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Tamás Haidegger1, Levente Kovács1, Stefan Preitl2, Radu-Emil Precup2,
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ABSTRACT

Robotic teleoperation has proved to be an effective way to explore remote areas, access
dangerous sites, or to provide telepresence. Currently, research projects are pushing the
boundaries to develop methods for meaningful health care support through teleoperated
robots. Surgical robotics have already shown the feasibility of radical concepts, such as
intercontinental surgery, and it is believed that technology will eventually enable to extend
its rage to space exploration missions. One of the key problems to tackle is the degrading
effect of signal latency on system performance and stability. In this paper, we present a
case study investigating solution for handling large delays during real-time teleoperation of
a remote surgical robot. Modeling approaches are discussed, and simplified human and
machine representations are derived to accommodate long distance telesurgical applica-
tions. We have shown that a cascade control structure relying on empirical design can be
effectively used in this scenario. A suitable controller was designed based on the extension
of Kessler’s methods in the inner loop, supported by predictive technique in the outer loop.
Several tuning methods resulting in proportional-integral-derivative (PID) controllers in the
outer loop are analyzed. This paper suggests the use of PID–fuzzy controllers to improve
the control system performance. The proposed cascade loop may be a good solution to
support future teleoperational missions.
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1 Introduction to medical telerobotics in space

There is an increasing need for teleoperation, as robotic surgery advances on Earth, and com-
munities realize the effectiveness of these systems to extend the reach of modern healthcare to
remote areas. The research community has been dealing with space application of telerobotics
since the dawn of the field. To cope with the difficulties of endoscopic surgery in weightless-
ness and the extensive space-system requirements, a three-layered mission architecture was
proposed earlier to achieve the highest degree of performance possible by combining robotic
and human surgery (Haidegger and Benyo, 2008). Depending on the physical distance be-
tween the spacecraft and the ground control center, different telepresence technologies may
provide the best performance:

1. Real-time telesurgery: up to 2 s round trip delay; 400,000 km (Earth–Moon distance),

2. Telementoring: up to 50–70 s; 10,000,000 km,

3. Consultancy telemedicine: reaching Mars with 5–44 min latency; 56–399 million km.

The effectiveness of real-time control strategies and communication techniques degrades sig-
nificantly with the increase of latency. Beyond Earth orbit, radio and microwave frequency
signals propagate at almost the speed of light in space, but even in the range of long distance
manned space missions, several minutes of latency can be experienced. Special control engi-
neering algorithms have to be applied to extend the feasibility of telesurgery up to a maximum
of 2 s of delay. Prior solutions include virtual coupling of the remote environment (Thompson,
Ottensmeyer and Sheridan, 1999), predictive displays projecting the intended motion of the
tools ahead in time (Rayman, Croome, Galbraith, McClure, Morady, Peterson, Smith, Subotic,
Wynsberghe and Primak, 2006). Beyond a few seconds, only semi-real-time mentoring, or
off-line consultancy can be given. Our goal was to investigate the possibility of designing a
controller that provides a stable and suitable solution for the first zone—near Earth—space
telesurgery. We are suggesting also the use of fuzzy logic control as a proportional-integral-
derivative (PID)–fuzzy controller to show the importance of artificial intelligence techniques
for such applications (Enee and Peroumalnaik, 2008; Joelianto and Ichsan, 2009; Zhao and
Hong, 2010).

2 Human Model for Teleoperation Scenarios

2.1 Human operator models

In order to design a suitable control scheme for teleoperation scenarios, it is necessary to
derive the applicable model of the human operator (master—M) and the robot (slave—S). The
generally used model of the operator (or pilot) with a first-order neuromuscular lag time model
containing simplifications; e.g., neglecting high frequency terms:

WOp = kOp

(τls+ 1)e−sτ

(τis+ 1)(τns+ 1)
, (2.1)



where kOp is the operator’s static gain, the e−sτ term reflects the pure time delay caused by the
human sensory system limitations, τl is the lead time constant (relative rate-to-displacement
sensitivity), τi is the lag time constant, τn the neuromuscular and activation mechanism lag
time (McRuer and Jex, 1967).
In many cases, the amplitude ratio data is best approximated with (2.1), called the crossover
model. The open-loop transfer function with one pole can be derived in the form:

WOp2 = kOp2

ωc
s
e−sτd , (2.2)

where kOp2 is the static gain, ωc is the crossover frequency (meaning the limitation of the hu-
man operator’s reaction based on the information feedback) and τd is the delay between the
observation and the reaction of the motor system (Rayman, Primak, Patel, Moallem, Morady,
Tavakoli, Subotic, Galbraith, van Wynsberghe and Croome, 2005). Rule of thumbs are de-
scribed in (McRuer, 1995; Hildo, Bijl, 2006) to properly choose ωc and kOp2.
Assuming zero physiological time delay, (2.2) yields to Fitts’ law (Fitts, 1992). This is a widely
accepted model that describes the time taken to acquire a visual target using some kind of
manual input device. In the most generic (Shannon) form, the average time (t) taken to com-
plete the movement is:

t = a+ b log2

(
1 +

D

w

)
, (2.3)

where a represents the start time, b stands for the inherent speed of the device, D is the
distance from the starting point to the center of the target and w is the width of the target
measured along the axis of motion (practically, the tolerable error).

