p f   ,           (10) 

    0 1 1 2 2( ) ( ) ( ) ( )D p y H p g H p f H p f   .        (11) 

Polynomials in the equations (9)-(11) are determined by well-

known expressions from the equations (1)-(7). The following 

equality can be received from the equations (9)-(11): 

 0( ) ( ) ( )( ) ( ) p p pD p A p R B L ,  (12) 

 0 0 0( ) ( ) ( )H p B p Q p ,  (13) 

 1 1 10( ) ( ) ( ) ( ) ( )H p B p Q p B p R p  ,  (14) 

 
2 2( ) ( ) ( )H p B p R p . (15) 

These expressions contain also, on the one hand, the pol-

ynomials ( ), ( )jD p H p  of the closed system, and, on the 

other hand, the polynomials 0( ), ( )A p B p  and ( )iB p  of 

the plant and the polynomials ( ), ( ) and ( )jR p L p Q p  of 

the controller. After replacement in equality (12)-(15) the 

polynomials ( ), ( )jD p H p  by desirable polynomials 
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( ), ( )jD p H p 
, these expressions become the resolving 

equations of the analytical design problem of the linear 

system with partially given structure. In these equations the 

polynomials ( ), ( )jD p H p 
 are denominators and numer-

ators of the desirable transfer functions: 

 
0 ( )

( )
( )

yg

H p
W p

D p





 , 

( )
( )

( )j

j

y f

H p
W p

D p






 , j = 1, 2,  (16) 

which can be appointed on the base of requirements to 

performances of the designing closed system. In other 

words, expressions (12)-(15) are the equations concerning 

the polynomials ( )R p , ( ) and ( )jL p Q p , which deter-

mine the equation "input-output" (10) of the controller. The 

found equation (10) of the controller must be realized as 

one dynamic block with one output and several inputs (see 

Fig. 1). This moment is very important as otherwise the 

order of the received controller will be equal 3r install r, 

i.e. is much higher. 

The polynomial equations (12)-(15) are equivalent to the 

systems of the linear algebraic equations that provides 

analytical character of the considered analytical design 

control systems. In particular, the following systems  
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  (17) 

correspond to the equations (12) and (13). Here 

0 0 0, , , , , andi i i i i i i
         are factors of the polyno-

mials 0 ( )B p , A(p), L(p), ( )R p , ( )D p , 0 ( )Q p  and 

0 ( )H p , accordingly [12, 13]. 

Linearity of the algebraic equations systems equivalent to the 

ratio (12)-(15) is the major feature of the given approach. Con-

dition, at which these algebraic systems have solutions concern-

ing the polynomials of the controller (10) are resolvability 

conditions of the analytical design problem. The condition of 

the controller’s physical realizability is 

 
μcd cd
 ,  (18) 

where μcd  is the controller’s relative order determined by 

equality 

  = min ,   | 0,  1μ L jcd
r r r r j   . (19) 

μcd
  is the value of the controller’s relative order, admissi-

ble on the realizability conditions; deg ( )r R p ,  

deg ( )Lr L p ,  deg ( )j jr Q p .  

In practice is accepted  0μ
cd
   or 1μcd

   more often. 

In the first case the controller can have direct uninertial the 

"input-output" channels. In the second case such channels 

are not supposed. According to (18) - (19) the relative 

order of the closed system (11) is determined by next ex-

pression 

 0deg ( ) deg ( )sys D p H p     .  (20) 

Thus, for design of a control system, first of all, it is nec-

essary to form polynomials ( )D p  and ( )jH p , 0,1, 2j   

by which the close control system with partially given struc-

ture (11), (16) have desired performances and corresponding 

equation of the controller (10) satisfies conditions (18), 

(19). This task has solution, if next conditions are satisfied 

[17]: 

i) all coefficients (roots) of the polynomial ( )D p  and 

partially of the polynomials ( )jH p , 0,1, 2j   can be 

appointed according to desirable performance of the 

control system, with the transfer function (16); 

ii) the control system (9), (10) or (11) has desirable per-

formance, if ( ) ( )D p D p  and ( ) ( )j jH p H p , 

0,1, 2j  ; 

iii) the equations system (12)-(15) has the mathematical 

solution relative to the polynomials ( )R p , ( )L p , 

0 ( )Q p  and 1( )Q p ; 

 iv) the polynomials ( )R p , ( )L p , 0 ( )Q p  and 1( )Q p  sat   

isfy to the conditions (18), (19). 

