RAPORT STIINTIFIC SI TEHNIC
privind implementarea proiectului in perioada februarie — decembrie 2021 (etapa 1)

A. REZUMATUL ETAPEI
Echipa de cercetare care a desfdsurat activitati de cercetare in cadrul proiectului “Reglare

fuzzy data-driven cu validare experimentald”, contract de finantare nr. 192 / 19.02.2021, codul de
depunere PN-III-P4-ID-PCE-2020-0269, este cea nominalizata in cererea de finantare: prof.dr.ing.
Radu-Emil Precup (director de proiect), s.l.dr.ing. Claudia-Adina Bojan-Dragos, s.l.dr.ing. Adriana
Albu, s.l.dr.ing. Alexandra-lulia Szedlak-Stinean, lect.dr. Ciprian Hedrea, as.dr.ing. Raul-Cristian
Roman, drd.ing. lon-Cornel Mituletu, as.drd.ing. Elena-Lorena Hedrea.

Obiectivul principal urmarit in cadrul proiectului a fost indeplinit conform planului de

realizare si este descris in cele ce urmeaza:

(1)

Analiza cercetdrilor teoretice privind fmbundtdtirea solutiilor de reglare existente si

proiectarea de noi regulatoare pentru a imbundtdti performantele sistemelor de reglare

automatd pentru diverse procese neliniare care includ procese cu aliaje cu memoria
formelor (engl. Shape Memory Alloy, SMA). Activitatile desfasurate pentru atingerea acestui
obiectiv se refera la:

1.1. Analiza stadiului actual al cercetdrilor teoretice si al aplicatiilor experimentale
realizate pe diverse echipamente de laborator care includ si procese cu aliaje cu
memoria formei (SMA). A fost efectuatd analiza mentionatd si in capitolul B sunt
prezentate date sintetice aferente acestei analize, insotite de bibliografia aferenta.
Procesele si echipamentele analizate sunt: servosisteme [C1], [C3], [C7], populatie si
epidemie [C2], SMA [C4], politicd monetara [C5], ambreiaje actionate
electromagnetic [C6], volume mari de date [C8], macarale turn [C9], roboti mobili
[C10].

12, Cercetarea posibilitatilor de imbundtdtire a solutiilor de reglare existente pentru
diverse procese neliniare care includ si procese cu aliaje cu memoria formei (SMA)
si proiectarea de noi solutii de reglare de tip data-driven si fuzzy. Au fost analizate si
propuse regulatoare noi de tip fuzzy [C1], [C6], [C10], bazate pe lterative Feedback
Tuning [C9], bazate pe retele neuronale artificiale combinate cu invédtare prin
reintarire (sau prin recompensd) si algoritmi metaeuristici de optimizare [C3], cu
detalii prezentate in lucrcarile [C1], [C3], [C6], [C9] si [C10].

Rezultatele prevazute a fi obtinute in cadrul proiectului in aceasta etapa conform conform

planului de realizare sunt:

»

).

Valorificarea rezultatelor prin publicarea unei lucrari intr-o revista din domeniu cu factor de
impact ridicat si prin participarea si prezentarea a douad lucrri in cadrul unor conferinte cu
vizibilitate ridicata.

Pregatirea rapoartelor pentru documentarea activitatilor.

Rezultatele principalele obtinute in cadrul proiectului in aceasta etapd depdasesc rezultatele

prevazute. Acestea sunt:

>
»
»

Raport de cercetare.

Zece lucrdri publicate: [C1]-[C10].

Detalii privind lucrdrile publicate: 2 lucrari [C1], [C2] publicate in reviste indexate in
Clarivate Analytics Web of Science (cu una din denumirile anterioare ISI Web of Knowledge)
cu factor de impact, 2 lucrdri [C3], [C4] acceptate in reviste indexate in Clarivate Analytics
Web of Science (cu una din denumirile anterioare ISI Web of Knowledge) cu factor de
impact, 1 lucrare [C5] publicatd in volum de conferintd indexata in Clarivate Analytics Web
of Science (cu unele din denumirile anterioare ISI Web of Knowledge sau ISI Proceedings), 1
lucrare [C6] publicatd in volum de conferintd indexata in baze de date internationale (IEEE
Xplore, INSPEC, Scopus, DBLP), 3 lucrdri [C7], [C9], [CO] prezentate la conferinte ale céror



volume vor fi indexate in baze de date internationale (IEEE Xplore, INSPEC, Scopus, DBLP), 1
capitol de carte publicat in Springer.