3 Robot Model for Teleoperation scenarios

Let us assume that the robot is a series of rigid links with typical mechanical properties, and
the servos are driven by the local robot controller according to the control commands from the
master side. In telesurgery, it is desirable to minimize the load to the patient’s tissue, there-
fore force control may be used. Commonly, the impedance characteristics of both the master
and the slave devices are modeled separately, and the master controllers are very sophisti-
cated and compliant nowadays. A simple dynamic model of the manipulator, incorporating the
deviation of the tool from the master controller’s position is:

fS = kS (xS(t)− xM (t− Tlat))

+ BS (ẋS(t)− ẋM (t− Tlat)) +MSẍS(t), (3.1)

where xS is the Cartesian position of the slave, xM is the Cartesian position of the master, kS

is the stiffness of the slave manipulator and Tlat is the latency of the communication network
(Kawashima, Tadano, Sankaranarayanan and Hannaford, 2008).
Tissue characteristics are considered through Fung’s exponential force–stretch ratio curve
(Fung, 1990), deriving the relation between Lagrangian stress and stretch ratio:

fT = p
(
eq xS(t) − 1

)
, (3.2)



where p and q are tissue-specific constants, determined to be 0.2 and 400, respectively for
in-vivo abdominal tissue (Brouwer, Ustin, Bentley, Sherman, Dhruv and Tendick, 2001). In
our target application, strains are low, therefore the tissue behavior can be modeled as linear.
G(s) represents the linearized, frequency domain equivalent of (3.2). The slave robot can be
modeled together with an observer to determine fT . Deviation originating from the physical
realization of the robot’s mechanical structure (imperfections and frictions) have been omitted
from the model, resulting the transfer function:

WS =
(kS +BSs)G(s)

s (MSs2 +BSs+ kS +G(s))
. (3.3)

4 Application oriented controller design

4.1 Cascade controller for a telesurgical robot

A realistic teleoperation system suffers from time delays during communications between the
master (controller) and slave side (effector system). Unless the process is significantly slower
than the latency, the control lag time can cause the deterioration of the control quality and
even general instability can occur due to unwanted power generation in the communications.
Time-varying delay poses further difficulty to classical PID controllers.
Cascade control can improve control system performance over single-loop control whenever
disturbances affect a measurable intermediate/secondary process output that directly modifies
the primary process output, or if the gain of the secondary process (including the actuator)
is non-linear. Advantages of cascade control have been widely studied and published both
for telesurgical and generic space robotic applications (Lantos, 2001; Hirzinger, Heindl and
Landzettel, 1989).

4.2 Empirical design approach—Auto-calibration methods

4.2.1 Kessler’s methods and their extensions

Based on (2.2), the inner part of the cascade control scheme (robot) can be described in a
simple form (Haidegger, Kovács, Preitl, Precup, Kovács, Benyó and Benyó, 2010a). It is well
known that empirical methods can provide a solution for automatic calibration, following the
mainstream approach of control theory.
As first proposed by Kessler (Kessler, 1958), the class of plants characterized by the transfer
function:

HP (s) =
kP

s (1 + sT1) (1 + sTΣ)
, (4.1)

or
HP (s) =

kP
s (1 + sT1) (1 + sT2) (1 + sTΣ)

, (4.2)

can be controlled through empirical methods (Preitl, Precup, Kovacs and Preitl, 2002). In (4.1)
and (4.2) TΣ is a small time constant or aggregated time constant corresponding to the sum of
parasitic time constants (TΣ < T2 < T1). The use of a PI or PID controller having the transfer



function:
HC(s) =

kc
s

(1 + sTC1) (1 + sTC2) (4.3)

can ensure acceptable performance (Astrom and Hagglund, 1995). TΣ can also include the
time constants used to approximate the time delay. In (4.2), the process pole (p1 = −1/T1) may
be compensated by the controller zero (z1 = −1/TC2) in order to obtain the desired open-loop
H0(s) transfer function in the form:

H0(s) = HC(s)HP (s) =
k0 (1 + sTC1)

s2 (1 + sTΣ)
, (4.4)

with k0 = kckP .
Extensions of the Kessler methods were proposed in the literature (Preitl and Precup, 1999;
Vrancic, Strmcnik and Juricich, 2001), and the Extended Symmetrical Optimum method (ESO)
was derived (Preitl and Precup, 1999), where:

kc =
1

kPβ
3
2T 2

Σ

, TC1 = βTΣ and TC2 = T1. (4.5)

Tuning parameters are directly correlated to the desired control system performance indices.
The value of β is typically chosen to be in the [4 . . . 20) interval (Preitl and Precup, 2003). It is
possible to optimize β for maximum Phase Margin (PM) for any given kP constant. Depending
on β, the closed loop systems poles (p1, p2, p3) can be (Preitl and Precup, 2000):

• p1,2 are complex conjugated, if β < 9,

• p1,2,3 are real and equal, if β = 9,

• all poles are real and distinct for β > 9, but the system remains oscillatory.

The open loop transfer function can be given as:

H0(s) =
1 + βTΣs

β
3
2T 2

Σs
2(1 + TΣs)

. (4.6)

5 Controller Design Solutions for Long Distance Telesurgery

Considering the discussed challenges, we were focusing on classical control options to pro-
vide a simple, universal and scalable solution (Haidegger, Kovács, Preitl, Precup, Kovács,
Benyó and Benyó, 2010b). In the case of a cascade structure, the data of the inner loop gives
feedback to the outer loop, but no a priori knowledge about the inner loop’s dynamics is re-
quired to design the outer controller. On the other hand, it is possible to explicitly consider
the remote dynamics in the outer controller in order to predict the inner behavior (Arcara and
Melchiorri, 2002). This can be based on the well-known Smith predictor scheme, or similar
predictors (Lantos, 2001; Alvarez-Aguirre, 2010).
Fig.1 shows the schematic block diagram of the controller structure. It is important to identify
the right model of each component and to define the required parametric filtering enabling the
smooth handling of the whole cascade structure.



Figure 1: The concept of applying cascade control to deal with extreme latencies in telesurgery.

A predictor in the outer loop helps to deal with the computation of the delayed information from
the inner part, whereas a classical PID controller is implemented at the inner part. This is a
crucial and effective observation, as in case of teleoperating a robot in a spacecraft, significant
delays appear in the control loop. The use of empirical design methods is justified with the need
for simple and quick algorithms in cases when model predictive control may be cumbersome
to apply. In fact, a human physician controls the robot, and it is extremely difficult to develop
plausible model for their behavior from the control point of view. Our goal was to give a scalable
solution for the first phase of advanced telesurgical support (Haidegger and Benyó, 2007)
based on classical control theory. We focused on Kessler’s Extended Symmetrical Optimum
method and developed its first embedded application in the broader domain of robotics.

5.1 Realization of control methods

The above presented telesurgery support method has been tested in simulations to show its ef-
fectiveness. The models for teleoperation have been defined and implemented under MATLAB
R2009b and Simulink 7.1 environment.
Master–slave robots are typically used in a discrete position-controlled mode, therefore the
use of step function for excitation during evaluation is suitable to analyze the performance of
different controllers. While robot parameters are given in SI units below, the step function’s
amplitude/time diagrams scale down proportionally, as a robot would not move faster than
100 mm/s, while in the low level control, it must be regulated with 1–10 kHz control cycle.
During the evaluation, a critical factor was to ensure that the PM is between 45–60◦, where
the system is inherently stable, and we also set requirements for reasonable performance in
terms of overshoot (σ), the absolute maximum of the signal and settling time (τt), the time by
the signal reaches the ±2% proximity of its final value.



5.2 Slave side—inner loop

The slave robot can be modeled in accordance with (3.3):

WS =
(kS +BSs)G(s)

s (MSs2 +BSs+ kS +G(s))
. (5.1)

The tissue model in s domain (assuming constant contact force) is:

G(s) = p
(
eqK − 1

)
=
kt
s
. (5.2)

However, when K = xS(t)const, substituting G(s) into (5.1), the plant’s transfer function be-
comes:

WP =
ktBSs+ ktkS

s (MSs2 +BSs+ (kS + kt))
(5.3)

Assuming a reasonably small slave robot that might be suitable for long duration space mis-
sions based on (Kawashima et al., 2008): MS = 0.1 kg, BS = 20 Ns/m, kS = 400 and xS = 0.001
m. Tissue interaction parameters were chosen similarly: p = 0.2 and q = 400.
First, let us employ an input filter on the plant:

WF in =
1
BS

kSs+1

, (5.4)

leading to a filtered plant in the form of (4.1), with:

kP =
kSkt
kS + kt

= 0.0938, (5.5)

T1 =
2(kS + kt)