III. CONTROL SYSTEMS ANALYTICAL DESIGN 

The considered design method essentially depends from 

the assignment way of the roots of the system’s characteris-

tic polynomial (further they refer to as system’s poles). If 

the system’s poles are appointed without taking into ac-

count properties of the plant it refers as «system with inde-

pendent poles». If the system’s poles are appointed so, that 

the part from them coincides with zero or poles of the plant 

transfer function, the system refers as «system with coordi-

nated poles». In the given report we shall be bounded to 

consideration of the systems with the coordinated poles, as 

in this case the realizability conditions of a transfer func-

tions least rigid [12, 17].  

Poles of the qualitative control systems usually settle 

down in some area п  of the left part of the complex plane 

[18, 19], therefore polynomials ( )A p  and 0 ( )B p  from the 

equation (9) are factorized as follows: 
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( ) ( ) ( )A p A p A p 

 , 
00 ( ) ( ) ( )mB p B p B p 

 ,  (21) 

where ( )A p
, ( )A p


 and ( )B p

, ( )B p


 are the poly-

nomials normalized on the senior degree of p; 
0m  is factor 

of the polynomial 
0 ( )B p  at the senior degree p. Here 

( )A p
 and ( )B p  

are polynomials, which roots are equal 

to the roots of the polynomials ( )A p  and 
0 ( )B p  located in 

area 
п . All roots of the polynomials ( )A p

 also ( )B p
 

are included in number of roots of the closed system char-

acteristic polynomials. Generally each of the polynomials 

( )A p
, ( )A p


, ( )B p

 and
 

( )B p


 can be equal 1.
 

In case of the systems with coordinated poles the poly-

nomials from the controller’s equation (10) undertake as: 

 
( ) ( ) ( )R p B p R p , ( ) ( ) ( )L p A p L p , 

 
( ) ( ) ( ) ( )j jQ p A p M p Q p  ,  (22) 

where ( )R p , ( )L p , ( )jQ p , j = 0, 1 and ( )M p  are the 

auxiliary polynomials determined during the solution of a 

design task.  

From expressions (9) (10) and (22) is follows, that poly-

nomials ( )D p  and 0 ( )H p  of the system (11) with coordi-

nated poles and transfer function * * *
0( ) ( ) / ( )ygW p H p D p  

look like 

 
*( ) ( ) ( ) ( ) ( )D p A p B p D p M p   ,  (23) 

 0 0( ) ( ) ( ) ( ) ( )H p A p B p H p M p
   .  (24) 

The polynomials ( )R p , ( )L p  and ( )jQ p  in equality (22) 

are determined by the solution of the algebraic systems, 

corresponding to the polynomials equations (12) – (15) in 

view of the equality (21) – (22) [12, 16].  

In [17] it has been shown the conditions i) – iv) can be 

executed, if polynomials of the desirable transfer function 

0
* *( ) ( ) / ( )ygW p H p D p  (16) satisfy to the conditions: 

 0deg ( ) deg ( ) μ μyg pl cdD p H p        , 

 

* *
0 0( ) ( ) ( )H p B p H p


 , (25) 

 
2 1sys cdn n    ,  (26) 

and the degree of the polynomial ( )M p  in the equality 

(22) – (24)  is determined by expression 

 
deg ( ) max{0;  2 1 }μcd DM p n n

     ,  (27) 

where 0pl n m   ; *deg[ ( ) ( ) ( )]Dn A p B p D p  . In expres-

sions (25) 
*
0 ( )H p  is a multiplier of the polynomial

*
0 ( )H p .   

With purpose of maintenance some order astatic or selective 

invariancy in relation to the reference input and external dis-

turbance, the polynomial ( )R p  in expressions (22) it is possi-

ble to take as ( ) ( ) ( )R p p R p , and polynomials ( )L p , 

( )Q p  so that 0( ) ( ) ( ) ( )L p Q p G p L p  , where ( )R p  and 

( )L p  are some polynomials. Here the polynomial 

1 2( ) LCM{ ( ), ( ), ( )}p G p F p F p   and polynomials ( )G p , 

1( )F p , 2 ( )F p  are K(p)-image of the reference input g(t) and 

the disturbances 1( )f t , 2 ( )f t  [12, 17]. At such choice of the 

polynomial ( )R p , the condition (26) is replaced by inequality 

yy2 deg ( ) 1sysn n p      . However, if 1( ) 0f t   and (or) 

2 ( ) 0f t  , then 1( ) 1F p   and (or) 2 ( ) 1F p  . 

