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ABSTRACT 

In this paper, a new virtual 3D stereo camera model is presented to get a full rank of the 
image Jacobian matrix (Jimg) for an eye-in-hand stereo camera system. Some problems of 
the classical image Jacobian are local minima and singularities in image space solving by 
Jimg. Furthermore, a robust visual control method is also proposed for a pan-tilt platform 
with stereo camera-in-hand using a neural network to compensate the effect of 
uncertainties in the dynamics of the overall system. An online learning neural network is 
used in the closed loop control system to compensate the uncertainties of both the 
Jacobian matrix and the dynamics of pan-tilt robot. The asymptotic stability of the overall 
visual control system is proved by Lyapunov stability method. The performance of the 
proposed control method is demonstrated by simulations in Matlab. 
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1. INTRODUCTION 
 

Visual control systems usually use one camera (Cat and Minh, 2009), (Kelly et al., 2000) or two 
cameras (Bo et al., 2012), (Li et al., 2009), (Tae-Il et al., 2011), (Widodo et al., 2011) to track moving 
targets. In such system, the image Jacobian matrices (Jimg) (Bo et al., 2012), (Oscar and Ricardo, 
2003), (Shibata et al., 2010), (Shibata et al., 2011) play an important role in visual tracking tasks. 
However, they are not full-rank resulting in some problems as local minima and singularities in image 
space. Recently, some authors have developed a camera model to obtain a full-rank of the Jacobian 
matrix in a fixed stereo camera system (Cai et al., 2013). This paper proposes a 3D camera model to 
get a full rank of the image Jacobian matrix in an eye-in-hand camera.   

Other problems are finding the appropriate control method and control algorithms. Numbers of 
authors use kinematic methods (Antonelli, 2008), (Siciliano et al., 2009), (Tae-Il et al., 2011) while the 
others use dynamic method (Cai et al., 2013), (Sho-Tsung et al., 2010). In recent years, there were 
many types of control algorithms in visual servoing systems to track moving targets including a classic 
control method as a PID controller (Li et al., 2009), a modern control method as sliding mode control 
(Cai et al., 2013), adaptive method (Oscar and Ricardo, 2003), (Ukida et al., 2012), combined with 
neural network (Cat and Minh, 2009), (Hashimoto et al., 1992), (Yang et al., 2017, Vol 13), (Yang et 
al., 2017, Vol 47) and fuzzy controller (Qiu et al., 2017). Nearly, some author integrated with 
optimization part of parameters or model for better results (Azar et al., 2016), (Vaščák, 2012). This 



 

paper deals with the robust control problem of a pan-tilt-stereo camera system affected by 
uncertainties in both the Jacobian matrix and the dynamics of pan tilt platform. The RBF neural 
network with online learning algorithm is used for rapidly respond. 

The Lyapunov stability theory as well as Barbalat’s lemma are most frequently used to prove the 
asymptotic stability of the overall closed loop visual tracking system (Cai et al., 2013), (Li et al., 2009). 
The Hamiltonian method in checking asymptotic stability can be seen in (Bo et al., 2012).  

In the previous paper (Chung and Cat, 2015), image Jacobian is not full rank and exits a singularity 
when take pseudo inverse. That is the cause of the tracking of camera cannot pass through the -π 
point when moving target follow a circle. Other hand, the controller that proposed in the paper (Chung 
and Cat, 2015) is only used for kinematic system and not paying attention to the speed error, 
uncertain in dynamic models also other effect of noise. Also, the image errors in section 4 of paper 
(Chung and Cat, 2015) are not really converges to zero. In this paper, a visual control scheme to 
control a pan-tilt-stereo camera system to track moving targets is proposed with some new ideas.  
Firstly, a 3D stereo camera model having a full-rank of image Jacobian for an eye-in-hand problem of 
a pan-tilt-stereo camera system is built. Secondly, the dynamic of the system is built. Thirdly, a robust 
controller with an on-line learning neural-network to compensate the effects of noise as well as 
uncertainties in the kinematics and dynamics of the overall system is proposed.  

