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Abstract

Cloud computing is a distributed computing model in which access is based on demand.
A cloud computing environment includes a wide variety of resource suppliers and deman-
ders. Hence, efficient and effective methods for task scheduling and load balancing are
required. This paper presents a new approach to task scheduling and load balancing in
the cloud computing environment with an emphasis on the cost-efficiency of task execu-
tion through resources. The proposed algorithms are based on the fair distribution of work
between machines, which will prevent the unconventional increase in the price of a ma-
chine and the unemployment of other machines. The two parameters Total Cost and Final
Cost are designed with certain criteria to achieve the mentioned goal. Applying these two
parameters will create a fair basis for load balancing and scheduling. To implement the
proposed approach, learning automata were used as an effective and efficient technique
in reinforcement learning. In this paper, the input flow of tasks was considered in batches.
Finally, to show the effectiveness of the proposed algorithms we conducted simulations us-
ing CloudSim toolkit and compared proffered algorithms with other existing algorithms, like
BCO, MCT, MET And KPB. Proffered methods can balanced the Final Cost and Total Cost
of machines.
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1 Introduction

Cloud computing, the new form of on demand computing gains its popularity in the last few
years(Antonopoulos and Gillam, 2010). Cloud computing is used to provide the calculation
platform for Internet users as a large-scale distributed computing environment. The cloud
computing is usually in ultra large scale and high scalability. To be more specific, cloud
computing can be linked with a large number of idle resources and constitute a large scale



resource pool (Grossman, 2009). Cloud computing offers services with minimum cost com-
pared to the setting up of the datacenter. Cloud Service Providers (CSPs) permits the users
to select the machine hours based on their requirement regardless of the costs without pay-
ing a premium for large scale. Cloud computing has faced many challenges, including se-
curity, efficient load balancing, resource scheduling, scaling, QoS management, data center
energy consumption, data lock-in and service availability, and performance monitoring (Wang,
Von Laszewski, Younge, He, Kunze, Tao and Fu, 2010; Marston, Li, Bandyopadhyay, Zhang
and Ghalsasi, 2011). Load balancing is playing a main role in maintaining the organization
of Cloud computing. The main goal of load balancing mechanism is that to map the jobs
which are set forth to the cloud domain to the unoccupied resources so that the overall avail-
able response time is improved as well as it provides efficient resource utilization (Kaur and
Luthra, 2012). Load balancing concerns distribution of resources among the users or requests
in uniform manner so that no node is overloaded or sitting idle. Like in, all other internet
based distributed computing, tasks load balancing is an important aspect in cloud computing
(Khiyaita, El Bakkali, Zbakh and El Kettani, 2012). In the absence of load balancing provision,
efficiency of some overloaded nodes can sharply degrade at times, leading to violation of SLA
(Zhao, Calheiros, Gange, Ramamohanarao and Buyya, 2015). Therefore, providing the effi-
cient load-balancing algorithms and mechanisms is a key to the success of cloud computing
environments. Cloud computing approach, ideas and strategy need a new field for researching
and developing the economy-based resource load balancing and scheduling system. Follow-
ing load balancing thinking and Cost-effective load balancing strategies, this paper proposes a
new cloud resource load balancing and scheduling algorithm, which can not only increase the
uses of resources and system utilization, but also by importing new parameters trying, Both the
resource providers and the consumer will receive the economic benefits only when the avail-
able resources are load balanced based on economic criteria and correctly scheduled. The
mapping and scheduling algorithms can be classified into two categories, immediate mode and
batch mode . In the immediate mode, when new tasks arrive, they are scheduled to VMs di-
rectly (Xhafa, Carretero, Barolli and Durresi, 2007). In the batch mode, tasks are grouped into a
batch before being sent; this type is also called mapping events (Ghosh and Gupta, 1997). We
have proposed a set of economic scheduling and load balancing algorithms based on Learning
Automata for batch mode. proffered approach for scheduling and load balancing and selecting
the best resource based on economic economic parameters is designed and will prevent the
oversupply of a resource cost. This paper is organized as follows. Section 2 discusses re-
lated works. Section 3 presents Cloud Computing Load Balancing Model. Section 4 describes
Economic Load Balancing Principle and Advantage. Section 5 describes Learning automata.
Section 6 proffered Definitions and Hypotheses.section 7 describe Proposed Algorithms.final
section provides Experiments and Assumption, and describes comparison between proposed
algorithms and existing ones.



2 Related work

Traditional load balancing algorithms for distributed platforms such as grids, and clouds, focus
in minimizing the execution time or minimum makespan without considering economic param-
eter (Chawla and Bhonsle, 2012; Singh and Chana, 2016). Load balancing problems are ex-
tended to many forms of constraints and environment settings (Fang, Wang and Ge, 2010; Guo,
Zhao, Shen and Jiang, 2012). Some static (Henzinger, Singh, Singh, Wies and Zufferey,
2011; Shah and Farik, 2015) and dynamic algorithms (Lee, Wang and Zhou, 2011; Zhang and
Zhou, 2017; Kumar and Sharma, 2020) has been presented in the last few years.(Dasgupta,
Mandal, Dutta, Mandal and Dam, 2013) Proposed genetic based algorithm based scheduling
mechanism for load balancing challenge. This algorithm selects the low loaded VMs for job
transfer. For time-critical parallel applications, the IaaS Cloud Partial Critical Paths (IC-PCP)
method for deadline-constrained applications has been proposed on heterogeneous cloud en-
vironments (Li, Qiu, Ming, Quan, Qin and Gu, 2012). In (Al Nuaimi, Mohamed, Al Nuaimi
and Al-Jaroodi, 2012), a massive study on the scheduling and load balancing algorithms of
cloud computing was proposed with the objective of performance and makespan minimiza-
tion. However, financial cost and economic criteria is another important parameter in the cloud
computing load balancing and scheduling mechanism. For cost-critical parallel applications,
cost-aware scheduling algorithms have been proposed for minimizing execution cost or satis-
fying the budget constraint on heterogeneous systems (Sarhadi and Meybodi, 2010; Selvarani
and Sadhasivam, 2010; Mansouri and Javidi, 2019). However, very few papers have targeted
cloud computing environment and designs for minimizing the schedule length of budget con-
strained applications. In (Verma and Kaushal, 2012), a heuristic algorithm of deadline early
tree was presented. It minimized the cost of deadline constrained applications without consid-
ering the communication time between tasks. (Lin and Wu, 2013) Proposed a critical-greedy
(CG) algorithm to minimize the end-to-end delay of budget constrained parallel applications.
In this work, the CG algorithm defines a global budget level (GBL) parameter and pre assigns
tasks with the budget level execution cost. (Li et al., 2012) Discussed task scheduling and
resource allocation problem for implementing tasks in IaaS clouds; a novel provisioning and
scheduling algorithm is presented to execute tasks under budget constraint while reducing
the slowdown. The experimental results illustrated that their proposed algorithms minimized
the slow-down in execution time to 70 percent. (Rodriguez and Buyya, 2017) introduced a
scheduling algorithm which optimized the task workflow execution time regarding the bud-
get constraint. The experiments proved that this scheduling algorithm has faster execution
time and more effective performance on cloud resources where their proposed algorithm is
capable of generating high-quality schedules to meet the budget constraint. (Arabnejad and
Barbosa, 2017) Considered the profit of provider and they proposed Multi-QoS Profit-Aware
scheduling algorithm (MQ-PAS) to assign each job with its budget priority. The performance
evaluation results showed that the MQ-PAS increased the profit of provider and achieved suc-
cess rates of completion jobs. There is alots of work on the use of learning automata in
clud computing task scheduling. In (Hosseinzadeh et al., 2019) a dynamic learning automata
(LA) based algorithm is proposed to solve the task scheduling problem in the cloud environ-
ment. (Sahoo, Sahoo and Turuk, 2019) proposed a novel learning automata-based scheduling