BS −
√
B2

S − 4MS(kS + kt)
= 0.0444s and (5.6)

TΣ =
2(kS + kt)

BS +
√
B2

S − 4MS(kS + kt)
= 0.0056s. (5.7)

Good control system performance indices (overshoot, settling time, control error ) can be ob-
tained with a PID controller applied to the inner control loop having the transfer function:

WContr in =
kContr in

s
(1 + sTC1)(1 + sTC2). (5.8)

The following tuning equations—specific to ESO method—lead to the tuning parameters of the
PID controller in the inner loop:

kContr in =
1

β2
√
βkPT 2

Σ

, TC1 = T1, TC2 = βTΣ, (5.9)

where β = βInner is the tuning parameter of the inner control loop. The designer can set the
value of this parameter to ensure an acceptable compromise in the control system performance
indices.
The open-loop and closed loop transfer functions (W0 and WC , respectively) derive to be:

W0 = WPFWContr in and

WC =
W0

1 +W0
=

1 + βTΣs

(1 +
√
βTΣs)

[
1 + (β −

√
β)TΣs+ βT 2

Σs
2
] . (5.10)



Figure 2: Step response of the filtered, closed loop WInner system.

For β = [4, 9] , W0 contains a complex conjugated pole pair, with slightly decreasing absolute
values. Therefore it is advisable to apply filtering in accordance with (Preitl and Precup, 1999).
Filtering for p∗1,2 means to compensate for the complex conjugated poles in the β = [4, 9]

domain.

WF1 =
1 +

(
β − β

1
2

)
TΣs+ βT 2

Σs
2

(1 + βTΣs) (1 + λTΣs)
, where λ = β − β

1
2 − 1. (5.11)

Then the WF1 filter is applied, and the closed loop transfer function of the inner control loop
(WInner) becomes:

WInner = WF1WC =
1

(1 + TP1s)(1 + λTP2s)
, (5.12)

where TP1 =
√
βTΣ and TP2 = TΣ.

Based on the data presented in Table 1, βInner must be over 5 to ensure 45◦ PM, resulting in
inherent stability of the system. Overshoot is 0% in every case due to the fact that we employed
a (5.11) type filter (Fig.2). Based on the experiments, it is advantageous to choose βInner = 6

for further design calculations, ensuring the best performance. This allows for 12 Hz control
cycle (comparable to the performance of current optical tracking systems). The inner loop PID
controller’s parameters for βInner = [4 . . . 16] are:

• kContr in = 4002.6 . . . 5003.3,

• TC1 = 0.0444 (for every βInner),

• TC2 = 0.0225 . . . 0.0902.



Table 1: Controller performance parameters for the inner loop with different βInner settings

β Phase Margin Overshoot Settling time
4 36.9◦ 0% 0.052 s
5 41.8◦ 0% 0.066 s
6 45.6◦ 0% 0.082 s
7 48.6◦ 0% 0.099 s
8 51.1◦ 0% 0.117 s
9 53.1◦ 0% 0.135 s

10 54.9◦ 0% 0.154 s
11 56.4◦ 0% 0.173 s
12 57.8◦ 0% 0.192 s
13 59◦ 0% 0.212 s
14 60.1◦ 0% 0.231 s
15 61◦ 0% 0.251 s
16 61.9◦ 0% 0.271 s

5.3 Master side—outer loop

The human operator’s model (WHum) in accordance with the crossover model (2.2) can be
modelled using Padé approximation (Lantos, 2001):

WHum = kp Hum
ωc Hum

s
e−sTHum ≈WHum Padé = kp Hum

ωc Hum

s

2− sTHum

2 + sTHum
, (5.13)

where THum represents the human operator’s physiological latency. Typically, THum = 0.1 s and
kp Humωc Hum = 1.
Filtering in the outer loop can be used to speed up the system. We compensate for the de-
nominator of the inner closed loop transfer function in (5.12). The transfer function of the outer
loop filter is:

WF out =
1 + sTComp

1 + sTF
, (5.14)

where TF is a filter time constant. TComp is set to compensate for the largest time constant in
(5.12):

TComp = max (TP1, TP2) , therefore (5.15)

TComp = max
(√

βTΣ, λTΣ

)
=

{ √
βTΣ if 1 < β ≤ 3 + 2

√
2

λTΣ = (β −
√
β − 1)TΣ if β > 3 + 2

√
2

In addition, TF is a small filter time constant fulfilling the condition:

0 < TF � min
(√

βTΣ, λTΣ

)
= TP3. (5.16)



The transfer function of the outer loop process is derived using notation Tm for time delay:
Tm = Td + THum, where Td is the round-trip latency.

