
This article can be cited as C. Purcaru, R.-E. Precup, D. Iercan, L.-O. Fedorovici, R.-C. David, F.
Drăgan, Optimal Robot Path Planning Using Gravitational Search Algorithm, International Journal of
Artificial Intelligence, vol. 10, no. S13, pp. 1-20, 2013.
Copyright©2013 by CESER Publications

Optimal Robot Path Planning Using Gravitational Search
Algorithm

Constantin Purcaru1, Radu-Emil Precup1, Daniel Iercan1,
Lucian-Ovidiu Fedorovici1, Radu-Codrut David1, Florin Dragan1

1Dept. of Automation and Applied Informatics, “Politehnica” University of Timisoara

Bd. V. Parvan 2, 300223 Timisoara, Romania

cpurcaru@gmail.com, radu.precup@aut.upt.ro, daniel.iercan@aut.upt.ro,

lucian.fedorovici@aut.upt.ro, davidradu@gmail.com, florin.dragan@aut.upt.ro

ABSTRACT

This paper proposes a new Gravitational Search Algorithm (GSA)-based approach for

generating an optimal path for a robot travelling in partially unknown environments in the

presence of multiple (static or dynamic) obstacles. The GSA-based approach is expressed

as an algorithm which computes an optimal path for a robot that travels from an initial point

to a target point while avoiding all the known obstacles in the environment but also any

other static or dynamic object that could appear in the path of the robot to the target point.

To validate the new approach for the path planning, the new algorithm is employed in the

generation of obstacle-free paths for different robots that are participating in different

missions in the framework of the nRobotic platform developed at the “Politehnica”

University of Timisoara, Romania. A comparison focused on the resulted path length and

performance with another well-known evolutionary algorithm represented by the Particle

Swarm Optimization used for path planning is performed.

Keywords: Gravitational Search Algorithm, optimal robot path planning, Particle Swarm

Optimization.

Mathematics Subject Classification: 82C21, 93A30

Computing Classification System: I.2.3, I.2.9

1. INTRODUCTION

When designing and implementing a platform for interconnecting different types of mobile robots one

of the most important tasks is the path planning that generates a collision-free trajectory for each of

the robot that takes part at a specific mission (Purcaru et al., 2012). The literature contains several

research papers that propose different path planning algorithms using classical approaches or

evolutionary algorithms in terms of on-line and off-line path planning algorithms. An overview of the

research progress in this field is presented in (Raja and Pugazhenthi, 2012).

The classical approaches to path planning algorithms include the cell decomposition (Lozano-Perez

and Wesley, 1979; Kallem et al., 2012), the potential field method (Khatib, 1986; Pozna et al., 2009),

the vector field histogram (Borenstein and Koren, 1991; Selekwa et al., 2008), etc. These approaches

give good results, but the main disadvantages are the increased computation time and the possibility

that the robot could get stuck in a cyclic behavior in some dead-end situations; it is possible to define

a set of rules to resolve the cyclic behavior, but the resulting path still would be a non-optimal one as

mentioned in (Borenstein and Koren, 1991).

The path planning problem for mobile robots is a non-deterministic polynomial time hard (NP-hard)

problem. In the recent years the evolutionary algorithms are becoming widely employed in solving this

problem with improved performance versus the classical approaches.

Some of the evolutionary algorithms used for generating optimal trajectories for mobile robots are Ant

Colony Optimization (ACO) (Fan et al., 2003; Tan et al., 2007; Garcia et al., 2009; Brand et al., 2010;

Chia et al., 2010), genetic algorithms (Gemeinder and Gerke, 2003; Tu and Yang, 2003; Hu and

Yang, 2004; Tuncer and Yildirim, 2012), Particle Swarm Optimization (PSO) (Qin et al., 2004; Chen

and Li, 2006; Saska et al., 2006; Wang et al., 2006; Masehian and Sedighizadeh, 2010), migration

algorithms (Vaščák and Paľa, 2012), etc.

The evolutionary algorithms are also used in combination with classical algorithms. An ACO algorithm

is proposed in (Mei et al., 2006) as a global planner while the local planner uses an Artificial Potential

Field algorithm. The potential field and the motion dynamics model are combined in (Park and Kim,

2008) to define a PSO algorithm. The PSO is used as the general planner and the Probabilistic

Roadmap method is used as a local planner in (Masehian and Sedighizadeh, 2010).

