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ABSTRACT

This paper proposes efficient and practical implementations of the ensemble Kalman
filter via shrinkage covariance matrix estimation. Our methods exploit the practical proper-
ties of shrinkage covariance matrix estimators such as the Rao-Blackwell Ledoit and Wolf
(RBLW), and the Oracle Approximating Shrinkage (OAS) to develop efficient ensemble
Kalman filter implementations. These shrinkage-based estimators combine the information
brought by the ensemble covariance and (typically) a static one: the resulting estimator is
a convex combination of both matrices. As part of our formulations, we dynamically com-
bine the OAS and the RBLW estimators by exploiting the information encapsulated in the
eigenvalues of the ensemble covariance matrix; this is, the directions along which fore-
cast errors develop quickly. By imposing a threshold on them, we can target the directions
to grow faster forecast errors. Experimental tests are performed by using the Lorenz-96
model and an Atmospheric General Circulation Model. The results reveal that the pro-
posed methods can improve the EnKF based on the RBLW in Root-Mean-Square-Errors.
Besides, the computational efforts of our formulations are similar to that of state-of-the-art
filter implementations.
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1 Introduction

A well-known method in the context of sequential data assimilation is the ensemble Kalman
filter (EnKF). The EnKF is a Monte Carlo which is commonly employed to estimate the state
of highly non-linear systems (Burgers, Jan van Leeuwen and Evensen, 1998; Evensen, 2003).
In the EnKF, an ensemble of model realizations is utilized to estimate the forecast error dis-
tribution moments. In practice, ensemble sizes are constrained by the hundreds while model
dimensions range in the order of millions (Lahoz, Khattatov and Ménard, 2010). Consequently,
the ensemble covariance becomes rank-deficient and spurious correlations can impact the
quality of analysis innovations. The effects of sampling errors can be mitigated via localization
methods (Houtekamer and Zhang, 2016). In this context, well-known methods are covariance
matrix localization (Hamill, Whitaker and Snyder, 2001; Sakov and Bertino, 2011), observation
localization (Anderson, 2003), precision matrix estimation (Nino-Ruiz, Sandu and Deng, 2018),
and spatial domain localization (Buehner and Charron, 2007). Yet another family of methods
is based on shrinkage covariance matrix estimation. In these methods, the rank-deficient en-
semble covariance matrix is replaced by a convex combination of a (full rank) target matrix and
the ensemble one (Nino-Ruiz and Sandu, 2017). Some covariance matrix estimators in this
context are the Ledoit, and Wolf (Ledoit and Wolf, 2004; Chen, Wiesel, Eldar and Hero, 2010),
and the Rao-Blackwell Ledoit and Wolf (RBLW), the former improves on the estimation results
of the LW under Gaussian assumptions (Nino-Ruiz and Sandu, 2017). Besides, iterative meth-
ods such as the Oracle Approximating Shrinkage (OAS) estimator can be employed to improve
the results of LW and RBLW estimators iteratively. We think there is an opportunity to combine
shrinkage covariance matrix estimators to estimate the forecast error covariance matrix bet-
ter. The information brought by the ensemble covariance can be exploited to estimate optimal
weights for each covariance matrix estimator. For instance, we can target the directions along
which forecast errors develop faster via the ensemble covariance matrix’s eigenvalues.
This paper is organized as follows: Section 2 discusses theoretical aspects of data assimi-
lation such as ensemble-based methods and covariance matrix estimation, in Section 3, we
derive efficient EnKF formulations via the OAS and the RBLW covariance matrix estimators,
in this method, weights are dynamically tunned to target directions along which errors over-
grow via the eigenvalues of the ensemble covariance matrix, experimental tests are performed
in Section 4 by using the Lorenz 96 model and an Atmospheric General Circulation Model,
conclusions of this research are stated in Section 5.