Under these conditions from the expressions (11) – (13), 

(16) and (21) – (24) is follows the transfers function on 

error from the reference input looks likes: 

 
0

*

( ) ( )
( )

( )
g

H p G p
W p

D p
  ,  (28) 

where 
00 0( ) ( ) ( ) ( ) ( ) ( )mH p A p p R p B p L p

 
    there is the 

polynomial. Part of its factors can be appointed with pur-

pose to give desirable properties to the closed system on the 

channel g y ; the polynomial 1
0 ( ) ( ) ( )p G p p   . 

If the polynomial 1 1 1( ) ( ) ( )Q p F p Q p , then the transfer 

functions ( )
jy fW p

, j = 1, 2 (16) on the measured and un-

measured disturbances, are realized by the system (9), (10) 

or (11) look like: 

 
1

1 1( ) ( )
( )

( ) ( ) ( )
y f

H p F p
W p

A p D p M p






 , 

 
2

2 2 2( ) ( ) ( )
( )

( ) ( ) ( )
y f

R p B p F p
W p

A p D p M p






 .  (29) 

Here 
01 1 1 1( ) ( ) ( ) ( ) ( ) ( )mH p B p Q p B p p R p     there is 

the polynomial; part of its factors also can be appointed 

with the purpose to give desirable properties to the closed 

system on the channel 1f y ; 1
1 1( ) ( ) ( )p F p p   , and 

1
2 2( ) ( ) ( )R p F p R p . On the channel 2f y , i.e. on the 

unmeasured disturbances, by a choice of the polynomial 

2 ( )F p  it is possible to provide or the some order of astatic, 

or the selective invariancy [12]. We shall note that known 

difficulties of the systems stability maintenance of the high 

astatic order do not arise here, owing to application of the 

principle of control on output and impacts. 

Expressions (25) and (26), (27) represent the realizability 

conditions of the transfer function 
* ( )ygW p  (16) by system 

with partially given structure. We shall note that conditions 

(25) are well-known and are resulted in works of J.Z. Tsyp-

kin, С.Т Chen and other authors [28, 18]. Conditions (26), 

(27) are received in works [13, 15] and in earlier works did 

not meet.  

The additional conditions (26), (27), actually, provide, 

first, resolvability of the polynomial equations (12) con-

cerning the polynomials ( )R p , ( )L p  under condition (18), 

(19); and second, an opportunity to give to all factors of the 
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polynomial ( )D p  any values, proceeding from desirable 

performances of the designing system. The polynomial 

( )M p  is entered in the equality (22) – (24) for increase 

up to necessary size the order of the system, which realized 

of the transfer function * ( )ygW p , if this function satisfies to 

the conditions (25), and *deg ( )D p  satisfies to the next 

condition 

 

*deg ( ) 1μ μpl cdD p m n

 
    , 

where deg ( )m B p  , deg ( )m B p
 
 , deg ( )n A p

 
 . 

It is possible to show, that if the conditions (25) are satis-

fied and *deg ( ) deg[ ( ) ( )] 1μ μpl cdD p B p A p

 
   , 

then according to (27) deg ( ) 0M p  , i.e. in these cases it 

is possible to believe ( ) 1M p  . 

The expressions (12) – (29) represent the algorithmic 

base of the analytical design systems with control on output 

and impacts (АDS with COI). In aggregate with a method 

of dynamic decomposition this approach can be applied and 

in case of the multivariable plants [12]. Examples of their 

application are resulted below. 

IV. EXAMPLES OF CONTROL SYSTEMS DESIGN 

For an illustration of opportunities of the submitted 

method АDS with COI we shall consider two examples.  

Example 1. For the plant is described by the equation  

 3 2
2( 0,8 ) 75 (0,1 2,5)p p p y u p f      

to design a control system with 5-th astatic order to refer-

ence input and 4-th order to unmeasured disturbance 2f . 

The controller’s relative order yyμ 0  . Desired settling 

time s s 5t t   s and overshoot 25 %    . The devia-

tion ε g y  and output y are measured.  