WP out = WHumWF outWLatencyWInnerWLatency = kP out
s(1+sTF )(1+sTP3)e

−sTm ,

kP out = kP Humωc Hum,

Tm = THum = 2Td.

(5.17)

This transfer function can be used in the design and tuning of the outer loop controller with
transfer function WContr out. The open-loop and closed loop transfer functions, W0 out and WC out

are:

W0 out = WContr outWP out and

WC out =
W0 out

1 +W0 out
. (5.18)

Using (5.16), a simplified version of the transfer function in (5.17) can be derived:

WP out ≈
kP out

s(1 + TP out)
e−sTm , where TP out = TF + TP2. (5.19)

Using Padé approximation, the transfer function of the outer loop process is approximated as:

WP out ≈WP out Padé = WHum PadéWF outWPadéWInnerWPadé =

=
kP out(1− sTHum/2)(1− sTd/2)2

s(1 + sTF )(1 + sTP3)(1 + sTHum/2)(1 + sTd/2)2
. (5.20)

5.4 Classical solutions to handle time delay in telesurgery

Next, we discuss plausible options to deal with the outer controller design. Different ap-
proaches have been considered, simulated and evaluated to determine their usability in the
given cascade structure for teleoperation.

5.4.1 Case 0: Empirical approach through extended Ziegler–Nichols method

A classical controller tuning method was described by Ziegler and Nichols (Z–N) (Ziegler and
Nichols, 1942). In the case of the above described cascade system, a PID controller for the
outer loop—consisting of the entire slave side and the human operator—can be designed
applying Z–N. It needs a practical extension to handle a generic system (WP out) having the
transfer function (5.19). A PID controller in the form of:

WContr out =
kContr out

s
(1 + sTC1 out)(1 + sTC2 out) (5.21)

can be designed using the following parameters:

kContr out ∗ kP out ∗ ρ ≤ 1.2,

ρ =
Tm
TP out

, (5.22)

TC1 out = 2Tm and

TC2 out = Tm.



Figure 3: Step response of the closed loop system with different latencies 0.1 . . . 1 s. Experi-
ments showed that the Ziegler–Nichols method results in very slow systems.

For the surgical teleoperation system Tm = Td + THum. The extension means we handle the
model of the human operator with the given parameters as a latency within the system. Then,
the Z–N method can be applied to (5.17).
Performing simulations for the system, the Z–N method offers stable controllers for different
possible βInner parameters of the inner loop, but with very low PM, therefore large oscillations.
The method creates very slow systems for even moderate latencies (< 1 s), as shown in Fig.
3, therefore it can be stated that the Z–N method fails to provide a universal solution to the
control problem of delayed teleoperation.
The outer loop PID controller’s parameters for Td = [0.2 . . . 2] s are:

• kContr out = 0.113 . . . 0.016,

• TC1 out = 0.6 . . . 4.2,

• TC2 out = 0.3 . . . 2.1.

5.4.2 Case 1: Straight application of Kessler’s method

Originally, the transfer function of a plant applicable to Kessler’s method does not include la-
tency, as shown in (4.1), (4.2). Delays in the system must be approximated and handled in an
aggregated manner, as derived in (5.20). The plan is therefore:

WP out =
kP out

s(1 + TP out)
e−sTm , where TP out = TF + TP2, (5.23)



Table 2: Maximum latency manageable with different βInner design parameter settings in the
inner loop’s controller.

βInner 4 5 6 7 8 9 10 11 12 13 14 15 16

Tdmax [s] 0.016 0.028 0.022 0.016 0.011 0.005 0 0 0 0 0 0 0

and the PID controller is defined in the form:

WContr out =
kContr out

s
(1 + sTC1 out)(1 + sTC2 out), (5.24)

and applying the tuning parameters of the PID controller similarly to the inner loop in (5.9):

kContr out =
1

β2
√
βkP outT 2

Σ

, TC1 out = T1, TC2 out = βTΣ, (5.25)

where β = βOuter is the tuning parameter of the outer control loop.
Without distorting the effectiveness of Kessler’s method, we can employ Padé approximation
for latencies not effecting the largest time constant of the original plant:

TPl ≥
TΣ︷ ︸︸ ︷

(Td + TP2), (5.26)

where TPl is the largest time constant of the process, Td is the time delay and TP2 being the
aggregation of the smaller time constants. Then we can apply the method analogous to (5.20),
using a PID controller having the transfer function:

WContr out =
kContr out

s
(1 + sTC1 out)(1 + sTC2 out). (5.27)

