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ABSTRACT

Data perturbation has grabbed the attention of data mining, as preserving the privacy of the
data is crucial, especially in sensitive data. But the perturbation process negatively affects the
accuracy of predictions, generating a trade-off between privacy and accuracy. We propose seven
different cumulative noise addition based perturbation methods combining a set of techniques
such as logistic function, use of absolute noise values, and cycle-wise noise addition as possible
solutions for this accuracy-privacy trade-off issue. These techniques are introduced to optimize
the trade-off between classification accuracy and data privacy by controlling the maximum noise
level.Moreover, we evaluate the performance of the proposed methods compared to the state-
of-art of the noise addition-based perturbation methods to select the best of them.

Keywords: perturbation, random projection, cumulative noise, logistic, privacy accuracy trade-
off.

Computing Classification System (CCS):
[500]Security and privacy Privacy protections [100]Security and privacy Social aspects of

security and privacy [500]Information systems Data stream mining
Mathematics Subject Classification (MSC): 68T30-Knowledge representation, 68U35-Computing
methodologies for information systems

1 Introduction

People release their personal data in various situations such as medical check-ups, requesting a bank
loan, and applying for employment in their day-to-day lives. The organizations use these data for



increasing performance by making predictions. Assume that Sam has done a medical check-up a few
months back which revealed that he has AIDS which he wanted to keep as a secret from society.
But suddenly his neighborhood gets to know about this situation because a person who personally
knows Sam has participated in the data analyzing process of that health organization has identified
Sam from his personal details and revealed about his situation. Our data is not protected any
more, and people can access this data to attack our personal lives. Therefore, organizations need a
method to protect their customers’ personal data when they use those to make predictions/ analyze
performance.

Privacy-Preserving Data Mining (PPDM) helps to protect the privacy of data when it is being used
for data mining purposes. Data perturbation is one of the techniques that fall under PPDM which is
suitable for data streams, and it alters the original data values which makes it difficult to recover by
unauthorized people using recovery techniques but still manages to maintain the relevant properties
of the data set which are useful for the data mining purposes. It converts data to another form, so
anyone cannot identify individuals by looking at their personal data.

One of the critical success factors of Data Mining is the availability of high-quality data that will
support the generation of accurate models. On the other hand, sensitive data cannot be published
in its original form and thus different types of data perturbation methods have been proposed
to maintain privacy. However, data perturbation can negatively affect the accuracy of prediction
models. When data perturbation techniques are applied to increase the privacy of data, it decreases
the accuracy of the classification models as perturbation distorts the original data values, and this
trade-off between data privacy and classification accuracy is an inherent problem that needs to be
investigated in this area.

When we try to increase privacy it decreases the accuracy and vice versa which is the most common
issue in PPDM. We tried to find out a suitable perturbation method that minimizes the difference
between privacy and accuracy values. This ultimately optimizes the accuracy-privacy trade-off. The
objective of our research work is to propose a method to optimize the trade-off between accuracy
and privacy to enhance the performance of data mining tasks. To achieve the mentioned objective,
this paper proposes seven variations of cumulative noise addition methods which combines novel
techniques such as logistic function, cycle wise noise addition, noise resetting, and absolute noise
values into an existing perturbation method called “Random Projection-based Cumulative Noise
Addition” proposed by (Denham, Pears and Naeem, 2020).

Random projection-based cumulative noise addition (Denham et al., 2020) is the most recent work
done in the area of data perturbation using noise addition. It adds noise cumulatively to the data
stream, while traditional noise addition adds the noise independently to each record. This method
was able to achieve high privacy and accuracy values, which optimizes the accuracy-privacy trade-
off(More details will be discussed in the "Existing State-of-the-Art Work" section). But there are
some practical issues with this method in a long-term run, as this has been designed to apply to
data streams. The main concern is that we cannot continue adding the noise cumulatively for a
long time, since noise can overpower the actual data values after some time. If this happens, it
can drastically decrease the accuracy because data values become highly distorted in the long-term
run and the classifier tends to learn the noise instead of data. Our work is motivated by this issue,



and we carried out this research to find out possible ways to improve the work done by (Denham
et al., 2020), by controlling the maximum noise added to the stream.
It is worth emphasizing that we mainly focused on developing an advanced perturbation method
that can be used with any classification algorithm, which is suitable for data stream mining. We
used Adaptive Random Forest(ARF) as the classifier for the experiments and measure the accuracy
and privacy for cumulative noise addition in cooperated with different techniques to control the
total noise. The main contribution of this research is an improved noise addition-based perturbation
method that can be used to optimize the accuracy privacy trade-off in a data streaming environment.
As a summary, the paper makes the following contributions to the field:

• Introducing seven different variations of cumulative noise addition methods which can be used
as noise addition-based data perturbation techniques.

