

# Evolving Fuzzy Models and Applications

**Radu-Emil Precup**

*Department of Automation and Applied Informatics*

*Politehnica University of Timisoara*

Timisoara, Romania

radu.precup@upt.ro

## KEYNOTE SPEECH

**Abstract**—As shown in the classical papers on evolving fuzzy systems (EFSs), evolving Takagi-Sugeno or Takagi-Sugeno-Kang fuzzy models are characterized by continuous online rule base learning. These fuzzy models are developed in terms of the application of online identification algorithms. The online identification algorithms continuously evolve the parameters of the fuzzy models, which are built online by adding new or removing old local models. This process is referred to as the adding mechanism.

According to the recent classification of online identification algorithms (Dovžan, Logar and Škrjanc, 2015), three categories of online identification algorithms are considered in EFSs, namely (1), (2) and (3): (1) adaptive algorithms – they start with the initial Takagi-Sugeno-Kang fuzzy model structure given by other algorithms or by user experience, the number of space partitions/clusters does not change over time, and these algorithms adapt just the parameters of the membership functions and the local models; (2) incremental algorithms – they implement only adding mechanisms; (3) evolving algorithms – these algorithm implement, besides the adding mechanism, also the removing and a part of them the merging and the splitting mechanisms. These specific features ensure a large area of applications.

This speech highlights a part of the results obtained by the Process Control Group of the Politehnica University of Timisoara, Romania. The presentation is focused on representative applications, implemented in our labs, with real-validated by experimental results. The results pointed out here include different lab equipment as pendulum-crane systems, twin rotor aerodynamic systems, magnetic levitation systems, anti-lock braking systems, and shape memory alloy systems.

The scope of the development of these models is the model-based and data-driven model-free design and tuning of fuzzy controllers by the Process Control Group.

**Keywords**—*applications, evolving fuzzy models, lab equipment, Takagi-Sugeno-Kang fuzzy models*

### SHORT BIO

Radu-Emil Precup (M'03–SM'07) received the Dipl.Ing. (with honors) degree in automation and computers from the “Traian Vuia” Polytechnic Institute of Timisoara, Timisoara, Romania, the Dipl. degree in mathematics from the West University of Timisoara, Timisoara, and the Ph.D. degree in automatic systems from the Politehnica University of Timisoara (UPT), Timisoara, Romania, in 1987, 1993, and 1996, respectively.

He is currently with UPT, Timisoara, Romania, where he became a Professor with the Department of Automation and Applied Informatics in 2000. He is also an Adjunct Professor

within the School of Engineering, Edith Cowan University, Joondalup, WA, Australia, and an Honorary Professor with the Óbuda University, Budapest, Hungary. He is the author or coauthor of more than 300 papers. His current research interests include intelligent control systems and data-driven control.

Prof. Precup is a corresponding member of The Romanian Academy, a member of several Technical Committees (TCs) including IEEE ones, the IFAC TC on Computational Intelligence in Control and the TC12 on Artificial Intelligence of IFIP. He was the recipient of the Elsevier Scopus Award for Excellence in Global Contribution (2017), the “Grigore Moisil” Prize from the Romanian Academy, two times, in 2005 and 2016, for his contribution on fuzzy control and the optimization of fuzzy systems, the “Tudor Tănăsescu” Prize from the Romanian Academy in 2020 for his contribution on data-driven controller tuning techniques, and several best paper awards (2004–2021).