This paper proposes a new approach to the generation of optimal collision-free trajectories in partially-

known environments with multiple static or dynamic objects which incorporates a Gravitational Search

Algorithm (GSA). A new algorithm is formulated and compared with another algorithm which

incorporates a PSO algorithm. The presentation is focused on the implementation of the algorithms in

the framework of the nRobotic platform developed at the “Politehnica” University of Timisoara,

Romania. Our approach is important because it can be applied in the optimal path planning in

combination with other optimization algorithms (Angelov et al., 2008; Klančar et al., 2011; Kovács et

al., 2011; Lughofer et al., 2011; Bouhmala, 2012; Farahani et al., 2012) which can solve optimization

problems in various applications (Preitl and Precup, 1997; Precup et al., 2004; Hermann et al., 2009;

Haber et al., 2010; Johanyák, 2010; Wilamowski and Yu, 2010; Linda and Manic, 2011; Milojković et

al., 2010; Chiang and Roy, 2012; Kayacan et al., 2012).

The paper is organized as follows. The main aspects concerning the implementation of our GSA

algorithm are discussed in Section 2. Experimental results with different types of objects in known or

partially known environments and a comparison of the proposed algorithm with a PSO one are

presented in Section 3. The concluding remarks are highlighted in Section 4.

2. GSA-BASED OPTIMAL PATH PLANNING APPROACH

2.1 Gravitational Search Algorithm

The GSA is an optimization algorithm based on the law of gravity (Rashedi and Nezamabadi, 2009),

the performance of the agents being measured by their masses with the gravitation force playing a

role of direct form of communication between the agents A different version of the gravitation law is

given in (Gauci et al., 2012). This subsection will use a part of the implementation details reported in

(Precup et al., 2013).

This paper adapts the GSA to be used in generating an optimal trajectory from an initial point towards

a target point while avoiding all the obstacles in the environment. The environment is characterized by

known obstacles or obstacles discovered with the ultrasonic or infrared sensors mounted on the

robots.

GSA uses a population of agents and the optimization results from the movement of these agents in

the search direction. The algorithm starts by randomly placing the agents in the search space, the

performance of each agent being measured by its mass, a heavier mass represents a more efficient

agent with a higher attraction. The (inertial) mass of the agent i , at the time t which also represents

the iteration index, is calculated using the following equations:

)()(
)()()(
tworsttbest
tworsttfittm i

i −
−

= , (1)

∑
=

= N

j
j

i
i

tm

tmtM

1
)(

)()(, (2)

where N is the total numbers of agents in the search space, Ni ...1= ,)(tfiti represents the value

for the fitness function at the time t , while)(tworst and)(tbest are the worst and the best

evaluation of the fitness function; for a minimization problem the values the values are calculated

using:

)(max)(
,1

tfittworst iNi=
= , (3)

)(min)(
,1

tfittbest iNi=
= . (4)

The position of an agent in the search space is defined by the following vector position:

NitXtXtXt q
i

d
iii ...1)),(),...,(),...,(()(1 ==X , (5)

where d
iX is the position of the agent i in the dimension qd ...1= and q is the dimension of the

search space.

An agent moves in the search space at the time t and in the dimension d with a velocity d
iv updated

using the formula:

),1()1()(−+−⋅σ= tatvtv d
i

d
i

d
i (6)

where σ is a random number in the]1,0[interval and d
ia is the acceleration of the agent given by

the equation:

,
)(
)()(

tM
tFta

i

d
id

i = (7)

where d
iF is the total force that acts on the agent in the dimension d , which is equal with the sum of

the other agents forces exercised on the agent:

)()(
,1

, tFtF
N

ijj

d
ji

d
i ∑

≠=

⋅σ= , (8)

)]()([
)(

)()(
)()(

,

,,
, tXtX

tE
tMtM

tGtF d
j

d
i

ji

jaipd
ji −

ε+
⋅= , (9)

where ε is a small constant,)(tG represents the gravitational constant at time t computed in terms

of (Precup et al., 2013),)(, tM ip is the passive gravitational mass of the agent j and)(, tM ja is the

active gravitational mass of the agent j , while)(, tE ji represents the Euclidian distance between the

agents i and j :

∑
=

−=
q

d

d
i

d
jji tXtXtE

1

2
,)]()([)(. (10)

After the acceleration and the velocity are updated the position of the agent in the search space can

be calculated with the following formula:

)()1()(tvtXtX d
i

d
i

d
i +−= . (11)

2.2 GSA-based off-line path planning algorithm

Since this paper focuses on a new algorithm that generates a collision-free trajectory for a robot in a

partially known environment, the first step of this new algorithm is to generate a global path for the

robot to follow (off-line path planning) using only the available information about the environment in

which the robot is moving, namely the positions of some of the objects and the position of the other

robots. After the global path is generated the robot will follow the resulted trajectory while continuously

reading data from the environment using both ultrasonic and infrared sensors. If the robot discovers

an object that blocks the global path, the robot will stop and update the map with the new information

(the exact location of the newly discovered object) and it will recalculate a new global path (this time

from the new position of the robot).