Solution. In this case under expressions (25) – (28) we 

find: the polynomial 4( )p p  , deg ( ) 0M p  , 6r  , 

sys 9n  . Transfer function of a 9-th order system with 5-th 

astatic order in the literature is absent. Therefore desirable 

transfer function it will be generated from a third astatic 

order standard transfer function of the sixth order systems. 

Resulting desirable transfer function looks like: 

 
9 8 7 6 5

( )
( )

92 3503 57060 420005 ( )
yg

C p
W p

p p p p p C p


    
, 

where 

 
4 3 2( ) 785861 435992 80401 5134 300C p p p p p     . 

Corresponding transient response is resulted on Fig. 2. The 

system has required st  and σ % evidently.  

The result of corresponding calculations under formulas 

(12) – (16) and (28), (29) is the following "input-output" 

equation of the controller: 

 6 5 4 2( 91,2 3431 ) (4 68,45 1072p p p u p p       

 3 4 5 65813 10478 ) (5646 725,4 )p p p p y    .  (30) 
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Fig. 2. Transient response of astatic system 

 

The circuit corresponding to the equation (30) is resulted 

on Fig. 3. 
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Fig. 3. Controller’s circuit of the system with 5-th astatic order 
 

The circuit on Fig. 3 is received by transformation of the 

equation (30) to the equations in state variables with appli-

cation of the canonical observable form [12].  

t

g f
310

    

 

Fig. 4. System’s deviations with impacts: 
6 4( ) 2,5 10g t t  , 4 3( ) 2 10f t t   

 

For an estimation of the systems real astatic order its 

simulation carried out in MATLAB. The received sched-

ules of deviations are resulted on Fig. 4 and Fig. 5. 
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Fig. 5. System’s deviations with impacts 
5 3 7 5( ) 10 3 10g t t t    , 4 3( ) 2 10f t t   

 

Results of simulation testify that the designed system has 

required astatic orders, really.  

Let's show, that suggested method АDS with COI can be 

applied to design of multivariable control systems. 

Example 2. To design absolutely invariant control sys-

tem for an aircraft power-plant describing by following 

equations: 

 1 1 2( ) (0,62 1,34) (0,31 0,48)A p y p u p u    ; 

 2
2 1( ) (0,14 0,41 0,29)A p y p p u     

 2
2(0,18 0,51 0,32)p p u   ,  (31) 

where 2( ) 0,6074 1,6671 1A p p p   ; 1y  and 2y  are 

controlled variables; 1u  and 2u  are controls of the aircraft 

power-plant [21]; the controlled output iy  and the devia-

tions i i ig y   , 1, 2i   are measured. The controller’s 

relative order yyμ 0  . 

Solution. The controls 1u  and 2u  can be considered as 

disturbances for the channels 2 2g y  and 1 1g y  

accordingly. In this case in relation to the variable 2y  

the approachibility condition of the absolute invariancy 

on G.V. Shchipanov's criterion, and in relation to the 

variable 1y – on the B.N. Petrov’s two channel criterion 

are satisfied [12].  

As a result of the considered method application at ac-

cording to the expressions (12) – (29) and (31) the follow-

ing controller’s equations are received: 

 1 117, 2223x   ; 

 2 1 2 1 22,1613 7,5508 0,30646x x x y u    ; 

 1 2 1 24,9525 0,5 ,u x y u     2 25 0,25 ,u w    24 .w u (32) 

The circuit corresponding to the equations (32) is resulted 

on Fig. 6. 
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Fig. 6. Circuit of the invariant system’s controller 

 

Simulation of the system (31), (32) was carried out also 

in MATLAB; on Fig. 7 – Fig. 9 the schedules received at 

zero initially conditions and reference inputs 1 1 0,2g t   

and 2 2sing t  are resulted. The controlled variable 2y  

completely coincides with reference input 2g  (see Fig. 

7,b), i.e. the channel 2 2g y  is absolutely invariant to 

unmeasured disturbance 1u , really. 

The deviation 2  actives on the second input of the 

controller, is practically equal to zero at all t (see Fig. 

8,b). Despite of this, boundary oscillatory control 2u  oppo-

site to the reference input 2g  is observed on the second 

output 2u  of the controller (see Fig. 9,b).  