2 Preliminaries

The goal of sequential data assimilation is to estimate the state of a dynamical system x∗ ∈
Rn×1 which approximately evolves according to some imperfect numerical model:

xnext =Mtcurrent→tnext (xcurrent) , (2.1)

where n is the number of model components, and M : Rn×1 → Rn×1 is an imperfect model
operator which encapsulates our knowledge about the physics and the dynamics of the sys-



tem. Forecasts are typically corrected by using real-noisy observations y ∈ Rm×1, where m

is the number of observations. When Gaussian assumptions are employed on forecast and
observational errors, posterior states can be computed as follows:

xa = xb +
[
B−1 + HT ·R−1 ·H

]−1 ·HT ·R−1 ·
[
y −H

(
xb
)]
∈ Rn , (2.2)

where xb ∈ Rn×1 is the forecast state, B ∈ Rn×n is the background error covariance ma-
trix, H : Rn×1 → Rm×1 is the observation operator (which maps vector states to observation
spaces), R ∈ Rm×m is the data error covariance matrix, and xa ∈ Rn×1 is known as the
analysis state. Henceforth, we consider linear observation operators, non-linear observation
operators are well-discussed in (Nino-Ruiz, Ardila, Estrada and Capacho, 2019; Nino-Ruiz,
Cheng and Beltran, 2018; Nino-Ruiz and Yang, 2019; van Leeuwen, 2010; Moradkhani, Hsu,
Gupta and Sorooshian, 2005). To estimate the moments xb and B of the forecast error distri-
bution ensemble based methods can be employed In this family of methods, an ensemble of
model realizations

Xb =
[
xb[1], xb[2], . . . , xb[N ]

]
∈ Rn×N , (2.3)

is employed to estimate the moments of the forecast error distribution (Evensen, 2003), where
xb[e] ∈ Rn×1 stands for the e-th ensemble member, for 1 ≤ e ≤ N . The estimation process
is then performed by using the empirical moments of the ensemble. The forecast state is
estimated as follows

xb =
N∑
e=1

xb[e] ∈ Rn×1 , (2.4)

and the forecast error covariance matrix:

Pb =
1

N − 1
·∆X ·∆XT ∈ Rn×n , (2.5)

where the matrix of member deviations ∆X ∈ Rn×N reads:

∆X = Xb − xb · 1T , (2.6)

and 1 is a vector of consistent dimension whose components are all ones. The posterior
ensemble can be computed as a linear map of the forecast ensemble (2.3) (Houtekamer and
Mitchell, 1998). The posterior ensemble reads:

Xa = Xb + Pb ·HT ·
[
H ·Pb ·HT + R

]−1
·D ∈ Rn×N , (2.7)

where the e-th column of matrix D ∈ Rm×N is drawn from the distribution:

N
(
y −H · xb[e], R

)
, (2.8)

Since ensemble sizes are much lesser than model resolutions (in some cases, by orders of



magnitudes), spurious correlations can impact the quality of analysis innovations in (2.7). To
counteract the effects of sampling errors, localization methods can be employed to “denoise”
the forecast error covariance matrix (2.5) (Anderson, 2007). The main idea behind these ap-
proaches is to exploit the spatial distance in model components to dissipate error correla-
tions. Nevertheless, useful information of error dynamics brought by the ensemble members
(2.3) can be lost (Lorenc, 2003; Kepert, 2009), and even more, imbalanced information can
lead to suboptimal analyses (Houtekamer, Mitchell, Pellerin, Buehner, Charron, Spacek and
Hansen, 2005). Yet another family of covariance matrix estimation methods is shrinkage-based
ones. These methods aim to improve the estimation of the ensemble covariance matrix instead
of forcing its structure; the resulting estimator is a convex combination of some target matrix
T ∈ Rn×n and the sample covariance matrix (2.5):

B̂(α) = α ·T + (1− α) ·Pb ∈ Rn×n , for α ∈ [0, 1]. (2.9)

The shrinkage intensity α rely on the shrinkage method, for instance, in the RBLW α and T are
given as follows:

T =
trace

(
Pb
)

n
· I , (2.10)

and

αRBLW = min

 N−2
N · trace

(
Pb2

)
+ trace2

(
Pb
)

(N + 2) ·
[
trace

(
Pb2

)
− trace2(Pb)

n

] , 1

 . (2.11)

When the number of ensembles is minimal (N → 0), the shrinkage intensity (2.11) becomes 1.
Therefore, the estimation falls entirely over the ensemble covariance matrix, which is sensitive
to spurious correlations between errors of distant model components. To mitigate the impact
of small N , (Chen et al., 2010) proposes an Oracle Approximating Shrinkage (OAS) estimator.
For small ensembles sizes, the shrinkage intensity α in the OAS estimator becomes 0, and it
is defined as follows:

α∗OAS = min

 1−2
n · trace

(
Pb2

)
+ trace2

(
Pb
)

(N+1−2
n ) ·

[
trace

(
Pb2

)
− trace2(Pb)

n

] , 1

 . (2.12)

In (Chen et al., 2010), it is proven that for small values of N (number of samples), the OAS
estimator can provide better results than those of the RBLW estimator.
Estimators of the form (2.9) have been exploited in some EnKF formulations, such as the
EnKF based on the RBLW estimator (Nino-Ruiz and Sandu, 2015) and the EnKF based on
the LW covariance estimator. In both cases, matrix-free implementations are possible given
the particular structure of Pb. An attractive feature of shrinkage-based covariance estimation
is that they perform remarkably well for the case n � N (Chen et al., 2010) which is very



common in the data assimilation context.

3 Proposed Methods

In this section, we develop efficient and practical implementations of the EnKF based on shrink-
age covariance matrix estimation: the first method is based on the OAS estimator, while the
second one optimally combines the information brought by the OAS and the RBLW covariance
matrix estimators.

3.1 An Ensemble Kalman Filter Based on the Oracle Approximating Shrinkage
Covariance Matrix Estimator

To be concise, efficient implementations of the OAS estimator can be derived in the context of
EnKF. For instance, we can exploit some properties of traces to avoid the direct computation
of trace

(
Pb
)

via:

trace
(
Pb
)

=
N−1∑
e=1

σ2
e , (3.1)

where σe is the e-th singular value of ∆̂X =
√
N − 1

−1 ·∆X ∈ Rn×N with T given as in 2.10.
Note that, the computational effort for computing (3.1) is linearly bounded with regard to the
ensemble size N . In addition, the assimilation process of EnKF can be performed onto the
observation space similar to (Nino-Ruiz and Sandu, 2015), this is:

Xa = Xb + E ·K · Z + α∗OAS ·HT · Z ∈ Rn×N , (3.2)

where,

E =
√

1− α∗OAS · ∆̂X ∈ Rn×N , (3.3)

K = H ·E ∈ Rm×N , (3.4)

(3.5)

and Z ∈ Rn×N is given by the solution of the following linear system:[
Q +

[
H · ∆̂X

]
·
[
H · ∆̂X

]T]
· Z = D . (3.6)

Notice, since R is a diagonal matrix and H is a linear operator, the matrix Q ∈ Rm×m is a
diagonal matrix with elements {R}jj + α∗OAS , for 1 ≤ j ≤ m, where {R}jj is the j-th diagonal
components of R.



3.2 An Ensemble Kalman Filter Implementation via Dynamic Shrinkage Inten-
sity

For smallN , the identity matrix has more weight in the convex combination (2.9), and therefore,
the resulting estimator behaves similarly to a B-localization matrix. Consequently, since the re-
sulting estimator is diagonal, analysis innovation will only update forecast components wherein
observations are located. This can raise some issues about the dynamical consistency of
posterior ensemble members in (3.2). We can choose an appropriated shrinkage intensity α
between the shrinkage factors α∗RBLW and α∗OAS . The analysis is simple: for smaller N values
α∗RBLW ≈ 0 while α∗OAS ≈ 1. The amount of information expressed in the eigenvalues πe of
Pb, for 1 ≤ e ≤ N − 1, can tell us the directions along which forecast errors grow faster. Recall
that, πe = σ2

e , where σe denotes a singular value of ∆̂X. We can impose a threshold on the
values πe. Consider the ratio:

ϕ

n
where σ2

ϕ >
trace

(
Pb
)

N
, and 1 ≤ ϕ ≤ N − 1 . (3.7)

If the resulting ratio (3.7) is greater than a threshold ξ ∈ [0, 1], we can assume that the ensem-
ble members provide enough information about the error correlations and therefore we can
make use of α∗RBLW , we can choose αOAS , otherwise. The resulting covariance estimator is
as follows:

B̂DS =

B̂OAS for ϕ
n < ξ

B̂RBLW otherwise
(3.8)

where DS stands for ”Dynamical Shrinkage .” Note that:

• we target the directions along which error develops faster by neglecting the smaller sin-
gular values of ∆̂X (a low-rank square root approximation of Pb),

• the target matrix T is similar to that of (2.10),

• the posterior members (3.2) can be easily inflated by multiplying the inflation factor βinf

by the matrix of member deviations (2.6), and

• the threshold ϕ can be estimated using prior information about the numerical model or
employing heuristics (i.e., using historical data and different values of ϕ).