framework for deadline sensitive tasks in the cloud.(Krishna, Misra, Nagaraju, Saritha and
Obaidat, 2016; Qavami, Jamali, Akbari and Javadi, 2017) proposed other methods for task
scheduling in cloud computing. Other AI thechnics have been used in cloud computing task
scheduling which are mentioned in (Javanmardi, Shojafar, Amendola, Cordeschi, Liu and Abra-
ham, 2014; Kaur and Kinger, 2014; Shojafar, Javanmardi, Abolfazli and Cordeschi, 2015; Zuo,
Shu, Dong, Zhu and Hara, 2015).In (Leitão, Barbosa, Funchal and Melo, 2020; Rodrıguez and
Corchado, 2020) a new mechanism based on multi-agent systems is presented and (Precup,
Teban, Albu, Borlea, Zamfirache and Petriu, 2020; Yuhana, Fanani, Yuniarno, Rochimah,
Koczy and Purnomo, 2020) applies an incremental online identification algorithm to develop
a set of evolving fuzzy models (FMs). (Zamfirache, Precup, Roman and Petriu, 2021) presents
a new Reinforcement Learning (RL)-based control approach that uses the Policy Iteration (PI)
and a metaheuristic Grey Wolf Optimizer (GWO) algorithm to train the Neural Networks (NNs).
In (Kumar and Dinesh, 2012; Shojafar et al., 2015) an optimized algorithm based on the Fuzzy
optimization was proposed which makes a scheduling decision by evaluating the entire group
of task in the job queue. In (Xie, Zhu, Wang, Cheng, Xu, Sani, Yuan and Yang, 2019) a new
Bee Swarm optimization algorithms called Bees Life Algorithm (BLA) was proposed which
applied to efficiently schedule computation jobs among processing resources onto the cloud
datacenters.

3 Cloud Computing Load Balancing Model

Load balancing is the process of improving the performance of a parallel and distributed sys-
tem through a Reassign of load among the processors or nodes (Panwar and Mallick, 2015).
Load balancing is described in (Jain and Gupta, 2009) as follows “In a distributed network of
computing hosts, the performance of the system can depend crucially on dividing up work ef-
fectively across the participating nodes”. It can also generally be described as anything from
distributing computation and communication evenly among processors, or a system that di-
vides many client requests among several servers. The model of balancing is shown in Fig. 1,
where we can see the load balancer receives users’ requests and runs load-balancing algo-
rithms to distribute the requests among the Virtual Machines (VMs). The load balancer decides
which VM should be assigned to the next request. The data center controller is in charge of
task management. Tasks are submitted to the load balancer, which performs load-balancing
algorithm to assign tasks to a suitable VM. VM manager is in charge of VMs. Virtualization
is a dominant technology in cloud computing. The main objective of virtualization is sharing
expensive hardware among VMs.



Figure 1: Simple model of load balancing

3.1 Economic Load Balancing Principle and Advantage

In distributed computing with a lot of different participants and contradicting requirements
the well-known efficient approaches are based on economic principles (Chen and Lu, 2008;
Sarhadi and Yousefi, 2011). Here, we will mainly discuss about economy-based cloud resource
load balancing and task scheduling strategy. To address these issues, the economy-based
distributed resource management and scheduling has become a hot point of research for do-
mestic and foreign scholars, and there is a great deal of research results(Buyya 2002). Buyya
proposed distributed computational economy-based framework, called the Grid Architecture
for Computational Economy (GRACE) (Buyya, Abramson and Giddy, 2001). This economic-
based framework offers an incentive to resource owners for contributing and sharing resources.
Listed researches addressed the idea of applying economic models to the scheduling task. The
efficiency of this approach in terms of response and wait time minimization as well as utilization
is evaluated.(Buyya et al., 2001) developed three heuristic scheduling algorithms for cost, time,
and time-variant optimization strategies that support deadline and budget constraints. Our ap-
proach in this paper is to apply a new method to cloud computing resource load balancing
based on economic criteria with learning automata that we will discuss in more detail later.

4 Learning automata

Learning Automata are adaptive decision-making devices operating on unknown random en-
vironments. A Learning Automaton has a finite set of actions and each action has a certain
probability (unknown to the automaton) of getting rewarded by the environment of the automa-



ton. The aim is to learn to choose the optimal action (i.e. the action with the highest probability
of being rewarded) through repeated interaction on the system. If the learning algorithm is
chosen properly, then the iterative process of interacting on the environment can be made to
result in selection of the optimal action. Fig. 2 illustrates how a stochastic automaton works
in feedback connection with a random environment. Learning Automata can be classified into
two main families: fixed structure learning automata and variable structure learning automata
(VSLA) (Narendra and Thathachar, 1974). In the following, the variable structure learning au-
tomata which will be used in this paper is described.
Learning Automata are well suited for systems with noisy and incomplete information about
the Environment in which use it (Agache and Oommen, 2002; Lakshmivarahan, 2012; Laksh-
mivarahan, 1981). The Environment is generally stochastic and the Learning Automata lacks
prior knowledge as to which action is the optimal one. Stochastic Learning Automata, which
are probabilistic finite state machines, attempt to solve this problem by choosing an initial action
randomly, and then updating the action probabilities based on the response received.

Figure 2: The interaction between learning automata and environment

A VSLAis a quintuple (α,β ,p,T(α,β ,p)) , where α,β are an action set with sactions, an environ-
ment response set and the probability set pcontaining s probabilities, each being the probability
of performing every action in the current internal automatonstate, respectively. If the response
of the environment takes binary values learning automata model is P-model and if it takes finite
output set with more than two elements that take values in the interval [0,1]. 6such a model
is referred to as Q-model, and when the output of the environment is a continuous variable
in the interval [0,1], it is refer to as S-model. The function of T is the reinforcement algorithm,
which modifies the action probability vector p with respect to the performed action and received
response. Assume β ∈ [0,1] A general linear schema for updating action probabilities can be
represented as (4.1) and (4.2). Let action be performed then:

Pj(n+ 1) = Pj(n) + β(n)[b/(r − 1)− bpj(n)]− [1− β(n)]αpj(n) (4.1)

Pi(n+ 1) = Pi(n)− β(n)bpi(n) + [1− β(n)]α[1− Pi(n)] (4.2)

Where a and bare reward and penalty parameters. When a=b, the automaton is called, LRP

if b=0the automaton is called LRI and if 0 < b ≪< a < 1, the automaton is called LReP For
more Information about learning automata the reader may refer to (Asnaashari and Meybodi,
2007; Eraghi, Torkestani and Meybodi, 2011).