The paper is organized as follows. In section 2, a 3D virtual stereo camera model for eye-in-hand 
stereo camera system with pan-tilt robot (Fig.1) is determined. In section 3, a robust control algorithm 
with neural network is represented and the asymptotic stability of the overall system is proved by 
Lyapunov stability method. Section 4 shows simulation results on Matlab-Simulink to demonstrate the 
performance of the proposed control algorithm. Finally, the conclusion is summarized in the section 5. 
 

 

2. 3D VISUAL MODEL FOR EYE-IN-HAND STEREO CAMERA SYSTEM 
 

The realization of this work supposes the availability of a great number of repetitions of samples 
responding to the same known theoretical model. In practice, as the theoretical model is unknown, we 
use the Monte-Carlo method based on the generation of the data by computer according to a fixed 
theoretical model. 
 

2.1. 3D virtual stereo camera model systems 
 

Figure 2 shows the coordinate frames used to construct 3D visual camera model. Left and right 
camera coordinate frames are LLLL ZYXO , RRRR ZYXO with the origin located at the focal point of 
respective camera. The origin of camera frame cccc ZYXO  is located at the midpoint of origin of two 
cameras. 

Assumption 1: The intrinsic parameters of camera as focal length f, number of pixels, etc. are the 
same, placed at the same height and the optical axis of two cameras is parallel together. Pan angle is 
θ1, its rotation around the axis Z0 in the original coordinate of platform pan/tilt, tilt angle is θ2, its 
rotation around the axis Z1 in the coordinate system 1111 ZYXO  of platform pan/tilt. 

The feature point coordinates of the target are captured from the left camera’s image named as (UL, 
VL) and the right camera (UR, VR) on two axes (U, V). Following the above assumption, the 
coordinates of feature point on two cameras are the same on V axis or VR = VL = V. From Fig.2, the 
coordinates of feature point on the left image frame (UL, VL) and the right image frame (UR, VR) are 
transformed to (Z, Y) and (X, Y) planes as shown in Fig.3. Now, a 3D visual space is built according to 
the following steps: 

First step, from geometrical relations between the target and that feature images point in Fig.3, the 
coordinates of the target point [ ]Tc zyx=x in the camera coordinate frame cccc ZYXO  are 
calculated as follows eq.(1) (Chung and Cat, 2015): 



 

 
Figure 1. Coordinates of Pan/Tilt camera system 

 
Figure 2. 3D visual stereo camera model 
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where K is distance between two cameras optical OL and OR . f is focal length of camera.   

Second step, a reference coordinate frame vvvv ZYXO  with the origin located at the same position as 

cccc ZYXO is defined. In order to transform OC to OV, the rotation matrix v
CR   (Fig.2) is used. The 

projection  of [ ]Tc zyx=x in cccc ZYXO  is defined in vvvv ZYXO  as [ ]Tvvvv yxz=x  (Cai et 
al., 2013): 
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The purpose of coordinate frame Ov is to simplify the virtual camera model in a specific orientation of y 
and z axes when define two virtual camera's frame on the next step. 



 

                             
Figure 3. Coordinates of feature point on Z, Y and X, Y axis 

Third step, the reference coordinate frame vvvv ZYXO  is used to define two virtual camera's frame 

1111 vvvv ZYXO , 2222 vvvv ZYXO  associated with stereo cameras. Their location on Xv and Zv axes are 
far away from Ov the distances λ.  

The coordinates of the origin Ov1 and Ov2 in vvvv ZYXO  respectively are  

 [ ]Tvv xz λ−; ;  [ ]Tvv xz ;λ+ .                                                         (4) 

Last step, the virtual camera model is combined with 3D visual camera model to construct a 3D virtual 
Cartesian space having feature point vector denoted as: [ ]Tvvvs xzz 121=x .  