The resulting EnKF implementation is obtained by replacing B̂DS in the analysis equations
(2.7), we call this implementation the EnKF-DS. Given the particular structure of the covari-
ance matrix estimators B̂RBLW and B̂OAS , similar to the EnKF-OAS (Section 3.1), matrix-free
implementations are possible for this filter formulation.

4 Experimental Settings

We test our filter implementations EnKF-OAS and EnKF-DS using two numerical models: the
toy model Lorenz-96 and an Atmospheric General Circulation Model. We use the mean of
eigenvalues of Pb to set our dynamical threshold ξ in all experiments.



4.1 Experimental Results with the Lorenz-96 Model

The Lorenz-96 model is a toy model which mimics the dynamics of the atmosphere (Lorenz,
2005). The model is widely employed in the literature to try emergent data assimilation meth-
ods. The model is given by the following set of ordinary differential equations:

dxi
dt

=


(x2 − xn−1) · xn − x1 + F for i = 1

(xi+1 − xi−2) · xi−1 − xi + F for 2 ≤ i ≤ n− 1

(x1 − xn−2) · xn−1 − xn + F for i = n

(4.1)

where xi, for 1 ≤ i ≤ n, are the spatial coordinates. In the Lorenz-96 model, a one-time
unit represents 120 hours in the atmosphere. This model exhibits extended chaos when the
external force equals F = 8.
We try two different values for the ensemble size N ∈ {10 , 20} while the number of observa-
tions m is a function of the model dimension n:

m = p · n , (4.2)

where p = 0.7 this is, m = 28 observations are available during assimilation steps. The
observations are randomly placed at each assimilation cycle. The number of assimilation steps
reads M = 300. Observations are collected every 2.5 days; their error statistics are described
by the following Gaussian distribution:

y` ∼ N
(
H` · x∗` , 0.012 · I

)
, for 1 ≤ ` ≤M . (4.3)

where x∗` is the reference state at time `, since observations are randomly placed, H` is ran-
domly formed at each assimilation cycle. Experiments are performed under perfect model
assumptions. The inflation factor reads βinf = 1.1. As a metric of performance, we consider
the L–2 norms of errors, at the assimilation step `, it is defined as follows:

λ` = ‖x∗` − xa
`‖2 =

√[
x∗` − xa

`

]T · [x∗` − xa
`

]
, (4.4)

where x∗` and xa
` are the reference and the analysis solutions (mean of the analysis ensemble),

respectively. The Root-Mean-Square-Error (RMSE) measures, in average, the performance of
a filter for a given number of assimilation steps M :

Π =

√√√√ 1

M
·

M∑
`=1

λ2
` . (4.5)

We consider 25 repetitions varying the initial ensemble (and the reference solution) for each
configuration to estimate error statistics. As a reference, we make use of the EnKF-RBLW.
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Figure 1: Mean (dashed lines) and standard deviations (shaded regions) of L–2 error norms in
the log scale for EnKF-RBLW, EnKF-OAS and EnKF-DS for p = 0.7, and N ∈ {10, 20}.

Figure 1 shows the results for the EnKF-RBLW, EnKF-OAS, and EnKF-DS. The results are
presented in the log scale for easiness in reading. As can be seen, for small ensemble sizes,
the proposed filter implementations’ accuracy is better than that of the EnKF-RBLW. Besides,
our proposals’ standard deviations of errors (dispersion of errors) remain small during the
entire assimilation window. Note that the performance of the EnKF-RBLW is highly impacted:
this can be evidenced as the standard deviation of errors tend to grow. All compared filter
implementations exhibit similar performance for large ensemble sizes (n = 40). However, note
that, in all cases, errors in the EnKF-DS execution have lower variance among the compared
filter implementations.
In Table 1, results are reported in terms of RMSE values with ensembles sizes of 10 and 20
for all compared filter implementations. The spin-up period (corresponding to the first 100
assimilation steps) is removed to compute analysis errors. This is done to compare the filter
implementations in a stable phase of the numerical model. As should be expected, the OAS
estimator becomes better for small ensemble sizes while EnKF-DS improves all compared
results for ensemble sizes of 10 and 20.