5 Definitions and Hypotheses

To analyze the performance of proposed approach, the cost of executing each task must be
estimated on each machine. The estimate is stored in an M ∗N matrix, named ECC (Expected
Cost to Compute). This matrix can be changed to obtain different ranges of computing environ-
ments varying price or resource value. To generate this matrix, an M ∗ 1 basic column vector,
named B, is first made of floating-point values. The upper bound of possible values in the basic
vector is shown by ωb. The basic column vector is generated through the frequent repetition
of a uniform random number when xib ∈ [1, ωb). Then B(i) = xib is defined for 1 ≤ i ≤ M

After that, ECC rows are generated. To obtain each element ECC(ti,mj) on the ith row of
ECC, the basic value B(i) is multiplied by a uniform random number xi,jr (j ≤ 1 ≤ N), which
is a random number ranging in [1, ωb). It is called the row multiplier. Each row requires N row
multipliers. Each row of ECC can bedescribed as ECC(tj ,mj) = B(i)× xi,jr the basic column
does not appear in the final ECC). This process is repeated for each row until the ECC is filled
with M ∗N lements. Therefore, all of the ECC elements range in [1, ωb ∗ ωr).

6 Learning Automaton Model for Task Mapping

The general map Q(i) = j was defined from the domain of tasks i = 1 . . .M to the domain
of machines j = 1 . . . N and its general procedure is shown in Fig. 3. The required cost of
executing all the tasks assigned to a machine in the nth iteration is called the Total Cost (TC)
of that machine, indicated by C(n)(j). It is determined through the (6.1):

c(n)(j) =
∑

ECC(k, j), j = Q(k)1 ≤ k ≤ M (6.1)

The maximum value of c(n)(j) on 1 ≤ j ≤ N is called the Final Cost(FC)in the nth itera-
tion. It is shown by F (n) .In the proposed model, a Learning Automata was assigned to each
task Ti of the meta-task. Each Automata is shown by (α(i), β(i), A(i)) since tasks can be
assigned to each of N machines, Automata share the sameactions. Hence, there can be
α(i) = m1,m2, · · · ,mn−1 and 0 ≤ β(i) ≤ 1 or each task Ti (1 ≤ i ≤ M) The closer β(i)

gets to zero, the more satisfactory the action of automata i gets; however, the action will be
dissatisfactory if β(i) gets closer to 1 according to Figure 3.
The following reasons demonstrate the effectiveness of using a learning automata in our pro-
posed approach:

• The learning automata have ability to perfect adapt themselves to environmental changes.
This attribute is very advisable for use in cloud computing environments with a high de-
gree of inconsistency.

• learning automata impose a small amount of communication and computational costs in
collaborating with the environment. This attribute determins learning automata as a suit-
able substitute for use in environments such as cloud computing with energy constraints
and bandwidth than the other models.

• collaborating with each other, the learning automata are able to perfectly model the distri-
bution of cloud computing environments and in addition, simulate the changing behavioral



Figure 3: General proposed procedure used by Learning Automata mapping algorithms

patterns of the nodes in relation to each other and with the environment considering their
learning ability and their adaptability to the environment.

• collaborating with each other, the learning automata are able to converge to the global
optimal answer only based on the local decisions when solving optimization problems.
Therefore, learning automata-based algorithms can be considered as an appropriate
choice for the cloud computing as they can resolve the slag resulted from aggregation or
dissemination of information in centralized algorithms.

7 Proposed Algorithms

In this section, two algorithms based on profitability for cloud users are presented which, Learn-
ing automata has been used to implement them.

7.1 Cost-Efficient Load-Balancing Profit-Based Algorithms

In the profit-based algorithms, an appropriateness index of actions is based on the Total Cost
(TC) and Final Cost (FC) of each machine. In other words, an action is appropriate if it reduces
the Total Cost of a selected machine by automata or reduces the Final Cost compared with the
previous iteration.The profit-based algorithm includes two classes:
7.1.1 The profitability-based with specified rewarding algorithm(PS)
7.1.2 The Profitability-Based with Random Rewarding Algorithm(PR)

7.1.1 The profitability-based with specified rewarding algorithm(PS)

In this algorithm, abbreviated as PS, the appropriateness of an action is based on a compari-
son of the Total Cost with the previous iteration. This algorithm describes the environment as
the Q-Model.In the nth iteration, the Final Cost might be greater than, smaller than, or equal
to the Final Cost in the (n − 1)th iteration. Likewise, the Total Cost of a selected machine
by automata A(i) in the nth iteration might be greater than, smaller than, or equal to the Total
Cost of a selected machine in the (n− 1)th iteration. Therefore, given the Final Cost and Total



Table 1: Probabilities of Rewards Allocated to the Nine Possible Cases
Final Cost Total Cost Penalty

D D 0
D U 1/2βC

D I βC

U D 1/2βF

U U 1/2βF + 1/2βC

U I 1/2βF + βC

I D βF

I U βF + 1/2βC

I I βF + βC = 1

Cost of selected machines in two consecutive iterations, 9 possible cases can occur for the
determination of β(n)(i). One value is allocated to each of these 9 cases. This value shows the
appropriateness of the taken action by the automata. The environmental response to automata
A(i) in the nth iteration is determined in the following way:
This value indicates the appropriateness of the automat’s action . (7.1) is employed to deter-
mine the environmental response to automata A(i) in the nth iteration:

β(n)(i) = 1− (f(F (n−1), Fn)βF + f(C(n−1)(Q(n−1)(i), Cn(Qn(i))))βC) (7.1)

In this equation, βF + βC = 1, and βF shows the received amount of reward if the Final Cost is
smaller than that of the previous iteration. Moreover, βC shows the received amount of reward
if the Total Cost of the selected machine is smaller than that of the previous iteration. f(x, y)

can be defined as (7.2).

f(x, y) =


0 x < y

1/2 x = y

1 x > y

(7.2)

The coefficient f(F (n−1), Fn) prevents βF from involving in the determination of environmental
response if the Final Cost is greater than that of the previous iteration. If the Final Cost remains
constant, βF is put into action with a coefficient of 1

2 . If the Final Cost is smaller than before,
βF is involved. Furthermore, f(C(n−1)(Q(n−1)(i), Cn(Qn(i))) involves βC in determining the
environmental response if the Total Cost of the selected machine is smaller than that of the
previous iteration. If it is equal to that of the previous iteration, βC is put into action with a
coefficient of 1

2 . If it is greater, βC is not involved. Therefore, the environmental response is
one of the 9 values shown in Table1, in which D, U, and I indicate a decrease, an unchanged
value, and an increase, respectively.If the Total Cost and the Final Cost decrease, the automata
will receive the total reward. otherwise, it will receive no reward (and will be fined).
Four tests were conducted with different values of βC and βF . In the first test (PS-1), all of the
automata are rewarded if the total cost decreases; therefore, βC = 0 and βF = 1. In the second
test (PS-2), an automata is rewarded if the total cost of the selected machine issmaller than
that of the previous iteration; therefore, βC = 1 and βF = 0. In the third test (PS-3), βC = 0.75



and βF = 0.25. Since βF < βC , decreasing the total cost of the selected machine will have
a greater effect on reward determination than the previous iteration. In the fourth test (PS-4),
βC = 0.25 and βF = 0.75. Unlike the previous test, increasing the final cost will have a greater
effect on reward determination than the previous iteration because (βF > βC).