This subsection presents the way in which the global path is obtained, the on-line path planning

algorithm being detailed in the next subsection.

The objective of the algorithm is to create an optimal path from an initial point to a target point in the

2=q -dimensional search space which is exactly the solution space of the mobile robot. The

objective is thus to minimize the length of the path that the robot needs to travel in order to reach

safely (i.e., in the conditions of obstacle avoidance) the target point. With this respect the agent

position and velocity actually represent the mobile robot’s position and velocity. The objective function

that needs to be minimized in order to obtain a shorter path with the help of the GSA described in the

previous subsection is the Euclidian distance between the target point and each agent position:

NitYYtXXtE ififi ...1 ,))(())(()(22 =−+−= , (12)

where),(ff YX is the target point and))(),(()(tYtXt iii =X is the agent vector position which

represents the current position of the agent in the search space at the time (iteration) t .

The relation between the objective function iE and the fitness function of an agent at the time t is:

NitEtfit ii ...1),()(== . (13)

The flowchart for the proposed algorithm is presented in Figure 1.

The step 1 of the algorithm generates a collection of agents, each agent having a random velocity

value in the [-0.2, 0.2] interval. The standard GSA algorithm randomly initializes the positions of the

agents in the search space (Rashedi and Nezamabadi, 2009), but this approach is not suitable for the

problem we are trying to solve, since our algorithm needs to find the trajectory path starting from an

initial known point. Other authors resolved this problem by initially placing the particles used in the

PSO algorithm around the initial position of the robot sensing area, thus the number of created

particles depends on the number of sensors mounted on the robot (Masehian and Sedighizadeh,

2010). In our implementation of the GSA, the initial position of all created agents is exactly the same

location, namely the initial position of the robot, in order to eliminate the dependency between the

number of agents and the number of sensors on the robot. Using this approach the algorithm is able

to create as many as agents are required in order to obtain more feasible trajectory paths to the target

point.

After the population of agents the algorithm repeats a number of steps, until all the agents reach the

target point or a maximum number of iterations is reached. During each iteration the algorithm needs

to determine the best and the worst agent from the iteration. This is done in the step 2 of the algorithm

by calculating the fitness function for each agent, namely by calculating the Euclidian distance

between the current position of the agent and the final position to which the robot needs to travel.

Figure 1. Flowchart of the GSA-based off-line algorithm.

The best agent per iteration is the agent with the lowest Euclidian distance. It is possible that the

agent with the best position to be inside of an obstacle, therefore it is necessary to add a penalty to

the value of the agent fitness, decreasing the agent performance and force of attraction for the other

agents. It is assumed this way that the other agents do not follow an agent with a trajectory that

contains points inside obstacles or that the line that connects two successive points of the generated

trajectory does not intersect with any known obstacle. The augmented value of the fitness function is

)(tafiti :

Nitfittafit ii ...1 ,)()(=α+= , (14)

where 0>α is a constant which represents the value of the penalty that will be applied to the agent

fitness. A more detailed view of step 3 that consists in adding penalties to an agent performance is

given by the flowchart presented in Figure 2. Therefore)(tafiti is used in the algorithm instead of

)(tfiti after step 3, but we will use as follows the same notation for these two fitness functions for the

sake of simplicity.

Figure 2. Flowchart for adding penalties to agent fitness.

Steps 5 and 6 of the algorithm consist in calculating the agent masses and the Euclidian distances

between all the created agents. In the step 7 from the Figure 1 the new velocity and the new position

for the particle can be calculated using equations (7) and (11).