The pinhole camera model (Shibata et al., 2011) is used to calculate the relationship between the 
coordinates of the target in vvvv ZYXO  and its image coordinates in the virtual cameras. Its image 
coordinates in 1111 vvvv ZYXO  are V1 (zv1, xv1) and in 2222 vvvv ZYXO   are V2(zv2, xv2): 
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(cz , cx) are the coordinates of the principal point in the virtual image frame seen in the frame 
vvvv ZYXO . fv is the focal length of virtual camera. l  is the distance from the frame vvvv ZYXO  to the 

coordinate of virtual camera origin Ov1, Ov2 respectively with the axis z, x. Rewriting (5), (6), (7) in 
another form yields (8)  
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where xs is the coordinates of the target feature point in virtual space. 

If the target or pan/tilt joints moves, the features images point in virtual space also move. Assuming 
the geometric relationship between the virtual and real camera system is still guarantees under the 
above formulas when the pan/tilt robot turns. Then, taking the derivative (8) with the time results in (9) 
that describes the speed relations between the target’s image on two virtual cameras and the frame 

vvvv ZYXO : 

vvimgvs f xJx && =  ,                                                                                 (9) 



 

where vimgJ  is the visual Jacobian matrix: 
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vimgJ  describes the speed relations between the image in two virtual cameras and the target in the 

reference frame vvvv ZYXO . The coordinates of the target in the base frame 0000 ZYXO  of the pan-tilt 
robot can be computed as: 

CCR xx 0
0 = .                                                                                       (11) 

Then 0
0

0 xx C
v

v RR= , where x0 is the coordinate of target in the origin of pan-tilt coordinate O0. The 
equation (9) can be rewritten as: 
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CR0 is the homogeneous transformation matrix which transforms coordinates from CCCC ZYXO  to  

0000 ZYXO . C1 is cosθ1; C2 is cosθ2; S1 is sinθ1; S2 is sinθ2; Cv
C

vimgvimg RRf 0JJ = . 

The differential kinematic of pan-tilt pedestal describes the velocity relations between the joint velocity 
[ ]Tqq 21, &&& =q   and the target velocity 0x& : 

Cv
C

vimgvimg RRf 0JJ =                                                                       (14) 

where )(qJrobot is (3x2) and is the Jacobian matrix of the  pan/tilt robot see in camera coordinate. It 
can be determined as (Siciliano et al., 2009): 
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Substituting the equation (14) into (11) yields: 
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where )(qJJJ robotimg= is the visual Jacobian (3x2) matrix of the pan-tilt camera in the 3D virtual 
Cartesian space. 

 

2.2. Avoid singularity 
 

The homogeneous transformation matrices CR0   and v
CR  are non singular. Therefore, the singularity 

of imgJ  depends on only vimgJ . vimgJ  will be singular only when λ = xv or zv = λ. Then, the singularity 
of vimgJ  that can be avoided by choosing the parameter λ such as λ > max (xv, zv). Similarly, the 



 

singularity of robotJ can be avoided by defining the limit of robot workspace. Therefore, the 
singularities of the system Jacobian matrix J only depend on those of the robot Jacobian matrix.  

 

2.3. Stereo visual servoing problem with uncertain parameters 
 

Assuming that the parameters of  the above visual control system are not known exactly, now the 
Jacobian matrix is described as: 

JJJ Δ+= ˆ ,                                                                                        (17) 

where Ĵ ,  JΔ  are  the known and unknown part of the Jacobian matrix.  

Substituting Eq. (17) into Eq. (14) yields: 

0)ˆ( xJqJJx C
v

vimgvs Rf &&& +Δ+= .                                                        (18) 

 

2.4. Dynamics of robot manipulator  with uncertainties. 

 

The dynamics of a serial n-link rigid robot with friction, and  uncertainty can be written as follows: 

τdqgqqqCqqM =+++ )()(),()( t&&&&                                                       (19) 

where M(q) is the (n x n) symmetric positive definite inertia matrix. q is the (n x 1) vector of robot joint 
rotation. qqqC && ),( is the (n x n) vector of centripetal and Coriolis effects. g(q) is the vector of 
gravitational torque and  τ is the torque vector applied for robot joints.  In this system, pan/tilt robot 
has two joints, n = 2. d(t) is the effect of all uncertainties in the robot dynamics  

Assuming that, d(t)  is continuous and bounded function, so: 

max)( dt ≤d .                                                                                    (21) 