7.1.2 The Profitability-Based with Random Rewarding Algorithm(PR)

In this algorithm, abbreviated as PR, the appropriateness of an action determines the prob-
ability of receiving reward. This algorithm determines the value of β(n)(i) for automata A(i)
by considering the final and total costs of the selected machine. The PR algorithm describes
the environment as the P-Model; therefore, β(n)(i) ∈ {0, 1}. The final cost of the nthiteration
might be greater than, smaller than, or equal to the final cost of the(n−1)th iteration. Likewise,
the total cost of the selected machine by automata A(i) in the nth iteration might be greater
than, smaller than, or equal to that of the selected machine by the automata in the (n − 1)th

iteration. Hence, there will be 9 possible cases with respect to the final and total costs of the
selected machine in the two consecutive iterations. A probability value is allocated to each of
these 9 cases. These values determine the probability of rewarding the selected action, which
is obtained from (7.3) for automata A(i) in the nth iteration:

p(n)(i) = f(F (n−1), Fn)PF + f(C(n−1)(Q(n−1)(i)), θn(Qn(i)))PC (7.3)

In (7.3), PF + PC = 1, PF ̸= 0, PC ̸= 0, and PF is the probability of receiving reward if the final
cost is smaller than of the previous iteration. Moreover, PC is the probability of receiving reward
if the total cost of the selected machine is smaller than the total cost of the selected machine
in the previous iteration. According to (5), f(x,y) is defined. The environmental response to
automata A(i), β(n)(i) is determined through the (7.4) in the nth iteration:

β(n)(i) = I(1− p(n)(i)) (7.4)

In (7.4), I(q) is an indicator function(Kenny et al., 2003), which returns 1 for q and 0 for 1-q.
Table 2 shows the probability of rewarding in the 9 possible cases. Accordingly, D, U, and
I indicate the decreased, unchanged, and increased values, respectively, compared with the
previous iteration.

7.2 Cost-Efficient Load-Balancing Threshold-Based Algorithms

Threshold-based algorithms benefit from a threshold in addition to the total cost and/or final
cost in order to determine the appropriateness of automata’s actions. If the total cost and/or fi-
nal cost are lower than the threshold, automata’s actions are evaluated appropriate; otherwise,
they are considered inappropriate. A problem with profit-based algorithms is that an automata
fails to receive the full reward when it approaches a good mapping and starts converging be-
cause the total cost of a designated machine or the final cost of consecutive iterations might
remain constant in this case. Therefore, profit-based algorithms interpret this case as inappro-
priate and cease to reward the automaton completely; as a result, they prevent the automaton
from reaching the appropriate mapping. To avoid this problem, threshold-based algorithms use



Table 2: Probabilities of Rewards Allocated to the Nine Possible Cases
Final Cost Total Cost Probability of receiving rewards

D D pf + pc = 1

D U pf + 1/2pc

D I pf

U D 1/2pf + pc

U U 1/2pf + 1/2pc

U I 1/2pf

I D pc

I U 1/2pc

I I 0

a threshold to determine reward or penalty inaddition to considering the total cost or final cost.
Threshold-based cost-effective load-balancing algorithms are divided into two categories:
7.2.1 The threshold-based cost-effective load-balancing algorithm with specific rewarding(TS)
7.2.2 The threshold-based cost-effective load-balancing algorithm with random rewarding(TR)

7.2.1 Threshold-Based Cost-Effective Load-Balancing Algorithm with specific Reward-
ing(TS)

An action is rewarded in proportion to its appropriateness in this algorithm in the same way
as the PS algorithm. These algorithms interpret the environment as the Q-model. The final
cost of the n(th) iteration might be greater than, smaller than, or equal to that of the (n− 1)(th)

iteration. Likewise, the total cost of the selected machine by automaton A(i) in the n(th) iteration
might be greater than, smaller than, or equal to that of the machine selected by automata in
the (n− 1)(th) iteration. In addition, the final cost might be smaller or greater than a Threshold.
Thus, there are 18 possible states based on the final cost and total cost of the selected machine
in two consecutive iterations. In fact, two rewarding policies are applied. One policy pertains to
the case when the final cost is greater than the threshold, whereas the other policy indicates
the case where the final cost is smaller than the threshold. To determine β(n)(i) a value is
allocated to each of these 18 states. This value indicates the inappropriateness of automata’s
actions. The environmental response to automaton A(i) in the n(th) iteration is calculated as
(7.5).

β(n)(i) =

1− (fl(F
(n−1), Fn)βF + fl(C

(n−1)(Q(n−1)(i)), Cn(Qn(i)))βC) Fn < T

1− (fg(F
(n−1), Fn)βF + fg(C

(n−1)(Q(n−1)(i)), Cn(Qn(i)))βC) Fn ≥ T
(7.5)

Where βF + βC = 1

In above function, βF is the received reward if the final cost is smaller than the previous iter-
ation, and βC is the received reward if the total cost of the selected machine is smaller than
the total cost of the selected machine in the previous iteration. Moreover, T is the threshold.
Functions fl(., .) ∈ {0, 1} and fg(., .) ∈ {0, 1/2, 1}, can return 0, 0.5 or 1 if the two inputs are
greater, equal, or smaller. They are defined whenever necessary. In fact, fg determines the



reward and penalty policy when the final cost is greater than the threshold, and fl determines
the reward and penalty policy when the final cost is smaller than the threshold. To determine
the threshold, it is possible to use the final cost obtained from one of the existing algorithms.
For instance, the BCO algorithm is first executed in the tests foreach meta task, and then the
resultant final cost is used as the threshold. The proposed algorithm is called TS in this model.
When the final cost is smaller than the threshold in the TS algorithm, the equality of smallness
(of the total cost of the selected machine or the final cost in comparison with the previous iter-
ation) is regarded as the appropriate solution, whereas the greatness (of the total cost of the
selected machine and final cost in comparison with the previous iteration) is regarded as the
inappropriate solution. When the final cost is greater than the threshold, then the greatness,
equality, and smallness (of the total cost or final cost in comparison with the previous itera-
tion) are regarded as inappropriate, semi-appropriate, and appropriate solutions, respectively.
Accordingly,fg and fl are defined as (7.6) , (7.7).

fg =


0 x < y

1/2 x = y

1 x > y

(7.6)

fl =

0 x < y

1 x ≥ y
(7.7)

7.2.2 Threshold-Based Cost-Effective Load-Balancing Algorithm with Random Reward-
ing (TR)

Called TR, this algorithm acts like the TS algorithm; however, it is interpreted as the P-model.
In the n(th) iteration, the final cost might be greater than, smaller than, or equal to the final cost
in the (n− 1)(th) iteration. Likewise, the total cost of the selected machine by automaton A(i) in
the n(th) iteration might be greater than, smaller than, or equal to the total cost of the selected
machine by automata in the (n − 1)(th) iteration. In addition, the final cost might be smaller
than, greater than, or equal to a threshold. Therefore, there might be 18 possible cases based
on the final cost and total cost of the selected machine in two consecutive iterations. In fact,
two rewarding policies are applied. One policy is allocated to the cases in which the final cost
is greater than the threshold, whereas the other one is allocated to the case in which the final
cost is smaller than the threshold. To determine β(n)(i), a value is attributed to each of the 18
states. This value is the probability of rewarding the automaton. It is calculated as (7.8) for
automaton A(i) in the n(th) iteration.

p(n)(i) =

(fl(F
(n−1), Fn)PF + fl(C

(n−1)(Q(n−1)(i)), Cn(Qn(i)))PC) Fn < Ω

(fg(F
(n−1), Fn)PF + fg(C

(n−1)(Q(n−1)(i)), Cn(Qn(i)))PC) Fn ≥ Ω
(7.8)