### SELECTED REFERENCES

- [1] P. Geethanjali, “Myoelectric control of prosthetic hands: state-of-the-art review,” *Med. Dev. Evid. Res.*, vol. 9, pp. 247–255, Dec. 2016.
- [2] J.-H. Wang, H.-C. Ren, W.-H. Chen, and P. Zhang, “A portable artificial robotic hand controlled by EMG signal using ANN classifier,” in *Proc. 2015 IEEE Int. Conf. Inform. Autom.*, Lijiang, China, 2015, pp. 2709–2714.
- [3] Z.-J. Xu, Y.-T. Tian, and L. Yang, “sEMG pattern recognition of muscle force of upper arm for intelligent bionic limb control,” *J. Bionic Eng.*, vol. 12, no. 2, pp. 316–323, Apr. 2015.
- [4] H.-X. Cao, S.-Q. Sun, and K.-J. Zhang, “Modified EMG-based handgrip force prediction using extreme learning machine,” *Soft Comput.*, vol. 21, no. 2, pp. 491–500, Jan. 2017.
- [5] Y. Guo, G. R. Naik, S. Huang, A. Abraham, and H. T. Nguyen, “Nonlinear multiscale maximal Lyapunov exponent for accurate myoelectric signal classification,” *Appl. Soft Comput.*, vol. 36, pp. 633–640, Nov. 2015.
- [6] C.-G. Yang, J.-S. Chen, Z.-J. Ju, and A. S. K. Annamalai, “Visual servoing of humanoid dual-arm robot with neural learning enhanced skill transferring control,” *Int. J. Humanoid Robot.*, vol. 15, no. 2, pp. 1–23, Apr. 2018.
- [7] T.-A. Teban, R.-E. Precup, T. E. Alves de Oliveira, and E. M. Petriu, “Recurrent dynamic neural network model for myoelectric-based control of a prosthetic hand,” in *Proc. 2016 IEEE Int. Syst. Conf.*, Orlando, FL, USA, 2016, pp. 1–6.
- [8] T.-A. Teban, R.-E. Precup, E.-C. Lunca, A. Albu, C.-A. Bojan-Dragos, and E. M. Petriu, “Recurrent neural network models for myoelectric-based control of a prosthetic hand,” in *Proc. 22<sup>nd</sup> Int. Conf. Syst. Theor. Control Comput.*, Sinaia, Romania, 2018, pp. 603–608.
- [9] R.-E. Precup, T.-A. Teban, T. E. Alves de Oliveira, and E. M. Petriu, “Evolving fuzzy models for myoelectric-based control of a prosthetic hand,” in *Proc. 2016 IEEE Int. Conf. Fuzzy Syst.*, Vancouver, BC, Canada, 2016, pp. 72–77.

[10] R.-E. Precup, T.-A. Teban, E. M. Petriu, A. Albu, and I.-C. Mituletu, "Structure and evolving fuzzy models for prosthetic hand myoelectric-based control systems," in *Proc. 26<sup>th</sup> Mediter. Conf. Control Autom.*, Zadar, Croatia, 2018, pp. 625–630.

[11] R.-E. Precup, T.-A. Teban, A. Albu, A.-I. Szedlak-Stinean, and C.-A. Bojan-Dragos, "Experiments in incremental online identification of fuzzy models of finger dynamics," *Rom. J. Inform. Sci. Tech.*, vol. 21, no. 4, pp. 358–376, Dec. 2018.

[12] M. Tabakov, K. Fonal, R. A. Abd-Alhameed, and R. Qahwaji, "Fuzzy bionic hand control in real-time based on electromyography signal analysis," in *Comput. Coll. Intell. ICCCI 2016*, N. T. Nguyen, L. Iliadis, Y. Manolopoulos, and B. Trawiński, Eds. Cham: Springer, Lecture Notes in Computer Science, vol. 9875, pp. 292–302, 2016.

[13] M. Tabakov, K. Fonal, R. A. Abd-Alhameed, and R. Qahwaji, "Bionic hand control in real-time based on electromyography signal analysis," in *Trans. Comput. Coll. Intell. XXIX*, N. T. Nguyen and R. Kowalczyk, Eds. Cham: Springer, LNCS, vol. 10840, pp. 21–38, 2018.

[14] X. Zhou and P. Angelov, "Real-time joint landmark recognition and classifier generation by an evolving fuzzy system," in *Proc. 2006 IEEE Int. Conf. Fuzzy Syst.*, 2006, Vancouver, BC, Canada, pp. 1205–1212.

[15] X. Zhou and P. Angelov, "Autonomous visual self-localization in completely unknown environment using evolving fuzzy rule-based classifier," in *Proc. 2007 IEEE Symp. Comput. Intell. Secur. Def. Appl.*, Honolulu, HI, USA, 2007, pp. 131–138.