» Factor de impact cumulat al lucrdrilor publicate conform 2020 Journal Citation Reports (JCR)
publicat de Clarivate Analytics in 2021 = 14.098.

» Reviste cu factor de impact ridicat in care au fost publicate lucrdrile: Information Sciences
(Elsevier), Scientific Reports (Nature), International Journal of Systems Science (Taylor and
Francis).

» Conferinte cu vizibilitate ridicatd in volumele cirora au fost publicate lucririle: 4™ IFAC
Conference on Embedded Systems, Computational Intelligence and Telematics in Control
CESCIT 2021, 30™ International Symposium on Industrial Electronics ISIE 2021, 8t
International Conference on Information Technology and Quantitative Management ITQM
2020 & 2021.

Remarci:

1. Tn acest raport stiintific textele, figurile si partial relatiile au fost preluate din lucrarile
elaborate de echipa de cercetare. Din acest motiv formuldrile sunt in limba engleza. La unele relatii
va fi pastrata numerotarea din raportul de cercetare.

2. Toate lucrdrile publicate sau in curs de publicare si care contin rezultate de cercetare
obfinute fin cadrul acestui proiect au mentionat sprijinul UEFISCDI in sectiunea de
Acknowledgements, aldturi de specificarea codului de depunere a cererii de finantare.

B. DESCRIEREA STIINTIFICA $I TEHNICA

Descrierea este concentratd asupra prezentdrii sintetice a cercetdrii efectuate in cadrul
activitatii 1.1, analiza stadiului actual al cercetédrilor teoretice si al aplicatiilor experimentale
realizate pe diverse echipamente de laborator, in spetd SMA conform [C4]. Sunt propuse modele
fuzzy evolutive de tip Takagi-Sugeno pentru un proces reprezentativ construit fn jurul SMA.
Conform remarecii 1 din capitolul A, descrierea este continuata in limba engleza.

As analyzed in [1], the analysis of the state-of-the-art of control theory and applications
related to Shape Memory Alloy (SMA) actuators shows that they are in continuous progress
because of their special features. A comprehensive review on the challenges for practical
applications of SMA actuators is given in [2]. As all actuators, the SMA ones have to ensure very
good control system performance indices as they are integrated in control systems in various critical
applications. The special features of SMA actuators, which justify their success, are maintaining a
deformed shape until heat is applied to recover the original shape [3], capability to high strain
recovery and withstanding the higher load and high damping and supporting large reversible
changes of mechanical and physical characteristics [4], [5].

Due to the above features and the need to validate the control system structure, testing
equipment was designed in both simple cases to demonstrate the SMA behavior and complicated
ones to model the specific processes and next to design controllers including nonlinear robust ones
for position and tracking control. Suggestive examples of testing equipment are reported in [6]—[8].

SMA actuators are implemented and validated by means of both simulation and
experimental results in a wide variety of applications as biomedical engineering [9], industry,
vibration control systems [4], [5], [9], [10]-[13], aeronautics and aviation [6], [14]. The recent
literature highlights their attractiveness in robotics control system especially for hand prostheses
which can follow a two-dimensional motion with a relatively high accuracy driven by SMA coils [15]
and for the development of a low-cost five-fingered prosthetic hand because they ensure a
biological-like behavior that reacts fast but smoothly as the natural muscular fibers [16]. A
bidirectional SMA rotating actuator using a rotating frame and two SMA wire-based actuating units
similar to human skeletal muscle systems was designed in [17] to provide angular displacements in
both clockwise and counter-clockwise directions with compliance.