A set of constraints to the agent next position is used in step 8 of the algorithm, namely when

updating the next position for each agent an important issue is to keep the resulted position in the

search space area characterized by the lower and upper limits of)(tX i and)(tYi coordinates,

represented by minX and minY , and maxX and maxY , respectively. The lower limit and the upper limit

are calculated on the basis of the initial point and the target point and the constraints, which

guarantee],[)(maxmin XXtX i ∈ and],[)(maxmin YYtYi ∈ , are expressed as:

⎪
⎩

⎪
⎨

⎧

>
∈
<

=
 ,)(if

),,()(if)(
 ,)(if

)(

maxmax

maxmin

minmin

XtXX
XXtXtX

XtXX
tX

i

ii

i

i (15)

⎪
⎩

⎪
⎨

⎧

>
∈
<

=
 ,)(if

),,()(if)(
 ,)(if

)(

maxmax

maxmin

minmin

YtYY
YYtYtY

YtYY
tY

i

ii

i

i (16)

where the constrained values of the)(tX i and)(tYi coordinates are)(tX i and)(tYi , respectively.

The constrained agent position vector))(),(()(tYtXt iii =X is used in the algorithm instead of the

agent position vector))(),(()(tYtXt iii =X after step 8. We will use as follows the same notation for

these two vectors for the sake of simplicity.

In order to retain all points through which an agent passes while moving through the search space, a

new property is added to the agent. This property concerns the trajectory points sets tiT , that will be

updated at each iteration of the algorithm, adding to it the agent position at each iteration:

NitYtXYXYXT iiiiti ...1))},(),(()),...,1(),1(()),0(),0({(11, == . (17)

where))0(),0(()0(iii YX=X is the initial position of the agent i .

After all agents reached the target point or the maximum number of iteration is reached, each agent

will have the list of trajectory points updated .The trajectory path for each agent will be constructed by

connecting with lines all successive points of the)(, max itiT sets, where)(max it represents the

maximum number of iterations for which the algorithm runs for the agent i ,)(...0 max itt = .

It is possible that some of the agent trajectory points to be placed inside objects or the line connecting

two successive points of the agent trajectory to intersect obstacles. Therefore in step 9 of the

algorithm it is necessary to eliminate all agent trajectories that are not collision-free, that means the

trajectory points sets)(, max itiT , },...,2,1{ NSi cf ⊂∈ , where cfS is the set of agents which lead to

collision-free trajectories.

After the cfS set is generated, which actually corresponds to a list of collision-free, the shortest path

from this list must be determined. In the last step of the algorithm, this path is obtained by the

calculation of the total Euclidian distance for each trajectory:

cf

it

t
iiiii SitYtYtXtXD ∈−−+−−= ∑

=

 ,)]1()([)]1()([
)(

1

22
max

. (18)

With this respect, the optimization problem, that gives the index î of the agent which corresponds to

the shortest path, is expressed as:

i
Si

Di
cf∈

=

minargˆ . (19)

The agent î is next used, by means of (19), to compute the trajectory points set)ˆ(,ˆ iti ma
T which

corresponds to the shortest path.

2.3 On-line path planning algorithm

The GSA-based algorithm presented in Subsection 2.2 generates an optimal collision-free trajectory

for the robot to follow to the target point by using only the information available about the environment,

therefore assuming that all objects positions from the environment are known in advance. In many

scenarios this information about the environment in which the robot needs to travel is not available

entirely or it is not available at all, therefore an on-line path planning algorithm needs to be used in

combination with the GSA-based one.

Using this on-line algorithm the robot can get to the target point while avoiding all known obstacles in

advance but also any new object that might appear in its way. A similar on-line algorithm which uses

the piecewise Hermite spline in order to generate a smooth path is discussed in (Boonporm, 2011).

The proposed algorithm will be used in different missions on the nRobotic platform developed at the

“Politehnica” University of Timisoara, Romania, some missions requiring at least two robots in order to

successfully start as shown in (Purcaru et al., 2012). Therefore is needed for the on-line path planning

algorithm to take into consideration the position of the other robots in the environment (which is known

at every point) and avoid any collision between them.

Our algorithm can be used even in completely unknown environments, by firstly generating an optimal

global path with the help of the GSA-based off-line algorithm. The robot will follow the generated path

while continuously reading data with the help of the ultrasonic and/or infrared sensors. When an

obstacle that blocks the global path is detected the robot needs to generate a new path to the target

point.

The flowchart of the on-line path algorithm is presented in Figure 3.

Figure 3. Flowchart of on-line path planning algorithm.

The position of the robot is used at step A of the algorithm as the initial point from which the GSA-

based off-line algorithm finds the optimal collision-free trajectory path to the target point. Based on the

environment map (with the known obstacles), step B generates the optimal off-line trajectory (19) that

will be followed by the robot in order to arrive at the target point.

Once the global trajectory is obtained the robot starts to move in the environment, following the

trajectory points from the shortest path generated with the algorithm given in Subsection 2.2.