[16] R. D. Baruah and P. Angelov, "Evolving local means method for clustering of streaming data," in *Proc. 2012 IEEE Int. Conf. Fuzzy Syst.*, Brisbane, QLD, Australia, 2012, pp. 1–8.

[17] P. Angelov, "Outside the box: an alternative data analytics framework," *J. Autom. Mob. Robot. Intell. Syst.*, vol. 8, no. 2, pp. 29–35, Apr. 2014.

[18] P. Angelov, I. Škrjanc, and S. Blažić, "Robust evolving cloud-based controller for a hydraulic plant," in *Proc. 2013 IEEE Conf. Evol. Adapt. Syst.*, Singapore, 2013, pp. 1–8.

[19] S. Blažić, I. Škrjanc, and D. Matko, "A robust fuzzy adaptive law for evolving control systems," *Evolv. Syst.*, vol. 5, pp. 3–10, Mar. 2014.

[20] D. Leite, R. M. Palhares, V. C. S. Campos, and F. A. C. Gomide, "Evolving granular fuzzy model-based control of nonlinear dynamic systems," *IEEE Trans. Fuzzy Syst.*, vol. 23, no. 4, pp. 923–938, Aug. 2015.

[21] E. Lugofer and M. Pratama, "Online active learning in data stream regression using uncertainty sampling based on evolving generalized fuzzy models," *IEEE Trans. Fuzzy Syst.*, vol. 26, no. 1, pp. 292–309, Feb. 2018.

[22] P. Wide, E. M. Petriu, and M. Siegel, "Sensing and perception for rehabilitation and enhancement of human natural capabilities," in *Proc. 2010 IEEE Int. Works. Robot. Sens. Env.*, Phoenix, AZ, USA, 2010, pp. 75–80.

[23] D. Dovžan, V. Logar, and I. Škrjanc, "Implementation of an evolving Fuzzy Model (eFuMo) in a monitoring system for a waste-water treatment process," *IEEE Trans. Fuzzy Syst.*, vol. 23, no. 5, pp. 1761–1776, Oct. 2015.

[24] N. Kasabov, "ECOS: A framework for evolving connectionist systems and the eco learning paradigm," in *Proc. 5<sup>th</sup> Int. Conf. Neural Inf. Proc.*, Kitakyushu, Japan, 1998, pp. 1222–1235.

[25] P. Angelov and D. Filev, "An approach to online identification of Takagi-Sugeno fuzzy models," *IEEE Trans. Syst., Man, Cybern. B, Cybern.*, vol. 34, no. 1, pp. 484–498, Feb. 2004.

[26] J. V. Ramos and A. Dourado, "On line interpretability by rule base simplification and reduction," in *Proc. Eur. Symp. Intell. Technol. Hybrid Syst. Impl. Smart Adapt. Syst.*, Aachen, Germany, 2004, pp. 1–6.

[27] T. Niemueller, S. Zug, S. Schneider, and U. Karras, "Knowledge-based instrumentation and control for competitive industry-inspired robotic domains," *Künstl. Intell.*, vol. 30, no. 3–4, pp. 289–299, Oct. 2016.

[28] E. Osaba, R. Carballedo, F. Diaz, E. Onieva, A. Masegosa, and A. Perallos, "Good practice proposal for the implementation, presentation, and comparison of metaheuristics for solving routing problems," *Neurocomput.*, vol. 271, pp. 2–8, Jan. 2018.

[29] R. Radiša, N. Dučić, S. Manasijević, N. Marković, and Ž. Ćojbašić, "Casting improvement based on metaheuristic optimization and numerical simulation," *Facta Univ. Ser. Mech. Eng.*, vol. 15, no. 3, pp. 397–411, Jul. 2017.

[30] R.-E. Precup and R.-C. David, *Nature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems*. Oxford, UK: Butterworth-Heinemann, Elsevier, 2019.