In (7.8), PF is the probability of rewarding if the Final Cost is smaller than the previous iteration,
and PD is the probability of rewarding if the designated machine’s Makespan is smaller than
that of the selected machine in the previous iteration (PF + PC = 1). Moreover, Ω shows the



threshold. Functions fl(., .) ∈ {0, 1/2, 1} and fg(., .) ∈ {0, 1/2, 1} return 0, 0.5 or 1 with respect
to the greatness, equality, or smallness of two inputs, which are defined when necessary. In
fact, fo determines the reward and penalty policy when the Final Cost is greater than the
threshold, and fb determines the reward and penalty policy when the Final Cost is smaller than
the threshold. To determine the threshold, it is possible to use the Final Cost obtained from
one of the existing algorithms. For instance, the BCO algorithm is executed first in the tests for
each meta task, and then the resultant Final Cost is used as the threshold. The environmental
response to automata A(i) in the nth iteration is calculated in the (7.9):

β(n)(i) = I(1− p(n)(i)) (7.9)

In (7.9), I(q) As described above is an indicator function, which returns 1 and 0 for the prob-
abilities of qand 1-q, respectively. When the final cost is smaller than the threshold in the
TR1 algorithm, the equality or smallness (of the total cost of the selected machine or the final
cost in comparison with the previous iteration) is regarded as the appropriate solution, and
the greatness (of the total cost of the selected machine or the final cost in comparison with the
previous iteration) is regarded as the inappropriate solution. When the final cost is greater than
the threshold, the greatness, equality, or smallness(of the total cost or final cost in comparison
with the previous iteration) is considered inappropriate, semi-appropriate, and appropriate, re-
spectively. Functions fg and fl are defined in previous section .When the final cost is smaller
than the threshold in the TR algorithm, only the greatness (of the total cost of the selected ma-
chine or the final cost in comparison with the previous iteration) is considered inappropriate.
When the final cost is greater than the threshold, the equality and greatness (of the total cost of
the selected machine or the final cost in comparison with the previous iteration) are considered
inappropriate.

8 Experiments and Assumption

Cloud computing provides inexpensive, scalable and omnipresent computing over distributed
networks. It is based on reliable, secure, fault-tolerant, sustainable and scalable environment
for providing services everywhere and all the time. CloudSim is a self-configured platform that
provides an extensible simulation environment which enables modeling and simulation of cloud
computing systems and application provisioning environments. In this section, CloudSim archi-
tecture, configuration of network and the experiment results are discussed(Calheiros, Ranjan,
Beloglazov, De Rose and Buyya, 2011).

8.1 CloudSim Architecture

CloudSim Support modeling and simulation of large scale Cloud computing environments, The
multi-layered architecture of CloudSim(Sareen and Singh, 2016) is shown in Fig.4.
1) Network Layer: This layer of CloudSim has responsibility to make communication possible
between different layers. This layer also identifies how resources in cloud environment are
places and managed.



2) Cloud Resources: This layer includes different main resources like DataCenters, cloud co-
ordinator (ensures that different resources of the cloud can work in a collaborative way) in the
cloud environment.
3) Cloud Services: This layer includes different service provided to the user of cloud services.
The various services of clouds include Information as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS).
4) User Interface: This layer provides the interaction between user and the simulator.



Figure 4: cloudSim architecture

8.2 CloudLet Creation

A cloudlet is presented to run the proposed scheduling strategy. This cloudlet implements only
the job scheduler. However, some components of the cloud are implemented as a primary
stage for executing the scheduler.

8.2.1 Data center creating

In order to run scheduling on the cloud one must perform some abstraction of the real cloud
computing system. Creating and modeling the largest computing environment, the cloud, at
least requires an Appropriate abstraction of real cloud components such as Data Center, Host,
Data Center Broker, and Virtual Machine. Moreover, most important packages of the CloudSim
are known as: “org.cloudbus.clousim”, “org.cloudbus.clousim.core” and some of its packages
are not considered to provide the software appropriate to the proffered scheduling methods.
The main idea of using different cloud environments is to test the proffered job scheduler in
different size of cloud environment, such as, small scale and large scale cloud computing
environments. In this paper, the scheduling methods and algorithms are implementing and
evaluated in cloud simulator layer and User Code layer. The indCloudletToVM() routine in
DatacenterBroker package of CloudSim simulator can allocate a job to a appropriate virtual
machine and execute it. To increase the probability of allocation of appropriate virtual machine
to specific jobs, Datacenter-Broker package of CloudSim were used.



8.3 Simulation Configuration

The main Dataset used in this paper is Google Cloud Jobs Dataset(GOcJ) that the most impor-
tant information we want from this Dataset is given in Tables 3 and 4. Table 3 shows complete
information on cloud resources which distributed on different geographic sites. This method
is used to show how well the scheduler service exploits resources even if there are different
resources that could center run CloudLets. The aforesaid data center methods that describe in
above section are realized by applying packages in the CloudSim. Furthermore, “Datacenter”
is the main classes applied to simulation of cloud environment. It is a cloud resource whose
host list is virtualized. The CloudSim was configured with three DataCenter that includes 3-5
physical resources—or “host” in CloudSim terminology– with the following parameters: Archi-
tecture=’x64’, host OS=’linux’, vmware machine =”xeon 5600”, Time Zone=004((GMT-08:00)
Pacific Time (US and Canada); Tijuana). Table 3 presents the specifications of the config-
ured simulation environment and resource features. Each host has between 10 and 20 virtual
machines.

Table 3: cloud computing resource model
Data center Host RAM Size

(MB)
MIPS BandWith

(MBPS)
Extended
Memory (MB)

DC0
H1 4096 5100 300 100000
H2 1024 4600 300 300000
H3 2048 2500 300 1000000

DC1
H1 2048 8000 300 750000
H2 512 6140 300 250000
H3 4096 2570 300 125000

DC2

H1 1024 6500 300 300000
H2 4096 1250 300 800000
H3 512 3540 300 450000
H4 2048 2700 300 700000

The execution unit of the instructions is based on million instruction per second (MIPS), RAM
and extended memory units is based on mega byte (MByte), network bandwidth is introduced
in Mega Byte Per Second (Mbps). The processing powers of each processor are specified.
so, job scheduling issue must be assigned jobs to hosts and achieved efficient resource uti-
lization. All Cloudlets are sending to the service providers based on the Poisson distribution.
This platform helps us to experiment with custom job scheduler policies like the one presented
in this work, which was in fact compared against the other job schedulers. Job creation com-
ponent is responsible to implement user actions by generating different size jobs throughout
the scheduling period. As it is known, executing such type of operations must have a multi-
threaded component in order to execute concurrently. Tables 4 shows the number of jobs and
requirements of CloudLets applied in this experiment. We randomly generate various jobs
among these three types. The introduced jobs are combination of data intensive and compu-
tation Intensive jobs.