• Developing algorithms for Linear Cumulative and Logistic Cumulative Methods.

• An effective cumulative noise addition-based perturbation method, which can be used to
optimize the trade-off between data privacy and classification accuracy.

• An evaluation of the performance of seven different cumulative noise addition methods con-
cerning the state-of-the-art, using relative error and breach probability for different cycle sizes
and growth rate values.

• A vulnerability analysis of the best performing perturbation method from the experimented
seven variations of methods.

The remainder of this paper is organized as follows; Section 2 provides a review of the existing data
perturbation methods, highlighting the strengths and limitations of each method. The existing work
of art is being presented in section 3 and this is the baseline of our research work. Section 4 consists
of the proposed methodology, that describes two main types of cumulative noise addition methods.
The experimental setup including data sets is being described in section 5, and section 6 presents
an extensive analysis of the results. Section 7 and 8 provide a discussion and conclusion and future
work of this work, respectively.

2 Related Work

Data mining is a prominent area in today’s world which uses data to make predictions to improve the
performance of organizations by making correct decisions. This includes building learning models
using supervised (classification and regression) and unsupervised learning (clustering and association)
approaches. Modeling using different learning algorithms has been discussed in research work such as
(Raziyeh Zall, 2019) which uses Multi-Relational Classifier Based on Canonical Correlation Analysis,
(Pozna and Precup, 2014) which applies the signatures to expert systems modeling using rules and
(Ahmed, Brickman, Dengg, Fasth, Mihajlovic and Norman, 2019) that investigates on using different
machine learning approaches to classify pedestrians’ events based on IMU and GPS. These works
prove that the data mining models can be successfully used in various application areas. We only
focus on classification and more specifically classification algorithms which can be used to learn



from data streams. Massive Online Analysis (MOA) (Bifet, Kirkby, Kranen and Reutemann, 2012)
has developed a set of algorithms such as Hoeffding Tree, Hoeffding Adaptive Tree, and Adaptive
Random Forest (Gomes et al., 2017) which can be used in data streaming environments.

Different types of data perturbation methods have been proposed in the literature to enhance the
privacy of data in the past few decades. Data perturbation methods such as random rotation (Chen
and Liu, 2005a), random projection (Liu, Kargupta and Ryan, 2006) and geometric perturbation
(Chen, Sun and Liu, 2007) maintain the pair-wise distances of the records which are helpful for data
mining tasks while methods such as additive noise (Agrawal and Srikant, 2000) and condensation
(Aggarwal and Yu, 2004) maintain the data set properties but sacrifice the record-wise properties.

In additive noise or randomization, a high privacy level can be witnessed when the noise variance
is increased since original values are highly distorted, but consequently results in a low accuracy
level. Though this method distorts the original data values massively, it is still vulnerable to different
types of privacy breaching attacks. In (Giannella, Kargupta and Liu, 2008) authors have discussed
five attack techniques that can be used against randomization. This includes Spectral Filtering
(Kargupta, Datta, Wang and Sivakumar, 2004) Singular Value Decomposition (Guo, Wu and Li,
2006) and Principal Component Analysis (PCA) (Huang, Du and Chen, 2005) which are based on
Eigen analysis to recover the original data from perturbed data. In addition to these, Maximum A
Posteriori attack (MAP) (Huang et al., 2005) and Distribution attack (Giannella et al., 2008) were
also discussed as possible attack types to filter out original values from additive noise.

Random rotation or rotation perturbation was proposed to maintain the record-wise properties in a
data set to obtain a high accuracy/ utility level while preserving the privacy of the data. In (Chen and
Liu, 2005b) rotation perturbation was defined as a matrix multiplication that multiplies the original
data matrix by a rotation matrix which results in a perturbation matrix with the same number
of records and features as the original data matrix. This transformation is orthogonal and hence
the distance between perturbed records is similar to the distance between original records, and this
implies that the perturbed data set gives similar classification accuracy to the original classification
results. The accuracy of the classification results is high, but several privacy-breach attacks have
worked well with this method too. Distance inference attacks (Chen et al., 2007), Independent
Component Analysis (ICA) (Chen et al., 2007) and (Liu, Giannella and Kargupta, 2006), Known
Input/ Output attack (Liu, Giannella and Kargupta, 2006), (Giannella, Liu and Kargupta, 2013)
and PCA (Liu, Giannella and Kargupta, 2006) can be used to reconstruct the original data from
rotation perturbation. It has been proved that the random rotation can be perfectly reversed using
a few known input/output pairs (Liu, Giannella and Kargupta, 2006).