[31] P. Korondi, H. Hashimoto, and V. Utkin, "Discrete sliding mode control of two mass system," in *Proc. 1995 IEEE Int. Symp. Ind. Electron.*, Athens, Greece, 1995, pp. 338–343.

[32] R.-E. Precup and S. Preitl, *Fuzzy Controllers*. Timisoara: Editura Orizonturi Universitare, 1999.

[33] R.-E. Precup and S. Preitl, "Development of fuzzy controllers with non-homogeneous dynamics for integral-type plants," *Electr. Eng.*, vol. 85, no. 3, pp. 155–168, Jul. 2003.

[34] C. Pozna, R.-E. Precup, J. K. Tar, I. Škrjanc, and S. Preitl, "New results in modelling derived from Bayesian filtering," *Knowl.-Based Syst.*, vol. 23, no. 2, pp. 182–194, Mar. 2010.

[35] Á. Takács, L. Kovács, I. J. Rudas, R.-E. Precup, and T. Haidegger, "Models for force control in telesurgical robot systems," *Acta Polyt. Hung.*, vol. 12, no. 8, pp. 95–114, Dec. 2015.

[36] R.-E. Precup, T.-A. Teban, and A. Albu, "Evolving fuzzy and neural network models of finger dynamics for prosthetic hand myoelectric-based control," in *Proc. 11<sup>th</sup> Int. Conf. Electron. Comput. Artif. Intell.*, Pitesti, Romania, 2019, pp. 1–8.

[37] R.-E. Precup, T.-A. Teban, A. Albu, A.-B. Borlea, I. A. Zamfirache, and E. M. Petriu, "Evolving fuzzy models for prosthetic hand myoelectric-based control using weighted recursive least squares algorithm for identification," in *Proc. 2019 IEEE Int. Symp. Robot. Sens. Environ.*, Ottawa, ON, Canada, 2019, pp. 164–169.

[38] A. Albu, R.-E. Precup, and T.-A. Teban, "Results and challenges of artificial neural networks used for decision-making in medical applications," *Facta Univ. Ser. Mech. Eng.*, vol. 17, no. 4, pp. 285–308, Dec. 2019.

[39] R.-E. Precup, T.-A. Teban, A. Albu, A.-B. Borlea, I. A. Zamfirache, and E. M. Petriu, "Evolving fuzzy models for prosthetic hand myoelectric-based control," *IEEE Trans. Instrum. Meas.*, vol. 69, no. 7, pp. 4625–4636, Jul. 2020.

[40] R.-E. Precup, R.-C. Roman, T.-A. Teban, A. Albu, E. M. Petriu, and C. Pozna, "Model-free control of finger dynamics in prosthetic hand myoelectric-based control systems," *Stud. Informat. Control*, vol. 29, no. 4, pp. 399–410, Dec. 2020.

[41] D. Hladek, J. Vascak, and P. Sineak, "Hierarchical fuzzy inference system for robotic pursuit evasion task," in *Proc. 2008 6<sup>th</sup> Int. Symp. Mach. Intell. Informat.*, Herľany, Slovakia, 2008, pp. 273–277.

[42] C. Pozna and R.-E. Precup, "Aspects concerning the observation process modelling in the framework of cognition processes," *Acta Polyt. Hung.*, vol. 9, no. 1, pp. 203–223, Mar. 2012.

[43] H. Costin and S. Bejinariu, "Medical image registration by means of a bio-inspired optimization strategy," *Comput. Sci. J. Moldova*, vol. 20, no. 2, pp. 178–202, Jun. 2012.

[44] R.-E. Precup, T. Haidegger, S. Preitl, B. Benyó, A. S. Paul, and L. Kovács, "Fuzzy control solution for telesurgical applications," *Applied and Computational Mathematics*, vol. 11, no. 3, pp. 378–397, Sep. 2012.

[45] H. Costin, "Fuzzy rules-based segmentation method for medical images analysis," *Int. J. Comput. Communic. Control*, vol. 8, no. 2, pp. 196–206, Apr. 2013.