Depending on the βInner scaling factor applied in the inner loop, the time constants of the outer
loop will vary, therefore different amount of latency can be handled this way. We could show
based on Table 2 that to achieve maximum latency handling βInner = 5 provides the highest
value, while respecting (5.26). However, as presented in Table 1, stability of the inner loop is
only guaranteed with higher βInner, therefore βInner = 6 is the optimal choice.
With this assumption, latency in the system can be handled. Let us consider the previously
discussed robotic teleoperational setup, where the time constants of the outer loop transfer
function denominator are TOuter = [0.05, 0.0138, 0.0144] s, therefore let us build an approxi-
mated transfer function with time constants:

TP1 = 0.05 and

TΣ =

0.0282︷ ︸︸ ︷
(0.0138 + 0.0144) . (5.28)

In terms of (5.26), a maximum of 0.0218 s latency can be tolerated by this design mode.
Applying Td = 0.0218 to the simulations, the resulting stable controller’s performance is shown
in Fig.4. The controller’s parameters for βOuter = [4 . . . 16] are:

• kContr out = 81.862 . . . 10.233,



Figure 4: Step response of the whole closed loop system with different βOuter settings (classical
ESO) and a maximum of 0.0218 s communication lag time. Kessler’s classical method was
employed for controller design.

• TC1 out = 0.05,

• TC2 out = 0.156 . . . 0.625.

This results in a slow controller (with τmin = 0.6 s settling time) with significant (σ = 33%)
overshoot. Clearly, this method has a major limitation towards latency handling, and further
design consideration are to be made to enable the tolerance of higher latencies, as discussed
below.

5.4.3 Case 2: Stretching Kessler’s robustness

It is possible to overcome the limitation of the above mentioned setup by violating condition
(5.26). While the extended Kessler method (Preitl and Precup, 1999) only guarantees over-
shoot and settling parameters if the largest time constraint is compensated, the robustness of
the design method can be exploited. For the plant defined in (5.19):

WP out =
kP out

s(1 + TP out)
e−sTm , where TP out = TF + TP2, (5.29)

with the PID controller:

WContr out =
kContr out

s
(1 + sTC1 out)(1 + sTC2 out), (5.30)

and applying the tuning parameters of the PID controller similarly to the inner loop in (5.9):

kContr out =
1

β2
√
βkP outT 2

Σ

, TC1 out = T1, TC2 out = βTΣ, (5.31)



this will return the same results as the previous (classical) method for Td ≤ 0.0218, but will also
give stable solutions for larger latencies. Using the same PID structure (5.21), the controller’s
parameters for βOuter = 6 and Td = [0.2 . . . 2] s are:

• kContr out = 11.133 . . . 0.2439,

• TC1 out = 0.05,

• TC2 out = 0.469 . . . 3.169.

Fig.5(a,b) show the results for Td = 0.1, the step response and Bode plot for βOuter = [4, 16]

values. βInner was set to the optimal value, 6. The best results were acquired at βOuter = 6,
where σ = 33% and τ = 1.28 s. The PM is increasing along with βOuter, as the system is getting
slower and slower due to the nature of combined time constant approximation. With increasing
time delay, only the settling time grows (Fig.5c). For the desired maximum design constraint of
1 s latency (with βOuter = 6), this method gives σ = 33% and τ = 8.11 s, which is unacceptable
for teleoperational application.
It is also possible to test the robustness of Kessler’s method through not incorporating the
latency in Tσ. In this case, applying the previous β settings, the controller designed will be
unstable. However, the extreme choice of the parameters (βInner = βOuter = 16) leads to a stable
controller for up to 0.5 s through slowing down the system, as shown in Fig.6. In fact, latency
over 0.2 s results in an under-damped system.
This analysis leads to the conclusion that better method is required to reach the 2 s round-trip
latency range with a safe and effective controller design.

5.4.4 Case 3: Kessler’s method with Smith predictor

Smith predictor is a model based prediction method which handles the time delay outside of
the control loop and allows a feedback design based on a delay-free system (Lantos, 2001).
For a generic system having the transfer function:

WP = WPe
−sTd , (5.32)

where Td is the latency and theWP(s) plant transfer function is assumed to be open-loop stable,
the closed loop transfer function derives to be:

WC =
WCWP

1 +WCW̃P +WC(WP e−sTd − W̃P e−sT̃d)
e−sTd , (5.33)

where W̃P is the model of the plant and T̃d is the approximation of the time delay. When these
models match perfectly, the closed loop transfer function becomes:

WC =
WCWP

1 +WCWP
e−sTd . (5.34)

Applying this to WP out defined in (5.17):

WC out =
WContr outWP out

1 +WContr outWP out
e−sTd . (5.35)



Figure 5: a) Step response of the whole closed loop system with different βOuter settings em-
ploying the stretched version of Kessler’s method. Td was 0.1 s. b) Bode plot of the system
with the same settings. c) Step response of the system with βInner = βOuter = 6 and Td = 0.1–1 s.