From the equation (19) it derives (Cat and Minh, 2009): 

)]()(),()[(1 tdqgqqqCτqMq −−−= − &&&& .                                                (22) 

The tracking image feature error of the system is defined as  sds xxε −= ; where 3Rs ∈x   is a vector 

of image feature points, 3Rsd ∈x is a desired  constant vector of image feature points of the target in 
the 3D virtual Cartesian space. The variable vector ε  describes the image feature error in the 3D 
virtual Cartesian space.  

  sds xxε −= .                                                                                    (23) 

Taking the derivative of ε , the first and the second time, yields: 

qJqJxε &&&& Δ+== ˆ
s ,                                                                          (24) 

qJqJqJqJxε &&&&&&&&&&&& Δ+Δ++== ˆˆ
s .                                                         (25) 

Substituting the Eq. (22) into Eq. (25) and after arranging, results in: 

ufqgqqqCqJJqMεJqMτ +++−= ++ )(),(ˆˆ)(ˆ)( &&&&&& ,                                  (26) 

where TT JJJJ ˆ)ˆˆ(ˆ 1−+ =  is the pseudo inverse matrix of Ĵ . fu is the uncertainty component: 

qJJqMqJdfu &&&& +−Δ+= ˆ)(ˆ)(t .                                                             (27) 

Denoting: 
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And rewriting the Eq. (26), yields: 

ufbεAτ ++= && .                                                                                  (29) 

The dynamic control problem of stereo visual servoing is finding the control law τ in the (29) to 
stabilize asymptotically the closed-loop system, so the image features error 0ε → . 

 
 

3.  ROBUST NEURAL CONTROL OF STEREO CAMERA SYSTEM WITH PAN TILT ROBOT 

 

3.1. Construction of robust controller  

The task is to find the joint torque τ  to make the image feature error vector ε  reaching to 0. The 
control law  is chosen as follows: 

 10)( τττbεKεKAτ +=++−−= NRPD & ,                                              (30) 

bεKεKAτ +−−= )(0 PD & ,                                                                   (31) 
where DK , PK are  symmetric positive definite matrices. NRτ  is a control component used to 
compensate the effect of uncertain parameters. It will be determined later. 

Substitute equation (30) and (31) into (29), the error dynamics can be rewritten as follows: 

)( ufτAεKεKε −=++ +
NRPD &&& .                                                       (32a) 

Denoting: NRτAτ +=1  and ufAf +=1  where TT AAAA 1)( −+ =  is the pseudo inverse matrix of A. 
Rewriting the equation (32a), yields: 

ufτεKεKε −=++ 1PD &&& .                                                                  (32b) 

 

3.2 Layer construction of RBF neural network  

 

Now, it is to construct a neural network to approximate f1 and find the component 1τ so the equation 
(32b) is asymptotically stable. f1 can be approximated by a neural network with suitable learning law 
and the control vector NRτ  such as system (32b) asymptotically stable can be determined. The 
structure of choosing artificial neural network is a Radial Basis Function (RBFNN) network. It has 3 
layers.  

Input layer 

Input layer of the neural network includes three components of the image error ε . In the neural 
network  the input vector is [ ]Tsss 321=s  and chosen as follows: 

Hεεs += & ,                                                              (33) 

where H is a symmetric positive-definite matrix. If 0s →  as 0→t ,  will 0ε→  as 0→t . 
 

Hidden layer computation 

The hidden layer consists of neurons with output function calculated by Gaussian form (Murata et al., 
1994): 



 

 
 

Figure 4. RBF network approximating function f  
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where jσ is the activation function for hidden unit j. jjc λ, are the center and  the width of hidden unit 
of the j radial basis function. ( )jj c−ε is the Euclidian distance from center. The value of jσ only 

acceptable when ( ) 2
jjj c λε <−  . 

Output layer  
The output values of the network are approximate function f1 as  shown in Fig.4. that includes 3 linear 
neurons. According to the Stone – Weierstrass theorem (Cotter et al., 1990), the structure of RBF 
network above can approximate the unknown function f1(s) represented as below: 

βsfsf += )(ˆ)(1  ,                                                       (34a)                          

Wσsf =)(ˆ                                                                      (34b)                    
where β is bounded approximation errors.   