Modified and combined versions of rotation perturbation have been proposed to overcome the privacy
issue of rotation perturbation. A combination of random rotation and randomization that addresses
the distance inference attack known as the general linear transformation was proposed by (Guo and
Wu, 2006). Authors (Liu, Wang and Zhang, 2009) investigated privacy vulnerabilities and found out
the proposed method is vulnerable to attacks in case of available background information. Random
rotation, followed by a translation that addresses attacks to the rotation center, is proposed by
(Chen et al., 2007). Attacks based on background knowledge have been developed for this method
by (Giannella et al., 2013).



Random projection uses the technique of matrix multiplication and has been proposed by (Liu,
Kargupta and Ryan, 2006) to address the privacy issues that arose from random rotation while
maintaining the distance between records to achieve a high accuracy level of the classification
results. "Random projection refers to the technique of projecting a set of data points from a high-
dimensional space to a randomly chosen lower-dimensional subspace” (Liu, Kargupta and Ryan,
2006) by multiplying with a random matrix. The main idea of random projection, motivated by the
Johnson-Linden Strauss Lemma (Liu, Kargupta and Ryan, 2006). This Lemma allows decreasing the
dimensionality while maintaining the pair-wise distance of two points within an arbitrary small factor
(Liu, Kargupta and Ryan, 2006). Though the random projection is not vulnerable to an Independent
Components Analysis (ICA) based attack because the reduced dimensionality of the perturbed data
set results in an under-determined system of linear equations, it is still vulnerable in cases where the
attacker is equipped with prior knowledge about the original data set.

Attacks to the random projection method were discussed in surveys such as (Giannella et al., 2008)
and (Okkalioglu, Okkalioglu, Koc and Polat, 2015) and these attacks are based on some level of
prior knowledge of the original data. Known input/output attack and known projection matrix
attack are two attack types that can be used against random projection. The general idea of the
known input/output attack is that the attacker has prior knowledge of a few original records and
their respective perturbed records, and using those known record pairs the rest of the original data
records can be recovered. Authors of (Liu, 2007) have discussed the known input/output-based
MAP attack that can be used to attack random rotation perturbation even when a collection of
input/output pairs is less than the number of features of the original data set is known. In (Sang,
Shen and Tian, 2012) authors have proposed to shuffle records before publishing to rectify this
problem, but unfortunately, the method cannot easily be adapted to a data streaming environment.

A novel research “Random-projection based cumulative noise addition” which combines random
projection, noise addition, and translation was proposed by (Denham et al., 2020) to enhance the
privacy of the perturbed data using random projection. Instead of traditional additive noise, authors
have proposed a novel noise addition method that is called cumulative noise addition. It has been
proved in this research work that it is possible to achieve a considerable level of privacy and accuracy
by combining these perturbation techniques. But the system has to face a huge amount of noise that
may overtake the original data values when the data stream unfolds and that can lead to reducing
the accuracy is the main issue of this scenario.

Though the perturbation methods in the literature have proposed different techniques to increase
the privacy level of data while maintaining the accuracy of the classification results, it does not seem
to be completely achieved by the existing related work. The techniques which provide better privacy
level are lacking the expected accuracy of the data mining results, and the methods which provide
significance accuracy is vulnerable to different types of privacy attacks. Therefore, it still requires
a method that can optimize the trade-off between classification accuracy and data privacy for the
betterment of the field.



2.1 Existing State-of-the-Art Work

After deeply analyzing the experimental results of the method, random projection-based cumulative
noise addition (referred to as LRW) proposed by (Denham et al., 2020) which is the most advanced
technique developed in this area is used as the base perturbation method for this study.

In the process of random projection, the original data matrix X(mxn) is multiplied by a random
matrix R (k x m) to generate a perturbation matrix Y (kxn). Each element of R is independent
and identically distributed (i.i.d.) and is generated from a Gaussian distribution with mean 0 and
variance σ2

r (Liu, Kargupta and Ryan, 2006). The projection process is represented as, Y = 1√
kσr

RX

and the multiplication by the factor 1√
kσr

ensures that the column-wise inner product is preserved
(records are represented as columns). According to the Johnson-Linden Strauss Lemma, random
projection can be considered as an approximately distance preserving perturbation. The problem
with the distance preserving perturbation is that the records closer to the origin are less perturbed
than records far away from the origin (Chen et al., 2007). This allows uncovering some original
records easily, even without a complex attack. To avoid this vulnerability issue, (Chen et al., 2007)
have proposed a random translation method, which applies the same translation to each record.
This extends the perturbation method to Y = 1√

kσr
RX + Ψ. “Applying a constant translation

to all records has no effect on many data mining tasks, but an attacker must sacrifice one known
input/output pair to account for it” (Denham et al., 2020).