As shown in [C4], the modeling of SMA actuators is a hot topic in the framework of model-
based design. In addition, since the experiments are expected to have certain costs, accurate
process models are important in order to ensure the convenient digital simulation of SMA actuators
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as controlled process and the control systems as well. The mathematical model of SMA as a
dynamical system is highly nonlinear, which makes it complicated to design an appropriate
controller. SMAs can exist in two different phases depending on the applied temperature and
stress. The difference between the heating and the cooling transition gives rise to hysteresis.
Therefore, for modeling the SMA behavior it is more convenient to use several system identification
approaches implemented in Matlab’s System Identification Toolbox in order to describe the system
model as a linear one with uncertainties and then apply the robust stability method to control the
system efficiently as illustrated in [6] and [18]. Other two approaches to SMA model design
implementation are based on Liang’s constitutive model and discussed in [10]; the first one is a
stress-driven model and the second one is a strain-driven model (used only to implement the SMA-
based actuator). In stress-driven model, stress and temperature are inputs, whereas strain is
output. In strain-driven model, temperature and strain are inputs, whereas stress is output. In [14],
the model of SMA actuator system consists of four dynamic equations including the temperature
dynamics based on thermal energy conservation equation, phase transformation equation between
martensite and austenite, SMA constitutive law and the mechanical dynamics. The discrete-time
nonlinear dynamical system described in the Single-Input-Single Output (SISO) form is equivalently
represented in [7] as an equation by linearization using Taylor’s formula around the origin,
obtaining a linear dynamic model along with its unmodeled dynamics.

Although all the modeling approaches briefly discussed in [C4] and specifically above ensure
good modeling performance, there is still room for performance improvement. One direction in this
regard is to develop nonlinear models of SMA actuators. Representative nonlinear models are the
fuzzy models as they are relatively easily understandable and also may embed the human expert’s
knowledge in dealing with the processes they model aiming their control. As specified in [19], the
concept of evolving fuzzy (or rule-based) controllers was proposed by Angelov back in 2001 and
further developed in his later works [20]-[25]. These controllers employ evolving Takagi-Sugeno-
Kang (TSK) fuzzy models, which are characterized by computing the rule bases by a learning
process, i.e., by continuous online rule base learning. Some recent illustrative results on evolving
fuzzy models are offered in [26]-[29]. The TSK fuzzy models are developed in terms of evolving the
model structures and parameters by means of online identification algorithms.

The paper [C4] is built upon authors’ recent papers on evolving TSK fuzzy models [19], [30]—
[32] mainly focusing on modeling the midcarpal joint angles in the framework of human hand
dynamics, and produces two evolving TSK fuzzy models for SMA wire actuators with the technical
description described in [6]. The output of these system models is the position of the SMA wire
actuators, and the input is the current signal which supplies the actuator (it flows through the wire).
This current signal is actually the control input or control signal involved in position control system
structures and it is produced by the controller. Moreover, additional TSK fuzzy model inputs and
outputs obtained from past inputs and/or outputs are included in the model structure. The
experimental results highlight that the proposed fuzzy models are consistent with training and
validation data.

The online identification algorithm is implemented by adapting the theory treated in [33],
with the aid of the eFS Lab software developed by Dourado and his team according to the
description given in [34] and [35]. The flowchart of the incremental online identification algorithm is
presented in Fig. 1. This algorithm is organized in terms of the following steps, also given in [19] and
authors’ recent papers highlighted in [C4]:
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Fig. 1. Flowchart of incremental online identification algorithm [19], [36].

Step 1. The structure of the rule base is initialized by setting all parameters of the rule
antecedents in order to first contain one rule, i.e., n, =1, where », is the number of rules. The
subtractive clustering is next applied to compute the parameters of the evolving TSK fuzzy models
using the first data point p, represented as a vector in ®"'. The general expression of the data

point p at the discrete time step & (and also the index of the current sample) is p, » and this point
and also vector belongs to the input-output data set p, | k=1..D} c R"™ [19]

f+l ]T
)

P = Pl P
p=[z" yI'=[z 2.z, yI' =[p' p’..p" p"'T eR™,
where D is the number of input-output data points or data points or data samples or samples, z is
the input vector, and the superscript T indicates matrix transposition.
The rule base of TSK fuzzy models with affine rule consequents is [19]
Rule i:1F z ISLT, AND...ANDz, ISLT,, THENy, =a,, +a,z, +..+a;,z,,i =1..n,, (2)

where z,, j=1..n, are the input (or scheduling) variables, n is the number of input variables,

(1)

LT,,,i=1..n,, j=1.n, are the input linguistic terms, | is the output of the local model in the rule
consequent of the rule ji=1.n,, and a,.i=l.n,,yx=0.n are the parameters in the rule

consequents.