The robot continuously reads information with the help of the infrared and ultrasonic sensors, while

also using information from the nRobotic platform about the position of the other robots that

participate at the mission. Using this information the robot is able to determine if there is an obstacle

or another robot that blocks the path generated at step B. If the path is clear the robot will continue its

movement until the target point is reached.

If there is an obstacle that blocks the path the robot the robot will stop and update the map of the

environment with the new values. After the map is updated with the new information about the

location of the newly discovered object the algorithm will return to step A; a new path to the target

point is generated, this time not from the initial point but from the new position of the robot in the

environment.

3. EXPERIMENTAL RESULTS

In order to test the proposed GSA-based path planning algorithm several simulations were run on the

nRobotic platform. The simulations were run in completely known environments to properly test the

GSA-based offline path planning algorithm but also in partially-known environments where the on-line

algorithm is used for properly detecting any new obstacle that may appear in the path of the robot to

the target point.

3.1 GSA-based off-line algorithm

A first case which deals with a simple scenario is illustrated in Figure 4, where different trajectories

are generated for the same environment with two known objects.

Figure 4. GSA-based solutions in a simple environment.

Several trajectories generated with a PSO algorithm are presented in Figure 5. A more complex

environment with objects of different types and the generated trajectories by the proposed GSA-based

path planning algorithm are shown in Figure 6.

Figure 5. PSO-based solutions in a simple environment.

Figure 6. GSA-based solutions in a complex environment.

The solutions generated by the PSO algorithm for the same environment are presented in Figure 7.

Figure 7. PSO-based solutions in a complex environment.

The information about the two environments, the initial point and the target point are given in Table 1.

Table 1: Information about the environments used in Figures 4, 5, 6 and 7.

Information Figures 4 and 5 Figures 6 and 7

Environment 100 x 100 unit area 150 x 100 unit area

Objects 2 5

Initial point [0, 0] [0, 0]

Target point [100, 100] [150, 100]

The execution time and the length of the generated trajectories for both algorithms in all above

situations are given in Table 2.The tests were performed on a computer with Intel I7 @ 2.2G Hz.

Table 2: Execution times and trajectory lengths for the two environments.

 GSA PSO

 Execution

time (ms)
Length iDˆ Execution time Length iDˆ

a) 400 150.26 a) 210 155.06

b) 410 148.28 b) 220 153.41

c) 405 154.63 c) 225 152.84

Figures 4

and 5

d) 415 148.86 d) 215 152

a) 680 204 a) 315 206

b) 693 203 b) 300 201

c) 690 198 c) 310 204

Figures 6

and 7

d) 670 183 d) 320 188

The results presented in Table 2 show that the PSO-based algorithm is faster than the GSA-based

one. The length paths do not differ significantly, and slightly better results are given by the GSA

algorithm.

It can be noticed that the execution time is smaller for both algorithms in the simple environment

shown in Figures 4 and 5. Less iterations of the algorithm are needed to be run in order for all agents

to reach the target point than in the complex environment with a bigger search space from Figures 6

and 7.

The parameters of the GSA and of the PSO algorithm employed in the generation of the trajectories

are given in Table 3. The notations for the parameters of the PSO algorithm are taken from (Precup et

al., 2013).

Table 3: GSA and PSO parameters.

Parameters GSA PSO

Number of agents 100 100

Penalty (α) 1000 1000

1c - 1.49

2c - 1.49

minw - 0.0001

maxw - 0.5

Initial velocity [-0.2,0.2] [-0.2,0.2]

Initial gravitational constant (0G) 50 -

ε 0.0000000001 -

Increasing the number of agents can lead to better trajectories with the cost of the execution time. The

computational complexity of both algorithms depends on the number of agents created.

An analysis of the computational complexity based on the number of agents for the simple

environment (illustrated in Figure 4) is performed by its practical computation in terms of showing the

execution time versus the number of agents that the algorithm is using. The results concerning the

computational complexity are presented in Figure 8.

Figure 8. Execution time (ms) versus number of agents.

Several generated trajectories by the proposed GSA-based trajectory in different environments with

multiple objects of different shapes are exemplified and given in Figure 9.

Figure 9. Several GSA-based generated trajectories.

3.2 On-line path planning algorithm

The on-line algorithm described in Subsection 2.3 is used when the robots that participate at a

mission in an unknown or partially-known environment. It is assumed this way that the robots will not

have collisions with any obstacles while moving to the target point.