N Method Π SΠ

10
EnKF-RBLW 8.1079 4.5587
EnKF-OAS 1.7229 1.9715
EnKF-DS 1.6425 2.0592

20
EnKF-RBLW 0.7971 2.4024
EnKF-OAS 0.0952 0.0721
EnKF-DS 0.0679 0.0038

Table 1: Mean (Π) and standard deviations (SΠ) of RMSE values in the log scale for βinf = 1.1,
and p = 0.7.

4.2 Experimental Results with an Atmospheric General Circulation Model

The Simplified Parameterizations, privitivE-Equation DYnamics (SPEEDY), is an Atmospheric
General Circulation model which is based on a spectral primitive equation dynamical core
and a set of simplified physical parameterization schemes(Bracco, Kucharski, Kallummal and
Molteni, 2004; Miyoshi, 2011). The number of layers in the SPEEDY model is 7, and the T-30
model resolution (96 × 48 grid components) is used for the space discretization of each layer
(Molteni, 2003; Kucharski, Molteni and Bracco, 2006). The total number of model components
is n = 133, 632. Five model variables are part of the assimilation process: the temperature (K),
the zonal (u) and the meridional (v) wind components (m/s), the specific humidity (g/kg), and
the pressure (Ps). The general settings are detailed below:

• we try two different ensemble sizes N , 10 and 30,

• the number of observation is given by a function of n, this is,

m = p · n ,

where p ∈ [0, 1] is the percentage of observed components from the model state,

• The standard deviation of observational errors is detailed in the Table 2.

Model Variable Observational Error Standard Deviation
Zonal Wind Component (u) 1 m/s
Meridional Wind Component (v) 1 m/s
Temperature (T ) 1 (K)
Specific humidity (q) 0.0001 (kg/kg)
Surface pressure (p) 100 (Pa)

Table 2: Observational error standard deviation.

• the assimilation window consists of M = 25 observations, and

• the inflation factor reads βinf = 1.5.



4.2.1 Results with Full Observational Networks p = 1

Figure 2 presents the performance of the compared filter implementations for whole observa-
tional networks. Again, the log scale shows the results for easiness in the reading. As can
be seen, the proposed methods’ performance is better for small ensemble sizes than that of
the EnKF-RBLW. This obeys the dynamical tunning of the shrinkage factor. This also can be
explained as follows: forecast errors grow differently along with different directions, this in-
formation is encapsulated into the eigenvalues of Pb, and therefore, by targeting approaches
along which errors grow faster (by imposing thresholds on such eigenvalues), we can improve
the accuracy of EnKF shrinkage based method. Recall that the threshold ξ in our EnKF-DS fil-
ter formulation is given by the mean eigenvalues of Pb. For instance, for small ensemble sizes,
we can see in Table 3 that RMSE values of the EnKF-DS are lower than those of the EnKF-
RBWL formulation. Similar behaviors can be seen for all filter formulations as the ensemble
size increases, and therefore, the ensemble covariance matrix becomes informative.
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Figure 2: Mean of L–2 error norms in the log scale for EnKF-RBLW, EnKF-OAS and EnKF-DS
for p = 1 and N ∈ {10, 30}.

N Method u v T

10
EnKF-RBLW 0.34882 0.36132 0.32446
EnKF-OAS 0.33862 0.35288 0.31796
EnKF-DS 0.33671 0.35052 0.3146

30
EnKF-RBLW 0.26579 0.26892 0.23425
EnKF-OAS 0.26786 0.26916 0.23532
EnKF-DS 0.26590 0.26900 0.23367

Table 3: Mean of RMSE values for βinf = 1.5 and p = 1.



4.2.2 Results with Sparse Observational Networks p = 0.09

We study the performance of the compared filter implementation under sparse observational
networks. In this context, just 9% of model components are observed. The irregular obser-
vational network is shown in figure 3, it has been employed for other studies in the context of
data assimilation (Miyoshi, 2011).

Figure 3: An irregularly distributed realistic observational network. 415 stations (9 % of all grid
points) are located mostly over continents in the northern hemisphere.