[46] K. Michail, K. M. Deliparaschos, S. G. Tzafestas, and A. C. Zolotas, "AI-based actuator/sensor fault detection with low computational cost for industrial applications," *IEEE Trans. Control Syst. Technol.*, vol. 24, no. 1, pp. 293–301, Jan. 2016.

[47] I.-D. Borlea, R.-E. Precup, F. Dragan, and A.-B. Borlea, "Centroid update approach to K-means clustering," *Adv. Electr. Comput. Eng.*, vol. 17, no. 4, pp. 3–10, Dec. 2017.

[48] L. Nyulászi, R. Andoga, P. Butka, L. Főző, R. Kovacs, and T. Moravec, "Fault detection and isolation of an aircraft turbojet engine using a multi-sensor network and multiple model approach," *Acta Polyt. Hung.*, vol. 15, no. 2, pp. 189–209, Apr. 2018.

[49] Z. C. Johanyák, "Fuzzy rule interpolation based model for student result prediction," *J. Intell. Fuzzy Syst.*, vol. 36, no. 2, pp. 999–1008, Apr. 2019.

[50] A. Lucchini, S. Formentin, M. Corno, D. Piga, and S. M. Savaresi, "Torque vectoring for high-performance electric vehicles: a data-

driven MPC approach,” *IEEE Control Syst. Lett.*, vol. 4, no. 3, pages 725–730, Jul. 2020.

[51] M. Parigi Polverini, S. Formentin, L. Merzagora, and P. Rocco, “Mixed data-driven and model-based robot implicit force control: a hierarchical approach,” *IEEE Trans. Control Syst. Technol.*, vol. 28, no. 4, pp. 1258–1271, Jul. 2020.

[52] R.-E. Precup, E.-L. Hedrea, R.-C. Roman, E. M. Petriu, A.-I. Szedlak-Stinean, and C.-A. Bojan-Dragos, “Experiment-based approach to teach optimization techniques,” *IEEE Trans. Educ.*, vol. 64, no. 2, pp. 88–94, May 2021.

[53] E. Osaba, J. Del Ser, A. D. Martinez, J. L. Lobo, and F. Herrera, “AT-MFCGA: An adaptive transfer-guided multifactorial cellular genetic algorithm for evolutionary multitasking,” *Inf. Sci.*, vol. 570, pp. 577–598, Sep. 2021.

[54] R.-E. Precup, C.-A. Bojan-Dragos, E.-L. Hedrea, R.-C. Roman, and E. M. Petriu, “Evolving fuzzy models of shape memory alloy wire actuators,” *Rom. J. Inf. Sci. Technol.*, vol. 24, no. 4, pp. 353–365, Dec. 2021.

[55] R.-E. Precup, S. Preitl, and G. Faur, “PI predictive fuzzy controllers for electrical drive speed control: Methods and software for stable development,” *Comput. Ind.*, vol. 52, no. 3, pp. 253–270, Dec. 2003.

[56] R.-E. Precup and S. Preitl, “PI and PID controllers tuning for integral-type servo systems to ensure robust stability and controller robustness,” *Electr. Eng.*, vol. 88, no. 2, pp. 149–156, Jan. 2006.

[57] R.-E. Precup and S. Preitl, “Stability and sensitivity analysis of fuzzy control systems. Mechatronics applications,” *Acta Polyt. Hung.*, vol. 3, no. 1, pp. 61–76, Mar. 2006.

[58] R.-E. Precup and S. Preitl, “PI-fuzzy controllers for integral plants to ensure robust stability,” *Inform. Sci.*, vol. 177, no. 20, pp. 4410–4429, Oct. 2007.

[59] P. Angelov and D. Filev, “On-line design of Takagi-Sugeno models,” in *Fuzzy Sets and Systems – IFSA 2003*, T. Bilgiç, B. De Baets, and O. Kaynak, Eds. Berlin, Heidelberg, Lecture Notes in Computer Science, vol. 2715, pp. 576–584, 2003.

[60] P. Angelov, J. Victor, A. Dourado, and D. Filev, “On-line evolution of Takagi-Sugeno fuzzy models,” *IFAC Proc. Vol.*, vol. 37, no. 16, pp. 67–72, Sep. 2004.