The first example in which the online algorithm was tested is presented in Figure 10. The robot is

placed at the initial point)0,0(0X and it needs to move to the target point represented by the point

)100,100(fX . The environment in which the robot is moving is completely unknown.

Figure 10. On-line path planning in a completely unknown environment.

Not knowing any information about obstacles the GSA-based off-line algorithm generates a trajectory

from 0X to fX assuming that that the environment is obstacle-free. The initial off-line generated

path iT is represented by the blue trajectory in Figure 10 a). After the path is generated the robot

starts to move, following the trajectory iT . With the help of the mounted sensors the robot discovers

that an object 1O that starts at the position (50, 50) blocks the path. The robot stops its movement at

the point 1P (45, 45) and updates the map with the new information. Once the map is updated, the

GSA-based off-line calculates a new trajectory, this time from the point 1P to fX . The resulted

trajectory 1T is represented by the yellow path in Figure 10 b). Therefore the path the robot followed

by the in order to travel from the initial point 0X to the target point fX consists of two trajectories:

• the blue trajectory that connects the 0X to 1P ,

• the yellow trajectory that connects 1P to fX .

Another scenario in which the on-line path planning algorithm was tested is a partially unknown

environment in which the position of three obstacles (1O , 2O , 3O) is known in advance and it is

presented in Figure 11. The initial off-line trajectory is represented in the Figure 11 a) by the blue path

iT .

Figure 11. On-line path planning in a partially-known environment.

The recalculated path that is generated after the robot discovers that the object 4O blocks the initial

trajectory iT is represented in the Figure 11 b) by the yellow path 1T , the final trajectory followed by

the robot from 0X to fX is the blue path iT from 0X to 1P and the yellow path 1T from 1P to fX .

4. CONCLUSIONS

This paper has proposed a new algorithm for the optimal path planning. This algorithm is supported

by a GSA. The proposed off-line GSA-based algorithm is able to determine optimal paths in partially-

known environments where the locations of some obstacles are known in advance.

The GSA-based algorithm was compared with another evolutionary algorithm used in robot path

planning represented by the PSO algorithm. It was showed that the proposed algorithm generates

optimal trajectories, with path lengths that do not differ significantly by the ones generated with the

PSO algorithm. Our algorithm has a slight advantage, though this comes at the cost of algorithm’s

execution time as the PSO algorithm is much faster.

In real world scenarios the information about the environment in which the robots are moving is

unknown partially or completely, therefore an on-line path planning algorithm was designed and

implemented. The on-line path algorithm starts with the generation of an off-line optimal path using

only the information available in advance about the environment; this path is next used by the robot to

move to the target point. Along the way to the target the robot continuously uses the sensors to

determine if an obstacle blocks the initial off-line path. If there is an obstacle that blocks the path, the

robot updates the map and a new off-line path is generated, this time from the new position of the

robot and using the newly discovered information about the environment.

The proposed approach for the on-line path planning has the advantage of being easily generalized. It

is able to employ any evolutionary algorithm for the optimal path planning generating the off-line path,

not just the GSA-based one proposed in this paper. The future research will be focused on using

other evolutionary algorithms aiming the performance improvement.

ACKNOWLEDGEMENTS

This work was supported by a grant in the framework of the Partnerships in priority areas - PN II

program of the Romanian National Authority for Scientific Research ANCS, CNDI - UEFISCDI, project

number PN-II-PT-PCCA-2011-3.2-0732.

REFERENCES

Angelov, P.P., Lughofer, E., Zhou, Z., 2008, Evolving fuzzy classifiers using different model
architectures. Fuzzy Sets and Systems 159, 23, 3160–3182.

Boonporm, P., 2011, Online geometric path planning algorithm of autonomous mobile robot in
partially-known environment. Romanian Review Precision Mechanics, Optics & Mechatronics 40,
185–188.

Borenstein, J., Koren, Y., 1991, The vector field histogram – fast obstacle avoidance for mobile
robots. IEEE Transactions on Robotics and Automation 7, 3, 278–288.

Bouhmala, N., 2012, A multilevel memetic algorithm for the satisfiability problem. International Journal
of Artificial Intelligence 8, S12, 78–96.

Brand, M., Masuda, M., Wehner, N., Yu, X.-H. ,2010. Ant colony optimization algorithm for robot path
planning. Proceedings of 2010 International Conference on Computer Design and Applications
(ICCDA 2010), Qinhuangdao, Hebei, China, 3, V3-436–V3-440.