Using the notation m, for the parameter vector of the rule i, i = 1..n, [19]
iy r,i:l...nﬂ,, (3)
the algebraic product t-norm as an AND operator in the inference engine, and the weighted average
defuzzification method in TSK fuzzy model structure, the expression of TSK fuzzy model output y, Is

[19]
itr’-]"l.: Ny T 4
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where the firing degree of the rule ; and the normalized firing degree of this rule are 1,(z) and 3 ,
respectively. The firing degree of the rule ; is [19]
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Several parameters specific to the incremental online identification algorithm are
initialized. The initialization is carried out according to the following recommendations given in [33]:
8, =[(]), (a}), ..(n],),]" =[00..0]', C, =QL r, =04, k=1, n, =1, z, =2,, P(p]) =1, (6)
where C, e g js the fuzzy covariance matrix related to the clusters, I is the ny(n+1)"
order identity matrix, Q=const Q> 0, is a relatively large number, 0, is an estimation of the

parameter vector in the rule consequents at the discrete time moment (and also data sample index)
k,and ., » >0, is the spread of the Gaussian input membership functions Wigut =iy ey OF

the fuzzy sets of the input linguistic terms Ly, [19]

=)
;.L”{zj}ze_—, i=l.n,, j=1.n, (7)
P—':,- i=1..n,, j=1..n, are the membership function centers, p, in (7) is the first cluster center, z, Is
the center of the rule 1 and also the projection of p; on the axis z in terms of (2), and B (p!) is the
potential of p'.

Step 2. The data sample index k is incremented, namely replaced with k +1, and the next
data sample p, that belongs to the input-output data set {p, | k=1..D} c R™" is read.

Step 3. The potential of each new data sample p (p,) and the potentials of the centers
P.(p}) of existing rules (clusters) with the index n are recursively updated according to the

formulae given in [19] and [33].

Step 4. The possible modification or upgrade of the rule base structure is done using the
potential of the new data (point or pair) in comparison with that of the existing rules’ centers. The
rule base structure is modified if certain conditions specified in [33] are fulfilled.

Step 5. The parameters in the rule consequents are updated using either the Recursive
Least Squares (RLS) algorithm or the weighted Recursive Least Squares (wRLS) algorithm. These
algorithms, which can also be viewed as learning algorithms, lead to the updated vectors ék (i.e., an

estimation of the parameters in the rule consequents at the discrete time step k) and Cyy k=20,

Several details on RLS are given in [19] and [33].
Step 6. The output of the evolving Takagi-Sugeno-Kang fuzzy model at the next discrete
time step k+1 is predicted and expressed as 3, [19]

Ve = ‘l’i.ér.- , (8)
with the general notations (applied to any element of the data set)
y=vw'0,0=[x m .. m 1,9 =[A[12"] A0z .. &[0z (9)

Step 7. The algorithm continues with step 2 until all data points of the input-output data set
p, | k=1..D} are read.

The output of all evolving TSK fuzzy models is y,, which represents the position of the SMA

wire actuators. In this regard, the generic expression of a TSK fuzzy model is
Y = f(z,), (10)
where 7 is the nonlinear input-output map of the TSK fuzzy model. As specified in sections 2 and 3,
the input vector z, of the TSK fuzzy models contains as an essential element the current signal
which supplies the actuator (it flows through the wire). Additional TSK fuzzy model inputs and
outputs obtained from past inputs and/or outputs are included in z,, thus modifying the model

structures and leading to different TSK fuzzy models. In this regard, the TSK fuzzy models generally
expressed in (10) can be considered as Nonlinear AutoRegressive eXogenous (NARX) models.

As shown in [C4], the first system input, namely the current signal which supplies the
actuator, with the notation ,,, was generated by processing the input-output data given in [6]

using a sampling period of 0.01 s. The number of input-output data pairs used in training is D = 500,
which covers a time horizon of 5 s. The number of input-output data pairs used in validation is
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D =2701, which covers a time horizon of 27.01 s. It is supposed that these ranges of magnitudes
and frequencies used in [6] actually cover and capture various process (i.e., SMA wire actuator)
dynamics, which are next important in the operation of the position control system. The evolution
of the system input versus time is presented in Figs. 2 and 3, which include the input data for both
training and validation. The evolution of the output will be

Control input (current) u for training data
500 . | |

450

25 3 35 4 45 5
Time (s)

Fig. 2. System input ,, (mA) versus time for training data [C4].

2

Control input (current) u for validation data

Time (s)
Fig. 3. System input ,, (mA) versus time for validation data [C4].

The graphs presented in Figs. 2 and 3 illustrate the nature of the input values. They
illustrate the noisy nature of the signals, which require and justify nonlinear models, and also the
fact that the simplification of the models can be achieved. The real system output values will be
presented as follows along with the model output.