Figure 4 shows L–2 errors in the log scale for the compared filter implementations and only 9%
of observed components from the model state. We can see a similar trend in the performance
of the EnKF implementations. For small values of N , the proposed EnKF-DS provides more
accurate results than those obtained by the EnKF-RBLW and the EnKF-OAS implementations.
Recall that, in the EnKF-DS, the information brought by the observations targets the directions
along which errors grow faster. As the dimension of the ensemble increases, all methods tend
to have the same performance. Again, this is a direct consequence of having more informa-
tion in the ensemble covariance. This shows the importance of using EnKF-DS: we can get
similar results to state-of-the-art methods, and even more, we can improve their results as the
ensemble size becomes smaller (in some cases, N is lesser than n by order of magnitudes).
This potentially can make our proposed filter implementations attractive to be employed under
operational data assimilation scenarios. For all compared methods, a general overview of their
performance can be seen in Table 4.



N u v T
10

0 7 15 23 30 36
1.2

1.4

1.6

1.8

2

2.2

0 7 15 23 30 36
1

1.5

2

0 7 15 23 30 36
0.6

0.8

1

1.2

1.4

30

0 7 15 23 30 36
1.2

1.4

1.6

1.8

2

2.2

0 7 15 23 30 36
1

1.5

2

0 7 15 23 30 36
0.6

0.8

1

1.2

1.4

Figure 4: Mean of L–2 error norms in the log scale for EnKF-RBLW, EnKF-OAS and EnKF-DS.
Here, p = 0.09, and N ∈ {10, 30}.

N Method u v T

10
EnKF-RBLW 4.21191 3.96075 2.34704
EnKF-OAS 4.05499 3.81652 2.34704
EnKF-DS 4.05499 3.81652 2.34704

30
EnKF-RBLW 3.94119 3.70926 2.25829
EnKF-OAS 3.97995 3.74373 2.28144
EnKF-DS 3.94119 3.70926 2.25829

Table 4: RMSE values for βinf = 1.5 and p = 0.09.

4.2.3 Further Comments

Figures 5 and 6 show snapshots of the initial assimilation step for the model variables u and v,
respectively. This initial step is of high interest to us since no previous data has been injected
into the numerical forecast (forecast ensemble members). As can be seen in all cases, the
EnKF-RBLW and the EnKF-OAS can dissipate superiors waves in zonal and meridional wind
components. This implies that the quality of correlations on each estimated forecast error
covariance matrix is a reasonable approximation of the actual spatial correlation of forecast
errors for the dynamical system SPEEDY.



(a) Actual State x∗
0 (b) Background State xb

0

(c) EnKF-RBLW Analysis (d) EnKF-DS Analysis

Figure 5: Snapshots of the initial zonal wind component (u) for the actual state of the system,
the background state, the analysis state via the EnKF-RBLW implementation, and the analysis
state obtained by the EnKF-DS.

(a) Actual State x∗
0 (b) Background State xb

0

(c) EnKF-RBLW Analysis (d) EnKF-DS Analysis

Figure 6: Snapshots of the initial meridional wind component (v) for the actual state of the
system, the background state, the analysis state via the EnKF-RBLW implementation, and the
analysis state obtained by the EnKF-DS.



5 Conclusions

This paper proposes two efficient and practical implementations of the EnKF: the EnKF based
on the OAS covariance matrix estimator (EnKF-OAS) and the EnKF based on the Dynamical
Shrinkage factor (EnKF-DS). For small ensemble sizes, the EnKF-OAS method improves the
results of shrinkage-based formulations such as the EnKF based on the RBLW estimator. As
the ensemble member increases, the resulting estimator in the EnKF-OAS is diagonal, raising
issues in the numerical model, for instance, posterior states with inconsistent dynamics. To
counteract this, we can dynamically choose between the shrinkage factors of RBLW and OAS.
This can be done by targeting directions along which forecast errors develop faster. This is
equivalent to imposing a threshold on the eigenvalues of the forecast error covariance matrix.
Experimental tests are performed by using the Lorenz-96 model and an Atmospheric General
Circulation Model. The results reveal that, for small ensemble sizes, our proposed methods can
improve on the results of filters such as the EnKF-RBLW. Besides, the computational efforts of
our proposed methods are similar to those of efficient filter formulation.
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