Chen, X., Li, Y., 2006, Smooth path planning of a mobile robot using stochastic particle swarm
optimization. Proceedings of 2006 IEEE International Conference on Mechatronics and Automation,
Luoyang, Henan, China, 1722–1727

Chia, S.-H., Su, K.-L., Guo, J.-H., Chung, C.-Y., 2010, Ant colony system based mobile robot path
planning. Proceedings of 2010 4th International Conference on Genetic and Evolutionary Computing
(ICGEC 2010), Shenzhen, China, 210–213.

Chiang, T.-A., Roy, R., 2012, An intelligent benchmark-based design for environment system for
derivative electronic product development. Computers in Industry 63, 9, 913–929.

Fan, X., Luo, X., Yi, S., Yang, S., Zhang, H., 2003, Optimal path planning for mobile robots based on
intensified ant colony optimization algorithm. Proceedings of 2003 IEEE International Conference on
Robotics, Intelligent Systems and Signal Processing, Changsha, Hunan, China, 1, 131–136.

Farahani, S.M., Abshouri, A.A., Nasiri, B., Meybodi, M.R., 2012, Some hybrid models to improve
firefly algorithm performance. International Journal of Artificial Intelligence 8, S12, 97–117.

Garcia, M.A., Montiel, O., Castillo, O., Sepúlveda, R., Melin, P., 2009, Path planning for autonomous
mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Applied Soft
Computing 9, 3, 1102–1110.

Gauci, M., Todd, T.j., Groß, R., 2012, Why ‘GSA: a gravitational search algorithm’ is not genuinely
based on the law of gravity, Natural Computing 11, 4, 719–720.

Gemeinder, M., Gerke, M., 2003, GA-based path planning for mobile robot systems employing an
active search algorithm. Applied Soft Computing 3, 2, 149–158.

Haber, R.E., del Toro, R.M., Gajate, A., 2010, Optimal fuzzy control system using the cross-entropy
method. A case study of a drilling process. Information Sciences 180, 14, 2777–2792.

Hermann, G., Kozlowsky, K.R., Tar, J.K., 2009, Design of a planar high precision motion stage. In:
Robot Motion and Control 2009, K.R. Kozlowsky (Ed.), Lecture Notes in Control and Information
Sciences, Springer-Verlag, Berlin, Heidelberg, 396, 371–379.

Hu, Y., Yang, S.X., 2004, A knowledge based genetic algorithm for path planning of a mobile robot.
Proceedings of 2004 IEEE International Conference on Robotics and Automation (ICRA'04), New
Orleans, LA, USA, 5, 4350–4355.

Johanyák, Z.C., 2010, Survey on five fuzzy inference-based student evaluation methods. In:
Computational Intelligence in Engineering, I.J. Rudas et al. (Eds.), Studies in Computational
Intelligence, Springer-Verlag, Berlin, Heidelberg, 313, 219–228.

Kallem, V., Komoroski, A.T., Kumar, V., 2012, Sequential composition for navigating a nonholonomic
cart in the presence of obstacles. IEEE Transactions on Robotics 27, 6, 1152–1159.

Kayacan, E., Cigdem, O., Kaynak, O., 2012, Sliding mode control approach for online learning as
applied to type-2 fuzzy neural networks and its experimental evaluation. IEEE Transactions on
Industrial Electronics 59, 9, 3510–3520.

Khatib, O., 1986, Real-time obstacle avoidance for manipulators and mobile robots. International
Journal of Robotics Research 5, 1, 90–98.

Klančar, G., Matko, D., Blažič, S., 2011, A control strategy for platoons of differential-drive wheeled
mobile robot. Robotics and Autonomous Systems 59, 2, 57–64.

Kovács, L., Benyó, B., Bokor, J., Benyó, Z., 2011, Induced L2-norm minimization of glucose-insulin
system for type I diabetic patients. Computer Methods and Programs in Biomedicine 102, 2, 105–118.

Linda, O., Manic, M., 2011, Interval type-2 fuzzy voter design for fault tolerant systems. Information
Sciences 181, 14, 2933–2950.

Lozano-Perez, T., Wesley, M.A., 1979, An algorithm for planning collision-free paths among
polyhedral obstacles. Communications of the ACM 22, 10, 560–570.

Lughofer, E., Macián, V., Guardiola, C., Klement, E.-P., 2011, Identifying static and dynamic
prediction models for NOx emissions with evolving fuzzy systems. Applied Soft Computing 11, 2,
2487–2500.