Figure 6: The robustness of Kessler’s method proven through its ability to compensate for
latencies up to 0.5 s, originally not incorporated in the system model.

Similar conditions have been simulated than before, and in the case of Td = 0.1 s, the deriving
system performs better than in the previous cases. Table 3 summarizes the numeric results for
βInner = 6, employing 5th order Padé approximation for the latency. The plan is:

WP out =
kP out

s(1 + TP out)
e−sTm , where TP out = TF + TP2, (5.36)

and the PID controller is:

WContr out =
kContr out

s
(1 + sTC1 out)(1 + sTC2 out), (5.37)

with tuning equations of the PID controller, just as like before:

kContr out =
1

β2
√
βkP outT 2

Σ

, TC1 out = T1, TC2 out = βTΣ, (5.38)

It can be seen that βOuter = 9 gives the best results along the pre-defined criteria.
With this controller structure, it is finally possible to properly address the issues with large
latencies (e.g., Td = 2 s, as targeted before). To ensure the smooth hold phase of the system,
higher order (>5th) Padé approximation was used. This also increased the overshoot, therefore
a rational compromise was chosen. From the application point of view, the amplitude of the
oscillation (Amax) during the hold phase can be critical, thus it is a limiting factor regarding the
choice of order and the overshoot. It has been determined to only allow a maximum of 10%
overshoot during the hold phase, therefore bigger (>15th) order Padé approximation should be
used based on Table 4.
Previous considerations for β are valid here as well, therefore βInner = 6 provides a rational
compromise between rise-time and overshoot. With 15th order Padé approximation the effect
of the βOuter = [4, 16] parameter on the system is shown in Fig. 7, using the same PID controller
structure (5.21). The smoothing effect of higher β in return of slowing down the system is dis-
played numerically in Table 5. The optimal parametrization of the control structure for extreme



Table 3: Controller performance parameters for Case 3 with different βOuter settings

βOuter Phase Margin Overshoot Settling time
4 41◦ 43% 0.57 s
5 41.5◦ 37% 0.54 s
6 42.3◦ 33% 0.47 s
7 43.3◦ 30% 0.61 s
8 44.3◦ 27% 0.69 s
9 45.3◦ 25% 0.77 s

10 46.2◦ 23% 0.84 s
11 47.1◦ 22% 0.92 s
12 47.9◦ 21% 0.99 s
13 48.7◦ 20% 1.06 s
14 49.4◦ 19% 1.12 s
15 50.1◦ 18% 1.19 s
16 50.8◦ 17% 1.26 s

Table 4: Effect of order of Padé approximation on control parameters.

O(Padé) Amax Overshoot Settling time
1 95.3% 0% 4.58 s
3 50.6% 2% 3.19 s
5 32.5% 6% 3.04 s
7 25.1% 12% 2.83 s
9 17.4% 17% 2.71 s

11 14.8% 21% 2.64 s
13 12.2% 24% 2.61 s
15 10% 25% 2.60 s
17 8.6% 27% 2.67 s
19 7.2% 27% 2.69 s
21 6.2% 28% 2.71 s



Figure 7: Kessler’s method employed with Smith predictor for large latencies. The βOuter control
parameter’s effect in the oscillation in the hold phase.

teleoperation with 2 s latency has been derived: βOuter = 6 and βOuter = 9 result in a system
with τ = 2.61 s and σ = 25%, while the initial oscillation does not exceed 10%. The controller’s
parameters for βOuter = [4 . . . 16] are:

• kContr out = 157.448 . . . 19.681,

• TC1 out = 0.05,

• TC2 out = 0.113 . . . 0.451.

5.5 PID–fuzzy controller

Accepting that the controller in the outer loop is a PID controller with the transfer function:

WContr out =
kContr out

s
(1 + sTC1 out)(1 + sTC2 out), (5.39)

the outer loop controller can be decomposed as the following series connection of proportional-
integral (PI) and proportional-derivative (PD) blocks with the transfer functions WPI and WPD,
respectively:

WContr out = WPIWPD , (5.40)

WPI =
kContr out

s
(1 + sTC1 out) and (5.41)

WPD = 1 + sTC2 out. (5.42)



Table 5: Effect of βOuter on control parameters for Case 3 system design.

βOuter Amax Overshoot Settling time
4 18.4% 22% 2.58 s
5 15.7% 25% 2.61 s
6 13.6% 26% 2.62 s
7 12.1% 27% 2.49 s
8 11% 25% 2.54 s
9 10% 25% 2.61 s

10 9.5% 24% 2.79 s
11 8.9% 23% 2.85 s
12 8.5% 22% 2.9 s
13 8% 21% 2.95 s
14 7.7% 20% 3 s
15 7.4% 20% 3.06 s
16 7.1% 19% 3.14 s

Figure 8: Structure of PID–fuzzy controller.