0β≤β  ,                                                                                   (35) 

W is the weight matrix of the neural network, updated on-line from the real-time measured value of 
errorε  follwing equaltion (38).  

3.3 Optimization parameters 

In the papers (Azar et al., 2016), (Mostafa et al., 2016), (Precup et al., 2015), (Vaščák, 2012) the 
authors used some algorithms to optimize the parameters. SOMA algorithm is used for optimization 
parameters in fuzzy cognitive maps (Vaščák, 2012). In paper (Mostafa et al., 2016) new algorithm 
MOsDE-Im used for multi-objective optimization. Two nature-inspired optimization algorithms are SA 
and PSO (Precup et al., 2015) to optimal Takagi-Sugeno-Kang fuzzy models. In this paper, some 
parameters in the controller as G, H, jjc λ,  are optional but we can optimize them.  

The Genetic Algorithms (GA) is used in optimizing parameters as radial basis function center jc and 
base width parameter function jλ followed steps (Yang et al., 2007): 

Step 1: randomize initial parameters. The initial of jjc λ,  shown in the equation (53) in simulation 
section. 

Step 2: Train the RBFNN model and calculate the fitness values. 

Step 3: Check the satisfy of the image error vector [ ]Tsss 321=s .  if the image error are not in 
allowed range go to step 4.  

Step 4: Crossover, mutation and reproduction new jjc λ,  parameters then go to step 2. 

The G, H parameters in this paper are determined by experimental methods. These parameters are 
used to define DK , PK  parameters of PD controller. 

3σ

1σ

2σ
s2 

s3 
 

W11 

1̂f  

2f̂

3f̂
W33 

s1 

 

 

 



 

Theorem 1: The image error dynamics (32b) of  the uncertain pan-tilt – Stereo camera tracking 
system (18), (19)   will be asymptotically stable  with the error 0ε→  if  the control torque is chosen 
by following (36), (37) and online learning rules (38): 

NRPD τbεKεKAτ ++−−= )( &  ,                                                           (36) 
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where  HGK +=D , GHK =P   and 0GG0HH >=>= TT , .  KP and KD are two parameters of PD 
controller.  

Proof: 
We choose the candidate Lyapunov function as follows:  
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We have V > 0 when 0ε0s ≠≠ , , V = 0 if and only if 0ε0s == , . ∞→V  when ∞→iws, . Taking 
the derivative of V  along time, yields: 
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From the equation (33) it derives: 

εHεs &&&& += .                                                                                     (41) 

Subtracted ε&& from the equation (32b) and then substituting into the  equation (41), results in: 

εKεHKfτs PD −−−−= && )(11 .                                                         (42a) 

If choosing the optional parameters HGK +=D and GHK =P  where G is a symmetric positive-
definite matrix, then the Eq.42a can be rewritten as follows: 

Gsfτs −−= 11& .                                                                             (42b) 

Substituting equation (34a), (34b) and (42b) into (40), yields: 
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With on-line learning algorithm (38) results in: 
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Substituting the equation (45)  into (43), yields: 

( )[ ]βWστsGss −+−+−= 11 ηTTV& .                                               (46)  

Selecting ( ) 0;11 >−+= δδη
s
sWστ  and substituting 1τ into (46) results in the following: 



 

 
Figure 5. Structure of proposed visual tracking system 
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If choosing μβδ += 0 ; 0>μ  it yields: 

sss μβδ −≤+− 0                                                                    (48)  

Substituting (48) into (47) results in: 

 0≤−−≤ sGss μTV&                                                                     (49) 

V&  is negative-semidefinite function. This implies that )0()( VtV ≤ , and therefore, that s and W are 
bounded. Because the dynamic system is non-autonomous, it is impossible to conclude the 
convergence of s to zero. Barbalat's lemma is used to prove the asymptotic stability of the system. Let 
us check the uniform continuity of V& . The derivative of V&  is: 
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We found that V&&  is bounded  because βs,  and W are bounded, 
s
s  is the unit vector of s and 

always bounded, G is the positive-definite constant matrix and 0, >δη . Thus V&  is uniformly 
continuous. According to Barbalat's lemma, we have 0s →  as 0→t  and it forces 0ε →  as 0→t . 
Hence, the system represented in the eq. (32b) is asymptotically stable and the cameras will track 
moving targets with error converges to zero as the time approaches to the infinity. Theorem 1 as well 
as the global asymptotic stability of the overall stereo camera visual tracking system using neural 
network  described in Fig. 5 has been proven. 
 