 

а)  

1 1,g y

t
 

  b)  

2 2,g y

t
 

 

Fig. 7. Reference inputs and controlled variables 

 

It follows from Fig. 8,a and Fig. 9,a that the channel 

1 1g y  has the astatic first order to reference input 1g , 

and its deviation 1  is absolutely invariant to control 2u  

which is entered in this channel of the controller (32).  
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Fig. 8. Deviations of the first and second channels  
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Fig. 9. Controls 1u , 2u  and the reference input 2g  

 

The received results testify, that the considered method 

of analytical design allows creating control systems with 

the desired quality parameters in transitive and in the 

steady-state mode, but rather high order. 

V. ROBUSTNESS INCREASE BY REDUCTION 

METHOD 

Control systems of the high order have low robustness 

that reduces their quality, since the system’s parameters are 

always known is inexact. The reduction of the plant dynam-

ic model is applied to elimination of this lack, frequently. 

The exception method of the poorly influencing connec-

tions or the small time constants and also a balancing meth-

od are applied for reduction of the plant model, more often 

[10, 12, 24 and 25]. The new reduction method by cutting 

of the plant fast dynamics is suggested recently [27]. The 

reduced models allow designing more simple controllers 

and more robust systems. The design algorithm (12) – (29) 

of the reduced systems also becomes simpler. 

 However, the cutting out dynamics influences properties 

of the closed systems, actually. The influence of the reduc-

tion methods on the robust stability of the reduced control 

systems is investigated also in this paper. 

Research is carried out on the numerical examples in 

view of the consideration complexity in a general view. It is 

supposed, that the initial model of the plant looks like 

 

0,6358 0,7254 0,5709 0,689

13,4134 8,0531 9,5669 0,5118

16,0835 15,7079 18,4173 0,2205

x x u

   
   

 
   
        

, 

 [5,6 5,5 3,75]y x .  (33) 

Transfer function of this plant is equal 

 
27,5 81 188

( )
( 10)( 2)( 1)

yu

p p
W p

p p p

 


  
.  (34) 

Let's agree the method exception of the small time con-

stants to name as «time reduction» (TR) [10, 19, 22]; the 

reduction method on the basis of balancing models – «bal-

ancing reduction» (BR) [24, 25] and the method by a cut-

ting of fast dynamics – «modal reduction» (MR) [26, 27]. 

Three reduced models (35) – (37) of the plant (33), (34) are 

received as a result of application of these methods: 

 
20,75 8,1 18,8

( )
( 2)( 1)

TR

p p
W p

p p

 


 
,  (35) 

 
2

6,771( 2,0617)
( )

0,474 1
BR

p
W p

p p




 
,  (36) 

 
2

2

2,16 5,636 18,8
( )

2
MR

p p
W p

p p

 


 
.  (37) 

To execute the modal reduction preliminary the spectral 

decomposition of the plant model (33) is carried out by 

replacement the vector x under similarity transformation: 

i ix P z . Here the new vector iz  should consist from two 

component: fast iz
  and dominating iz

 . The fast compo-

nent i iz z   should depend only from fast mods (in con-

sidered case 10
1

tс e ) and the dominating component iz
  

239



 

 

from other mods (in this case 2
2

tс e  и 3
tс e ) of the plant. 

The modal reduction consists in replacement the fast com-

ponents ( )i iz z t   by its steady state value 

lim ( )i i
t

z z t


  at which 0iz

   [27]. The matrix of the 

spectral decomposition iP  is not unique; therefore several 

modal reduced models can be constructed [26]. 

Fig. 10 represents the unite-step responses 1 – 4 of the 

initial (34) and the reduced models (35) – (37). The unite-

step responses 1 and 3 of the initial model (34) and the 

balancing reduction (36) model practically coincide. This is 

one of the distinctive features of the balancing models of 

dynamic systems. 
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Fig. 10. Unite-step responses of the initial and the reduced models: 

 

For comparison, the control systems designing by the an-

alytical considered above method were carried out for ini-

tial, unreduced (NR) model (34) and for reduced models 

(35) – (37). The received controllers are described by the 

following equations:  

 

4 3 2

3 2

( 17,08 92,891 157,42076 ) 1431,66

(16,4827 184,712 777,313 1431,66) ,

URp p p p u g

p p p y

    

   
 (38) 

 

3 2

2

( 10,8 25,067 ) 166,67

11,333 76 166,67) ,

TRp p p u g

p p y

   

  
 (39) 

 

3 2

2

( 8,762 13,813 ) 22,153

(5,638 19,716 22,153) ,

BRp p p u g

p p y

   

  
 (40) 

 

3 2

2

( 2,61 8,704 ) 57,87

(3,9352 26,389 57,87) .