Masehian, E., Sedighizadeh, D., 2010, Multi-objective PSO-and NPSO-based algorithms for robot
path planning. Advances in Electrical and Computer Engineering 10, 4, 69–76.

Mei, H., Tian, Y., Zu, L., 2006, A hybrid ant colony optimization algorithm for path planning of robot in
dynamic environment. International Journal of Information Technology 12, 3, 78–88.

Milojković, M., Nikolić, S., Danković, B., Antić, D., Jovanović, Z., 2010, Modelling of dynamical
systems based on almost orthogonal polynomials. Mathematical and Computer Modelling of
Dynamical Systems 16, 2, 133–144.

Park, H., Kim, J.-H., 2008, Potential and dynamics-based particle swarm optimization. Proceedings of
IEEE Congress on Evolutionary Computation (CEC 2008), Hong Kong, China, 2354–2359.

Pozna, C., Troester, F., Precup, R.-E., Tar, J.K., Preitl, St., 2009, On the design of an obstacle
avoiding trajectory: Method and simulation. Mathematics and Computers in Simulation 79, 7, 2211–
2226.

Precup, R.-E., David, R.-C., Petriu, E.M., Rădac, M.-B., Preitl, S., Fodor, J., 2013, Evolutionary
optimization-based tuning of low-cost fuzzy controllers for servo systems. Knowledge-Based Systems
38, 74–84.

Precup, R.-E., Preitl, S., Balas, M., Balas, V., 2004, Fuzzy controllers for tire slip control in anti-lock
braking systems. Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-IEEE
2004), Budapest, Hungary, 3, 1317–1322.

Preitl, S., Precup, R.-E., 1997, Introducere in conducerea fuzzy a proceselor, Editura Tehnica,
Bucharest.

Purcaru, C., Iercan, D., Precup, R.-E., Enache S., Dohangie, B., Fedorovici L.-O., 2012, nRobotic
applications to path planning for mobile robots in missions. Proceedings of 16th International
Conference on System Theory, Control and Computing (ICSTCC 2012), Sinaia, Romania, 6 pp.

Qin, Y.-Q., Sun, D.-B., Li, N., Cen, Y.-G., 2004, Path planning for mobile robot using the particle
swarm optimization with mutation operator. Proceedings of 2004 International Conference on Machine
Learning and Cybernetics (ICMLC 2004), Shanghai, China, 4, 2473–2478.

Raja, P., Pugazhenthi, S., 2012, Optimal path planning of mobile robots: A review. International
Journal of Physical Sciences 7, 9, 1314–1320.

Rashedi, E., Nezamabadi-pour, H., Saryazdi, S., 2009, GSA: a gravitational search algorithm.
Information Sciences 179, 13, 2232–2248.

Saska, M., Macas, M., Preucil, L., Lhotska, L, 2006, Robot path planning using particle swarm
optimization of Ferguson splines. Proceedings of IEEE Conference on Emerging Technologies and
Factory Automation (ETFA'06), Prague, Czech Republic, 833–839.

Selekwa, M.F., Dunlap, D.D., Shi, D., Collins, E.G. Jr., 2008, Robot navigation in very cluttered
environments by preference-based fuzzy behaviors. Robotics and Autonomous Systems 56, 3, 231–
246.

Tan, G.-Z., He, H., Sloman, A., 2007, Ant colony system algorithm for real-time globally optimal path
planning of mobile robots. Acta Automatica Sinica 33, 3, 279–285.

Tu, J., Yang, S.X., 2003, Genetic algorithm based path planning for a mobile robot. Proceedings of
2003 IEEE International Conference on Robotics and Automation (ICRA'03), Taipei, Taiwan, 1, 1221–
1226.

Tuncer, A., Yildirim, M., 2012, Dynamic path planning of mobile robots with improved genetic
algorithm. Computers & Electrical Engineering 38, 6, 1564–1572.

Vaščák, J., Paľa, M., 2012, Adaptation of fuzzy cognitive maps for navigation purposes by migration
algorithms. International Journal of Artificial Intelligence 8, S12, 20–37.

Wang, L., Liu, Y., Deng, H., Xu, Y., 2006, Obstacle-avoidance path planning for soccer robots using
particle swarm optimization. Proceedings of IEEE International Conference on Robotics and
Biomimetics (ROBIO'06), Kunming, China, 1233–1238.

Wilamowski, B.M., Yu, H., 2010, Neural network learning without backpropagation. IEEE Transactions
on Neural Networks 21, 11, 1793–1803.