 

4.  SIMULATION RESULTS 
 

There are dynamics of the pan-tilt robot as eq. (19) with [ ]Tqq 21,=q  is the joint’s angular vector of 

pan/tilt platform. [ ]T21,ττ=τ Are torques impacted on the joints. The inertia matrix of the pan - tilt robot 
)(qM , the vector of ),( qqC &  and )(qg are: 
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where:   
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The Inertia of robot links I1, I2 are presented in table of system parameters below. 

Choose the optional parameters:  
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 G = diag {5, 2.5, 5} x10-2; H= diag {2.5, 5, 2.5} x10-2; HGK +=D  ; GHK =P              (54) 

Assuming that only 80% value of the Jacobian matrix is just estimated: JJ 8.0ˆ =   

Notation 
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J , the pseudo inverse matrix is calculated by:   
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Table: The parameters of the system 

Parameter name  Notation Value 

Length of link 1 l1 0.22 m 

Length of link 2 l2  0.1 m 

Link 1 Center of gravity lc1 0.15 m 

Link 2 Center of gravity lc2 0.07 m 

Inertia of link 1 I1 0.01 kg m2 

Inertia of link 1 I2 0.002 kg m2 

Mass of link 1 m1 4.5 kg 

Mass of link 1 m2 1.2 kg 

Distance of 2 cameras  K 0.2 m 

Focal length of the camera (Eye-RIS 2.1) f 12.5 mm 

Virtual camera focal length  fv 10 mm 

Image point UL, VL, UR U, V Pixel 

 

The unknown torque vector chosen as follows 

 1*01.0)( St =d                   (55) 

In simulations, the target moves on workspace limited in 1m then choose λ > Max (max (xv), max (yv)); 
λ =2. 

 



 

Simulation 1: Moving target in a straight line 

Moving target is from point A (0m,3m,0m) to B (-0.5m, 3m, -0.3m) on the plane ZCOCXC  and far away 
from coordinate origin YC = 3m in the camera coordinate system cccc ZYXO . Target’s moving time T= 
6 (s) with moving speed is v ~ 10 (cm/s). Simulation results are given in Fig. 6. 

    
 

Figure 6. Tracking error coordinates when moving target in a straight line 

 

Simulation 2: Moving target in a circle 

Moving target follows the circle with center coordinates at O (0, 0, 0), radius r = 1 on the plane 
ZCOCXC and far away from coordinate origin YC = 3m in the camera coordinate cccc ZYXO . Target 
moves around a circle in time T = 60s. Simulation results are given in Figs. 7 and 8.  

              
Figure 7. Tracking error coordinates when moving target follows a circle.  

 

 
a) b) c) 

Figure 8.  a) Tracking error coordinates in X, Z axes. b) Torques of pan and tilt joints. c) Joints angle 
q 

 

 



 

Simulation 3: Moving target in a rectangle with changing velocity.  

Moving target follows the rectangle as figure 8 from point (-1m, 3m, 0m) to (-1m, 3m, 1m) in 10 
seconds. In the next 10 seconds, target moves from point (-1m, 3m, 1m) to (1m, 3m, 1m) and the 
same to return to the starting point. Simulation results are  given in Figs. 9 and 10. 

 

     
 

Figure 9. Tracking error coordinates when moving target is in a rectangle with changing velocity. 

 

 

 

a) b) c) 

Figure 10.  a) Tracking error coordinates in X, Z axes. b) Torques of pan and tilt joints. c) Joints 
angle q 

 

Simulation 4: Moving target in space with random velocity and direction.  