MRp p p u g

p p y

   

  
 (41) 

Obviously, the order and the parameter’s values of the 

controllers, designed for the reduced models of the plant, 

less, than for the unreduced model with the same quality of 

the designed systems. 

V.L. Haritonov's criterion is applied to research the ro-

bust stability of the designed systems. With this purpose the 

factors i  and i  of the plant’s models are replaced with 

the expressions (1 )i i     and (1 )i i    , where 

i , i  are nominal values of the factors. It is supposed, 

parameters of the real controllers are equal to the calculated 

values with very small errors. The characteristic polynomial 

( , )r sD s T  of the reduced closed systems undertakes as 

 ( , , ) ( 1) ( , ) ( ) ( , ) ( )r s red redD p T Tp A p R p B p L p      .(42) 

Here ( , )redA p  , ( , )redB p   are the polynomials equal to a 

denominator and a numerator of the corresponding model’s 

transfers function of the plant in view of the parametrical 

deviations 100    %; the multiplier Tp + 1 represents 

the cut out fast dynamic of the plant model. 

With the help of the V.L. Haritonov’s criterion it is es-

tablished, the unreduced system (34), (38) is robust stable 

with 5,8   %. The admissible on robust stability of the 

plant parameters deviation depend both from the method of 

a reduction and from value of the time constant T. At re-

search, the time constant Т changes in the equality (42) 

from zero up to such value ,m redТ , at which the reduced 

closed systems lose stability already with 0  , i.e. with 

calculated values of the reduced model’s parameters.  

On Fig. 11 the schedules reflecting dependence of the 

deviations ,m st   , % from values of the time constant Т 

at balancing (BR), time (TR) and modal (MR) reduction are 

submitted. Here , , ( )m st m st T     are deviations critical on 

the robust stability of the closed reduced system with 

T T . In other words, if in expression (42) , ( )m st T     

and T T , the closed system appears on border of robust 

stability. 

Critical values of deviations ,m st  in the %, correspond-

ing to the various reductions methods and values of Т 

equal: 0,0 s; 0,01 s; 0,05 s and 0,10 s are submitted in col-

umns from 2-th to 5-th table 1.  
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Fig. 11. Robust stability borders of the reduced systems 

 

Values ,m st  on Fig. 11 with Т = 0 and the second col-

umn of the table 1 correspond to critical deviations of the 

reduced model’s parameters. Values of the time constant 

,m redT Т  at which the reduced system appears on the stabil-

ity border already with the calculated parameters are result-

ed in the last column of table 1. 

TABLE I  

Critical value of the deviations  

Т, s 0,0 0,01 0,05 0,10  
,m redТ , s 

TR 17,80 17,0 11,58 3,92  0,137 

BR 12,78 10,40 2,92 0,00  0,0705 

MR 21,22 19,78 13,93 5,15  0,137 
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Obviously, the time and modal reduction are character-

ized by the same boundary value , 0,137m redТ  s. In case 

of the balancing reduction , 0,0705m redТ   s, i.e. are much 

less. Under ,m redT Т  critical values of deviations ,m st  for 

balancing reduction also less in comparison with the time 

and modal reductions. 

VI. CONCLUSION 

On the basis of the received results it is possible to draw 

a conclusion. The considered analytical design method 

gives possibility to create the control systems with partially 

given structure and the desired quality parameters in transi-

tive and in the steady-state modes. Parameters of the mini-

mal dimension system’s controller are the solutions of the 

linear algebraic equations systems. Use of the standard 

transfer functions provide such the desirable performances 

parameters as the astatic orders to the reference input and to 

external disturbances; overshoot and settling time. 

The reduction of the plant model in three – four times 

raises robustness of the closed control systems, if the fast 

dynamics on two order is faster than the dominating dynam-

ics. The robustness of control systems essentially raises, if 

the enough left poles or zero of the plant are made as roots 

of the closed system characteristic polynomial.  

Parameter’s deviations of the plant, critical on robust 

stability of the closed system, can serve as a «degree esti-

mation of the system's robust stability» both reduced and 

unreduced control systems. 

The method of the modal reduction allows receiving the 

most robustness control systems by a choice of the suitable 

matrix of the spectral decomposition of the plant’s model. 

Considered analytical design method and the model plant 

reduction can be used for creation of the less complex con-

trol systems, but more robust for plants of chemical, textile, 

food and other branches of production. 
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