The past input and output values were actually obtained by shifting the training and
validation data samples. Several fuzzy models were tested in this regard but the two ones are
described as follows because they are the simplest ones as far as their numbers of parameters are
concerned. The first TSK fuzzy model operates with the input vector [C4]

zo=Twy, ., G, Yl (11)
and the secand TSK fuzzy model operates with the input vector [C4]
2, =[w, u,_, ¥y, Yr-z]r- (12)

The application of the online identification algorithm presented in the previous section with
the RLS algorithm involved in step 5 gave the following results [C4]: the first TSK fuzzy model
evolved to n, =9 rules and the number of evolved parameters is 117; the second TSK fuzzy model



evolved to », =1 rule and the number of evolved parameters is 13.

As expected and shown in [19] for a different nonlinear system, the TSK fuzzy models and
their performance depend on the number of input variables. Different model structures, i.e.,
different numbers of rules resulting in different number of evolved (or identified parameters) are
obtained for different input variables.

The real-time experimental results on the training data set are presented in Fig. 4 for the
first TSK fuzzy model and Fig. 5 for the second TSK fuzzy model. The real-time experimental results
on the validation data set are presented in Fig. 6 for the first TSK fuzzy model and Fig. 7 for the
second TSK fuzzy model. The results in Figs. 4 to 7 are given as responses of j versus time of the

TSK fuzzy models and the real-world system, i.e., the SMA wire actuator). The additional subscript d
is inserted to the output value in order to highlight the desired value, i.e., the real-world system
output y, and to differentiate it from the model output .
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Fig. 4. SMA position versus time of first TSK fuzzy model (dashed line), , (mm) and real-world

system (solid Iine).ym (mm), on training data set [C4].
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Fig. 5. SMA position versus time of second TSK fuzzy model (dashed line), y, (mm) and real-world

system (solid line). y, . (mm), on training data set [C4].
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Process model output y (dashed line) vs. real output y 4 (solid line) for validation data
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Fig. 6. SMA position versus time of first TSK fuzzy model (dashed line), j, (mm) and real-world
system (solid line). y, . (mm), on validation data set [C4].
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Fig. 7. SMA position versus time of second TSK fuzzy model (dashed line), y, (mm) and real-world

system (solid line). y, . (mm), on validation data set [C4].

Figs. 4 to 7 show that the validation performance is consistent with the training one. In
addition, since no numerical performance comparison is carried out, the visual comparison shows
that the first model exhibits overall better performance compared to the second one. That is
expected as the number of parameters of the first model is higher compared to the second one.
The performance can be further improved if the number of inputs is increased. However, as
outlined in [19], a trade-off to performance and model complexity should be targeted. The
systematic performance assessment and comparison can be done in terms of using adequate
performance indices as, for example, those applied in authors’ recent paper [37].

The paper [C4] gives results on training and validation data. As highlighted in [19], this could
be a methodological issue because the performance of the models is checked and illustrated on
validation data. But these models were selected as the best ones for modeling this validation data
considering an as reduced as possible number of inputs resulting in a reasonable number of
parameters to be trained (or identified). The model performance should be ideally checked in new
unseen test data.

The experiments conducted on the challenging process analyzed in [C4] show that the RLS
algorithm involved in step 5 of the online identification algorithm ensures better performance
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compared to the wRLS algorithm. However, this is not valid at all system inputs. Moreover, as
pointed out in [C4] and authors’ recent papers on evolving fuzzy modeling and tensor product-
based modeling, the conclusions drawn in this paper cannot be generalized to other processes.

The paper [C4] suggested two TSK fuzzy models to describe the dynamics specific to the
position of SMA wire actuators as a representative and challenging SISO system considered as a
controlled process. The structures and the parameters of TSK fuzzy models were evolved by an
incremental online identification algorithm.

The experimental results given in [C4] illustrate that past outputs and inputs improve the
model performance. Adding mode inputs would definitely further improve the model performance,
but attention should be paid to the trade-off to performance and model complexity because model-
based fuzzy control is one of the future research directions.

These TSK fuzzy models are important because they were built using the data reported in
[6], which was collected manually. Therefore, the models suggested here are useful in the digital
simulation of the behaviors of SMA wire actuators and allow the convenient testing of various
position control system structures.
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