Table 4: job features and specifications
Job Classes Length(MI) File Size Output Size Execution time

(Normal distri-
bution)

Execution
Cost

J0 40000 2500 100 N(5,10) Based on
ECC Matrix

J1 37000 3000 120 N(5,10) Based on
ECC Matrix

J2 24000 7800 230 N(5,10) Based on
ECC Matrix

J3 18000 4300 180 N(5,10) Based on
ECC Matrix

J4 42000 11000 400 N(5,10) Based on
ECC Matrix

J5 36000 6500 230 N(5,10) Based on
ECC Matrix

J6 22000 3500 320 N(5,10) Based on
ECC Matrix

J7 31000 7600 160 N(5,10) Based on
ECC Matrix

J8 19000 10000 220 N(5,10) Based on
ECC Matrix

J9 24000 9600 290 N(5,10) Based on
ECC Matrix

J10 31000 4300 310 N(5,10) Based on
ECC Matrix

8.4 Simulation and Experimental Results

Let us presume that the cloud system composed of number of machines shown in table 3(
Each host has between 10 and 20 virtual machines). And 500 tasks which properties of some
of them are included in table 4, are trying to formed the cloud system to execute their jobs.
In order to compare the impact of proffered model on the task scheduling and load balancing
algorithms in the cloud environment, efficiency of four well- known scheduling algorithms in
the forms of different case studies named BCO, MCT, MET and KPB with proposed algorithms
based on specific parameters that will be explained below, are simulated . Due to the popular-
ity of these scheduling algorithms, their code is not mentioned, but the description about the
algorithms is provided in the following:
In BCO (Buyya Cost Optimization) algorithm a designation queue is allocated to each resource.
The user’s requests are set in the designation queue in an ascending order of time that require
to resource(Buyya et al., 2001).
In MCT (Minimum Completion Time) algorithm assigns tasks to VMs or resources based on



the best predictable completion time for that task in random order. Each task is assigned to
the VM or resource that has earliest completion time. More details are mentioned in (Llwaah,
Thomas and Cala, 2015).
In MET (Minimum Execution Time) algorithm assigns tasks to VMs or resources based on the
best predictable completion time for that task without regard to resource availability. More de-
tails are mention in(Hemamalini, 2012).
The KPB (k-percent best) heuristic considers only a subset of machines while mapping a task.
The subset is formed by picking the k-percent best machines based on the execution times for
the task. The task is assigned to a machine that provides the earliest completion time in the
subset(Masdari, ValiKardan, Shahi and Azar, 2016).
Different ECC matrix stability was used to take more aspects of realistic mapping situations.
An ECC matrix is said to be inconsistent if the ECC matrices are kept in the unordered, random
state in which they were created. The ECC matrix announce consistent characteristics if a ma-
chine j executes any task i cheaper than machine k, then machine j executes all tasks cheaper
than machine k. Termination condition is occurs when, no change in Final Cost is made for
2000 consecutive repeat, or number of repeat be more than 200000. The scheduling and load
balancing policies can be categories into two method, immediate mode and batch mode. In
the batch mode, jobs are gathered into a set, called metatask, which is further examined for
mapping at prescheduled times. In this paper a set of load balancing algorithms based on
Learning Automata for batch mode was introduced. The performance of job scheduling and
load balancing methods was evaluated by different metrics such as, error rate, Final Cost, Total
Cost, waiting time, imbalance degree and efficiency. Error rate: The error rate parameter in
load balancing algorithms are regulated with regard to each allocation, for instance in failure
cases of allocation, or in cases demanding reallocation. Total Cost: The required cost of exe-
cuting all the tasks assigned to a machine in the nth iteration is called the Total Cost (TC) of
that machine, indicated by C(n)(j):

C(n)(j) =
∑

ECC(k, j), j = Q(k)1 ≤ k ≤ M

Final Cost: The maximum value of C(n)(j)1 ≤ j ≤ N in above equation is called the Final
Cost(FC) in the n(th) iteration.
Waiting time: It is defined as the time that a process waits from its submission to completion in
the queues.
imbalance degree: It is calculated based on the equation 8

cnavg =
cn(1) + cn(2) + ...+ cn(M)

M

cnmin = min{cn(1) + cn(2) + ...+ cn(M)}

cnmax = max{cn(1) + cn(2) + ...+ cn(M)}

imbalance d =
cnmax − cnmin

cnavg

(8.1)

Efficiency: For the first time, we present an economic definition of efficiency in cloud environ-
ment based on equ 9.The denominator in equation 9 indicates the total cost obtained for the
execution of all the assigned tasks in cloud environment. So, for each of algorithms a higher



value represents better result. M is number of machines.

Efficiency =
M∑N

j=1

∑M
k=1ECC(k, j)

(8.2)

8.4.1 Total Cost (TC) and Final Cost (FC) Simulation

The Total Cost (TC) is one of the most important parameters that proposed algorithms are de-
signed according to it. In fact this parameter is general optimization criteria which the proposed
algorithms are trying to reduce and balance it. It can be defined as the total monetization by
a machine for executing all allocated jobs. According to Fig.5, Fig.6 all proposed algorithms
outperform than Existing algorithms in consistent and inconsistent environment. The results
also show that algorithm PS performs better than others in inconsistent environment and in
consistent environment TS performs better than others. Fig.7 also shows that with respect
to the number of virtual machines, the proposed algorithms PS have better performance than
existing algorithms and between the proposed algorithms produces the best result. Another
important optimization criteria is Final Cost (FC) as previously explained, is maximum value of
Total Cost, that’s mean choosing a machine which has the highest monetization. Based on the
results shown in Fig.8 and Fig.9, the results obtained for comparing the proposed algorithms
with the existing algorithms are precisely similar to the Total Cost (TC) parameter. Fig.10 also
shows that with versus to the number of virtual machines, the proposed algorithms PS have
better performance than existing algorithms and between the proposed algorithms produces
the best result.

Figure 5: Total Cost versus number of jobs in proposed and existing algorithms in inconsistent
environment



Figure 6: Total Cost versus number of jobs in proposed and existing algorithms in consistent
environment

Figure 7: Total Cost versus number of VMs in proposed and existing algorithms in consistent
environment



Figure 8: Final Cost versus number of jobs in proposed and existing algorithms in inconsistent
environment

Figure 9: Final Cost versus number of jobs in proposed and existing algorithms in consistent
environment



Figure 10: Final Cost versus number of VMs in proposed and existing algorithms in consistent
environment

8.4.2 waiting time

Waiting time is the total time spent by the job in the ready state waiting for allocate to a ma-
chine and executed. Average of waiting time required by every job is presented in Fig.11. It
shows that average waiting time for each algorithm has increased by increasing the number
of jobs. Usually, load balancing policies lead to a reduction in waiting time. The reason for
this is that in traditional load balancing algorithms is often the load balancing is based on time
criteria, But in proposed algorithms the criterion of load balancing is the cost of resources and
preventing excessive increase in the price of a resource, so unlike traditional approaches to
load balancing, the waiting time of the proposed algorithms is longer than traditional models.
According to Fig.11 among the proposed algorithms, TR has the shortest waiting time and PS
has the longest waiting time and between all simulated algorithms the MCT algorithm provides
the best waiting time.



Figure 11: Average waiting time versus number of jobs comparisons

8.4.3 Imbalance Degree

Degree of imbalance is one of the most important parameters for the evaluation of the pro-
posed algorithm, which is exactly equivalent to the load balancing. Imbalance degree indicates
whether the jobs are distributed monotonously among virtual machines or not. The imbalance
degree (ID) is a measure of the amount of load distribution amongst the VMs regarding their
execution competencies. The small value of DI indicates that the load is more balanced. Tradi-
tional load balancing algorithms give a discussion on the imbalance degree (ID) by presenting
its relationship with makespan, resource utilization and task’s completion time. However, in this
paper, due to the design of economic criteria in scheduling and load balancing algorithms, the
imbalance factor is also based on economic criteria parameters which are shown in Formula
10. In the designed formula, the closer the difference between the maximum and minimum
Total Cost (TC) of virtual machines to the average Total Cost (TC), will increase degree of
imbalance. According to Fig.12 proposed algorithms outperform existing ones. between the
proposed algorithms, the PS algorithm has the best results.