The target move following trajectory: (x, y, z) = (3, 3, 0.5) in O0 coordinates when t = 0. Process 
variability of angular and straight velocity with time is: yt = 0.1t. The movement of the target following x, 
z axes is plane-parallel motion: 

0 ≤  t <5s : v =0.5 (m/s). ω = 0 (rad/s). 

5 ≤  t <10s : v = 0.5 + 0.15sin((t-5)π/10) (m/s); ω = 0.15sin((t-5)π/10)  (rad/s);  

10 ≤  t <15s: v = 0.75 (m/s). ω = 0 (rad/s);  

15 ≤ t <20s: v = 0.75+0.15sin((t-15)π/10) (m/s).;  ω= -0.15sin((t-15) π/10) (rad/s);           

20 ≤ t <25s: v = 0.75 (m/s). ω = -0.15 (rad/s);  

25 ≤ t <30s: v = 0.75 (m/s). ω =-0.15 - 0.15sin((t-25)π/10) (rad/s);  

t > 30s: v = 0.5 (m/s). ω = -0.3 (rad/s).   

λ = 20. 

Simulation results are  given in Figs. 11 and 12. 



 

           
Figure 11. Tracking error coordinates when moving target is in space with random velocity and 

direction. 

 

 
 

 
a) b) c) 

Figure 12.  a) Tracking error coordinates in X, Z axes. b) Torques of pan and tilt joints. c) Joints 
angle q 

In the simulation 1 - moving target in a straight line in Fig. 6, it is found out that the error converges to 
zero. When target follows a circle (simulation 2), the system can track targets, but the error is still 
great so it needs to improve. When the function cos or sin is changes from positive to negative and in 
the opposite at ¼,  ¾, 0, ½ circular of the circle, the tracking target error is fluctuations, but it still 
tracks the target. Different from (Chung and Cat, 2015), it lost tracking at ½ circular. In simulation 3, 4, 
when the target moves following a rectangle and random in the space, the system still captures. 
When the moving target simultaneous changed orientation and velocity, the initial error of the system 
increases, but it still tracks target rapidly because external effects as well as the effects of uncertain 
parameters in the system model are well compensated by neural network controller based on-line 
learning algorithm. The impact of noise and uncertain parameters is reduced. Otherwise, image and 
robot Jacobian matrices (Jimg and Jrobot) have not a singularity. This condition helps the system move 
follow in the complex way.  

                  
a)                                         b)    c) 

Figure 13. Tracking error coordinates without part of neural network in the controller. a)  moving 
target in a straight line, b) moving target follows a circle, c) moving target is in a rectangle with 
changing velocity 



 

The controller without neural network can track a target following a straight line with acceptable error 
(Chung and Cat, 2015). However, when moving target follows a circle and rectangle, the result of 
tracking has so great error, even loss of tracking when target follows a rectangle with changing 
velocity (Fig 11). 

 
5. DISCUSSION AND CONCLUSION 

 

The problem of visual tracking control of pan-tilt-stereo camera system is dialled with when there are 
uncertainties in both the Jacobian matrix and the dynamics of the system. A 3D virtual stereo camera 
model having a full-rank of image Jacobian is constructed to solve local minima and image space 
singularity problem of the classical image Jacobian. 

Furthermore, the authors propose a robust visual control scheme with online learning RBF neural 
network to compensate the effects of uncertainties. Due to online learning algorithm of RBF neural 
network continuously update is done only with some multiplication and integral. Therefore the 
calculations should not be too large, in accordance with real-time system. The asymptotic stability of 
the overall system is proved by Lyapunov stability method. Simulations show that the proposed 
control scheme is relatively effective even in the case of target moving in a circle or rectangle 
meanwhile the dynamics and the Jacobian of the pan-tilt robot are not known exactly. 

In the other hand, all parameter in the controller can be optimized to have better results. in this paper, 
I only optimized two parameters. Other parameters such as ƞ, δ, G, H also can be optimized. I will 
consider all effect of the optimization parameters in next step of my research. 
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