The structure of the PID–fuzzy controller is presented in Fig.8, where the nonlinear blocks FC1
and FC2 include the scaling of inputs and output, q−1 is the backward shift operator, ek is the
control error, ∆ek = ek − ek−1 is the increment of control error, vk is an additional variable, and
uk is the control signal. The nonlinear block FC1 corresponds to WPI and the nonlinear block
FC2 corresponds to WPD.
The two blocks FC1 and FC2 are characterized by the input membership functions presented in
Fig.9. The inference engines of FC1 and FC2 employ the SUM and PROD operators assisted
by the rule bases presented in Fig.10 and Fig.11, respectively. The weighted area method is
used for defuzzification as FC1 and FC2 are Takagi–Sugeno fuzzy systems. The output of FC1
is fuzzified in order to be applied as input to FC2.
The rule consequents presented in Fig. 10 and Fig. 11 represent the discrete-time versions of
nine separately designed PI and PID controllers. They are tuned using the results presented
in the previous section and Tables 2-5, our PID–fuzzy controllers will behave like a bumpless
interpolator between several separately tuned linear PID controllers. The separately tuned PID
controllers are set such that to combine the advantageous performance of all PID controllers.



Figure 9: Input membership functions of FC1 and FC2.

Figure 10: Rule base expressed as decision table of FC1.

Figure 11: Rule base expressed as decision table of FC2.



Tustin’s method applied to the transfer functions defined in (5.42) leads to the following expres-
sions of the parameters in Fig.10 and Fig.11:

Ki
P,PI = kiContr out

[
1− Ts/(2T iC1 out)

]
, (5.43)

αiPI = 2Ts/(2T
i
C1 out − Ts) , (5.44)

Kj
P,PD = 1− Ts/(2T iC2 out) , (5.45)

αjPD = 2Ts/(2T
i
C2 out − Ts) where (5.46)

i, j = 1, 9, (5.47)

where Ts is the sampling period, and i, j = 1, 9 are the current indexes of the PI and PD blocks.
The parameters of the PID–fuzzy controllers are obtained in accordance with the following
tuning condition:

B∆e = Be
[
min(α1

PI, . . . , α
9
PI)
]
, (5.48)

B∆ν = Bν
[
min(α1

PD, . . . , α
9
PD)
]
. (5.49)

The tuning condition (5.49) ensures the modal equivalence, and the parameters Be and Bv

must be set by the designer. The stability analysis of the fuzzy control system is important with
this regard.

6 Conclusion

We proposed a cascade control structure based empirical controller design to address the
challenges of a system with large and probably varying latencies. With robot assisted surgery,
a shared control approach should be followed, integrating high-fidelity automated functions into
the robot to extend the capabilities of the human surgeon through image processing and force
sensing. This concept could be most beneficial for long duration on-orbit missions, primarily
on board of the International Space Station (ISS). Teleoperation controller design has a huge
role in providing the high quality control signals and sensory feedback to facilitate surgery over
the time-delay network.
Classical control methods were investigated for telesurgery, assessing their robustness in a
time delay system and a fuzzy controller for the outer loop has been suggested. We showed
that empirical approach through extended Ziegler–Nichols method and straight application of
Kessler’s Extended Symmetrical Optimum method did not provide acceptable controller pa-
rameters even with low latencies. Even the stretched Kessler method failed to tolerate laten-
cies above 0.5 s relying solely on its robustness. Through employing a Smith predictor with
Kessler’s extended method, we managed to achieve good control parameters for our teleoper-
ational system model for up to 2 s of delay. Therefore our method could theoretically be applied
to reach out to near Earth (on orbit) spacecrafts, and to support reliable teleoperation.

7 Future work

Many different solutions have been investigated for bilateral teleoperation scenarios (Hokayem
and Spong, 2006), and an appropriate version of it could be implemented with our struc-



ture. Also, a more complex tissue model will be incorporated, based on (Misra, Ramesh
and Okamura, 2008). Other algorithms like soft-computing (hybrid fuzzy controller) is planned
to be used in the outer control loop (Precup and Preitl, 2007). Time varying latency in to-
day’s internet network represent further technological challenges that need to be addressed
(Sankaranarayanan, Potter and Hannaford, 2007).

Acknowledgment

This work was supported in part by the National Office for Research and Technology (NKTH),
Hungarian National Scientific Research Foundation grant OTKA CK80316. It is connected to
the scientific program of the ” Development of quality-oriented and harmonized R+D+I strat-
egy and functional model at BME” project, supported by the New Hungary Development Plan
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