Figure 12: Imbalance Degree versus number of jobs comparisons

8.4.4 Efficiency

Other most important parameter in the evaluation of the proposed algorithms and existing al-
gorithms is efficiency. Based on the purposes of this paper, we present a new definition of
efficiency based on economic criteria that illustrated in equ 9. To recognize the quality of eco-
nomic distribution of Jobs among VMs, So that jobs can be executed at a lower cost. So a
higher value in formula 11 represents better result. As shown in the Fig.13 the proposed algo-
rithm PS outperform other algorithm and also one of the existing algorithms called BCO has
better result than proposed algorithm TR. Also, with increase number of machines, efficiency
has increased.

Figure 13: Efficiency versus number of jobs in proposed and existing algorithms



8.4.5 Error rate

The error rate is the number of jobs not completed successfully for any reason, to the total
number of jobs submitted. As shown in Fig.14 the error rate in the proposed algorithms is
higher than the existing algorithms due to the use of learning automata in the structure of
the proposed algorithms. The learning automata is prone to higher error rates due to many
iterations and reallocation job to VMs to converge to desired response.

Figure 14: Error rate versus number of jobs in presented and existing algorithms

9 Conclusions

Cloud computing is a collection of distributed and parallel computing to create shared re-
sources, including hardware, software, and information. One of the most important growing
areas in the field of cloud computing is hand over computing as utility. One of the impor-
tant research fields that the researchers have been trying to resolve is the scheduling ad load
balancing methods. Usually available methods for scheduling and load balancing in cloud envi-
ronments are often based on concepts such as Makespan, execution time, resource utilization.
In this paper, for the first time, a complete set of learning automata based algorithms with eco-
nomic criteria such as Total Cost (TC), Final Cost (FC), efficiency, imbalance degree and etc
for solving cloud computing load balancing challenge is presented. The main idea in designing
the proposed algorithms is the fair allocation of tasks to virtual machines in order to prevent
the excessive increase in the price of one machine and unemployment of other machine. For
performance evaluation of the proposed algorithms and comparison with existing mechanisms,
several simulations have been performed on consistent and inconsistent cloud computing en-
vironment with CloudSim simulator. Finally, the results of the proposed algorithms PS, PR,
TS and TR were compared with the results of BCO, MET, MCT and KPB algorithms. Results
show, the proposed algorithms outperform the above existing algorithms in terms of Total Cost
(TC), Final Cost (FC), imbalance degree and efficiency.



References

Agache, M. and Oommen, B. J. 2002. Generalized pursuit learning schemes: New families of
continuous and discretized learning automata, IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics) 32(6): 738–749.

Al Nuaimi, K., Mohamed, N., Al Nuaimi, M. and Al-Jaroodi, J. 2012. A survey of load balancing
in cloud computing: Challenges and algorithms, 2012 second symposium on network
cloud computing and applications, IEEE, pp. 137–142.

Antonopoulos, N. and Gillam, L. 2010. Cloud computing, Springer.

Arabnejad, H. and Barbosa, J. G. 2017. Multi-qos constrained and profit-aware scheduling ap-
proach for concurrent workflows on heterogeneous systems, Future Generation Computer
Systems 68: 211–221.

Asnaashari, M. and Meybodi, M. R. 2007. Irregular cellular learning automata and its ap-
plication to clustering in sensor networks, Proceedings of 15th Conference on Electrical
Engineering (15th ICEE), Volume on Communication, Telecommunication Research Cen-
ter, Tehran, Iran.

Buyya, R., Abramson, D. and Giddy, J. 2001. A case for economy grid architecture for service-
oriented grid computing., IPDPS, Vol. 1, Citeseer, pp. 20083–1.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, s. A. and Buyya, R. 2011. Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms, Software: Practice and experience 41(1): 23–50.

Chawla, Y. and Bhonsle, M. 2012. A study on scheduling methods in cloud computing, In-
ternational Journal of Emerging Trends and Technology in Computer Science (IJETTCS)
1(3): 12–17.

Chen, J. and Lu, B. 2008. Load balancing oriented economic grid resource scheduling, 2008
IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application,
Vol. 2, IEEE, pp. 813–817.

Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K. and Dam, S. 2013. A genetic algorithm (ga)
based load balancing strategy for cloud computing, Procedia Technology 10: 340–347.

Eraghi, A. E., Torkestani, J. A. and Meybodi, M. R. 2011. Cellular learning automata-based
graph coloring problem, Machine Learning and Computing: Selected, Peer Reviewed
Papers from the 2009 International Conference on Machine Learning and Computing
(ICMLC 2009), Perth, Australia.

Fang, Y., Wang, F. and Ge, J. 2010. A task scheduling algorithm based on load balancing
in cloud computing, International Conference on Web Information Systems and Mining,
Springer, pp. 271–277.



Ghosh, J. B. and Gupta, J. N. 1997. Batch scheduling to minimize maximum lateness, Opera-
tions Research Letters 21(2): 77–80.

Grossman, R. L. 2009. The case for cloud computing, IT professional 11(2): 23–27.

Guo, L., Zhao, S., Shen, S. and Jiang, C. 2012. Task scheduling optimization in cloud comput-
ing based on heuristic algorithm, Journal of networks 7(3): 547.

Hemamalini, M. 2012. Review on grid task scheduling in distributed heterogeneous environ-
ment, International Journal of Computer Applications 40(2): 24–30.

Henzinger, T. A., Singh, A., Singh, V., Wies, T. and Zufferey, D. 2011. Static scheduling in
clouds.

Hosseinzadeh, M. et al. 2019. Labts: a learning automata-based task scheduling algorithm
in cloud computing, International Journal of Information & Communication Technology
Research 11(2): 49–61.

Jain, P. and Gupta, D. 2009. An algorithm for dynamic load balancing in distributed systems
with multiple supporting nodes by exploiting the interrupt service, International Journal of
Recent Trends in Engineering 1(1): 232.

Javanmardi, S., Shojafar, M., Amendola, D., Cordeschi, N., Liu, H. and Abraham, A. 2014.
Hybrid job scheduling algorithm for cloud computing environment, Proceedings of the fifth
international conference on innovations in bio-inspired computing and applications IBICA
2014, Springer, pp. 43–52.

Kaur, R. and Kinger, S. 2014. Enhanced genetic algorithm based task scheduling in cloud
computing, International Journal of Computer Applications 101(14): 1–6.

Kaur, R. and Luthra, P. 2012. Load balancing in cloud computing, Proceedings of interna-
tional conference on recent trends in information, telecommunication and computing, ITC,
Citeseer.

Kenny, Q. Y. et al. 2003. Indicator function and its application in two-level factorial designs,
Annals of Statistics 31(3): 984–994.

Khiyaita, A., El Bakkali, H., Zbakh, M. and El Kettani, D. 2012. Load balancing cloud computing:
state of art, 2012 National Days of Network Security and Systems, IEEE, pp. 106–109.

Krishna, P. V., Misra, S., Nagaraju, D., Saritha, V. and Obaidat, M. S. 2016. Learning au-
tomata based decision making algorithm for task offloading in mobile cloud, 2016 Inter-
national Conference on Computer, Information and Telecommunication Systems (CITS),
IEEE, pp. 1–6.

Kumar, M. and Sharma, S. 2020. Dynamic load balancing algorithm to minimize the makespan
time and utilize the resources effectively in cloud environment, International Journal of
Computers and Applications 42(1): 108–117.



Kumar, V. V. and Dinesh, K. 2012. Job scheduling using fuzzy neural network algorithm in
cloud environment, Bonfring International Journal of Man Machine Interface 2(1): 01–06.

Lakshmivarahan, S. 1981. Time varying learning algorithms, Learning Algorithms Theory and
Applications, Springer, pp. 109–135.

Lakshmivarahan, S. 2012. Learning algorithms theory and applications: theory and applica-
tions, Springer Science & Business Media.

Lee, Z., Wang, Y. and Zhou, W. 2011. A dynamic priority scheduling algorithm on service
request scheduling in cloud computing, Proceedings of 2011 International Conference on
Electronic & Mechanical Engineering and Information Technology, Vol. 9, IEEE, pp. 4665–
4669.

Leitão, P., Barbosa, J., Funchal, G. and Melo, V. 2020. Self-organized cyber-physical conveyor
system using multi-agent systems, be published in the International Journal of Artificial
Intelligence .

Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X. and Gu, Z. 2012. Online optimization for scheduling
preemptable tasks on iaas cloud systems, Journal of Parallel and Distributed Computing
72(5): 666–677.

Lin, X. and Wu, C. Q. 2013. On scientific workflow scheduling in clouds under budget con-
straint, 2013 42nd International Conference on Parallel Processing, IEEE, pp. 90–99.

Llwaah, F., Thomas, N. and Cala, J. 2015. Improving mct scheduling algorithm to reduce
the makespan and cost of workflow execution in the cloud, UK Performance Engineering
Workshop, Newcastle University.

Mansouri, N. and Javidi, M. M. 2019. Cost-based job scheduling strategy in cloud computing
environments, Distributed and Parallel Databases pp. 1–36.

Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J. and Ghalsasi, A. 2011. Cloud comput-
ing—the business perspective, Decision support systems 51(1): 176–189.

Masdari, M., ValiKardan, S., Shahi, Z. and Azar, S. I. 2016. Towards workflow scheduling in
cloud computing: a comprehensive analysis, Journal of Network and Computer Applica-
tions 66: 64–82.

Narendra, K. S. and Thathachar, M. A. 1974. Learning automata-a survey, IEEE Transactions
on systems, man, and cybernetics (4): 323–334.

Panwar, R. and Mallick, B. 2015. Load balancing in cloud computing using dynamic load
management algorithm, 2015 International Conference on Green Computing and Internet
of Things (ICGCIoT), IEEE, pp. 773–778.

Precup, R.-E., Teban, T.-A., Albu, A., Borlea, A.-B., Zamfirache, I. A. and Petriu, E. M. 2020.
Evolving fuzzy models for prosthetic hand myoelectric-based control, IEEE Transactions
on Instrumentation and Measurement 69(7): 4625–4636.



Qavami, H. R., Jamali, S., Akbari, M. K. and Javadi, B. 2017. A learning automata based
dynamic resource provisioning in cloud computing environments, 2017 18th International
Conference on Parallel and Distributed Computing, Applications and Technologies (PD-
CAT), IEEE, pp. 502–509.

Rodriguez, M. A. and Buyya, R. 2017. Budget-driven scheduling of scientific workflows in iaas
clouds with fine-grained billing periods, ACM Transactions on Autonomous and Adaptive
Systems (TAAS) 12(2): 1–22.

Rodrıguez, S. and Corchado, J. M. 2020. Smart belt design by naıve bayes classifier for
standard industrial protection equipment integration, Int. J. Artif. Intell 18: 186–201.

Sahoo, S., Sahoo, B. and Turuk, A. K. 2019. A learning automata-based scheduling for dead-
line sensitive task in the cloud, IEEE Transactions on Services Computing .

Sareen, P. and Singh, T. D. 2016. Simulation of cloud computing environment using cloudsim,
Simulation 4(12).

Sarhadi, A. and Meybodi, M. R. 2010. New algorithm for resource selection in economic grid
with the aim of cost optimization using learning automata, 2010 International Conference
on Challenges in Environmental Science and Computer Engineering, Vol. 1, IEEE, pp. 32–
35.

Sarhadi, A. and Yousefi, A. 2011. Proffering a new method for grid computing resource dis-
covery based on economic criteria using ant colony algorithm, International Journal of
Computer Applications 975: 8887.

Selvarani, S. and Sadhasivam, G. S. 2010. Improved cost-based algorithm for task scheduling
in cloud computing, 2010 IEEE International Conference on Computational Intelligence
and Computing Research, IEEE, pp. 1–5.

Shah, N. and Farik, M. 2015. Static load balancing algorithms in cloud computing: challenges
and solutions, International Journal Of Scientific and Technology Research 4(10): 365–
367.

Shojafar, M., Javanmardi, S., Abolfazli, S. and Cordeschi, N. 2015. Fuge: A joint meta-heuristic
approach to cloud job scheduling algorithm using fuzzy theory and a genetic method,
Cluster Computing 18(2): 829–844.

Singh, S. and Chana, I. 2016. A survey on resource scheduling in cloud computing: Issues
and challenges, Journal of grid computing 14(2): 217–264.

Verma, A. and Kaushal, S. 2012. Deadline and budget distribution based cost-time optimization
workflow scheduling algorithm for cloud, IJCA Proceedings on international conference
on recent advances and future trends in information technology (iRAFIT 2012), Vol. 4,
Citeseer, pp. 1–4.

Wang, L., Von Laszewski, G., Younge, A., He, X., Kunze, M., Tao, J. and Fu, C. 2010. Cloud
computing: a perspective study, New generation computing 28(2): 137–146.



Xhafa, F., Carretero, J., Barolli, L. and Durresi, A. 2007. Immediate mode scheduling in grid
systems, International Journal of Web and Grid Services 3(2): 219–236.

Xie, Y., Zhu, Y., Wang, Y., Cheng, Y., Xu, R., Sani, A. S., Yuan, D. and Yang, Y. 2019. A
novel directional and non-local-convergent particle swarm optimization based workflow
scheduling in cloud–edge environment, Future Generation Computer Systems 97: 361–
378.

Yuhana, U. L., Fanani, N. Z., Yuniarno, E. M., Rochimah, S., Koczy, L. T. and Purnomo, M. H.
2020. Combining fuzzy signature and rough sets approach for predicting the minimum
passing level of competency achievement, Int J Artif Intell 18: 237–249.

Zamfirache, I. A., Precup, R.-E., Roman, R.-C. and Petriu, E. M. 2021. Policy iteration reinforce-
ment learning-based control using a grey wolf optimizer algorithm, Information Sciences
.

Zhang, P. and Zhou, M. 2017. Dynamic cloud task scheduling based on a two-stage strategy,
IEEE Transactions on Automation Science and Engineering 15(2): 772–783.

Zhao, Y., Calheiros, R. N., Gange, G., Ramamohanarao, K. and Buyya, R. 2015. Sla-based
resource scheduling for big data analytics as a service in cloud computing environments,
2015 44th International Conference on Parallel Processing, IEEE, pp. 510–519.

Zuo, L., Shu, L., Dong, S., Zhu, C. and Hara, T. 2015. A multi-objective optimization scheduling
method based on the ant colony algorithm in cloud computing, IEEE Access 3: 2687–
2699.