To add an additional degree of uncertainty to any recovery attempt that attempts to reverse random
projection, the authors of (Denham et al., 2020) have introduced two types of noise addition, namely
independent noise (randomization) and cumulative noise. For our study, we are focusing on the
cumulative noise addition, since it has been successful in reducing the trade-off between privacy
and accuracy to some extent. In the process of cumulative noise addition, i.i.d. Gaussian noise
values are added to each record, but additionally, each of these random values is also added to
every subsequent record in the stream and can be represented using Y = 1√

kσr
RX + Ψ + d. The

cumulative noise addition is useful for resisting known input/output attacks, since the attacker has
to face increasing levels of noise when the data stream unfolds. This allows creating the same impact
with a small variance of cumulative noise as opposed to a large variance setting with independent
noise. “Cumulative noise is designed to achieve a similar privacy benefit as independent noise, but
with less impact on the accuracy of data stream mining algorithms” (Denham et al., 2020).

By analyzing the experimental results, when compared to independent noise addition, cumulative
noise addition has provided low classification error with a marginally higher breach probability. Get-
ting a low classification error is a result of cumulative noise addition which adds a small variance
of noise and hence the distortion of original values is also very small. However, the privacy level
of cumulative noise addition is expected to increase with time as the data stream unfolds. When
considering the privacy accuracy trade-off, cumulative noise addition outperformed the independent
noise addition method.

As we consider the data streaming environment, the stream has to face a huge amount of noise
in a cumulative noise addition environment when the data stream unfolds. It is a good approach
when considering the privacy aspect, but can negatively affect the accuracy as the classifier tries to
learn the noise values rather than the original values because of the high distortion of the original



data values. Therefore, a method that can control the maximum amount of noise added to the
stream needs to be combined with the cumulative noise addition. Then it will help to achieve a high
accuracy level by controlling the maximum noise level while still adding it cumulatively to maintain
the high privacy level.

3 Proposed Approach

Facing an enormous amount of noise with the time when the data stream unfolds is an inherent
issue that can be experienced in any kind of cumulative noise additive environment. Therefore, a
technique that controls the maximum noise level added to the stream needs to be incorporated to
enhance the accuracy without making a considerable effect on privacy.

To achieve this objective, two main categories of cumulative noise addition named Linear Cumulative
Noise Addition and Logistic Cumulative Noise Addition were introduced. Under these two main
approaches, different techniques such as cycle-wise noise addition, use of absolute noise values, and
noise resetting method were performed to investigate the behavior of privacy and accuracy. The
ultimate objective of using these different techniques is to control the maximum noise level, but still
adding it cumulatively. By doing so, it is expected to increase the accuracy level while maintaining
the high privacy level provided by the cumulative noise addition and hence optimizing the trade-off
between privacy and accuracy. We used the state-of-the-art (Denham et al., 2020) as the base of
our research and expanded and improved it by cooperating with possible techniques that help to
minimize the accuracy-privacy trade-off. Table 1 summarizes all the symbols we used to build up
the algorithms in section 3.1 and 3.2.

Table 1: Symbol Table
Symbol Meaning

Y Perturbed Dataset
R Random Projection MAtrix
X Original Dataset
Ψ Cumulative Noise
d translation Matrix
$ Logistic Cumulative Noise
cs cycle Size

3.1 Linear Cumulative Noise Addition Methods

Techniques such as cycle-wise noise addition, noise resetting, and using absolute noise values have
cooperated with the linear cumulative noise addition method to control the noise level of the stream.
Following are the detailed description of four different variations experimented with, including the
base method.

• LRW (Linear Random Walk without Resetting) - Cumulative noise is added in a random walk
fashion. No absolute values and no noise value resetting are used. Note - This is the base



method of the research (Denham et al., 2020)

∗ Y = 1√
kσr

RX + Ψ + d

• LRWR (Linear Random Walk with Resetting) - Cumulative noise is added cycle-wise in a
random walk. No absolute values are used. At the end of each cycle, the noise level is reset
to zero. (cs is the cycle size.)

∗ Y = 1√
kσr

RX +
∑=cs
i=−cs(Ψ) + d ;when i=cs, Ψ = 0

• LAR (Linear Absolute with Resetting) - Cumulative noise is added in cycles using absolute
noise values. In the first half and second halves of the cycle, noise values were added and
subtracted, respectively. At the end of each cycle, the noise level is reset to zero.

∗ Y = 1√
kσr

RX + (
∑=0
i=−cs +abs(Ψ),

∑=cs
i=0 −abs(Ψ)) + d ;when i=cs, Ψ = 0

• LA (Linear Absolute without Resetting) - Cumulative noise is added in cycles using absolute
values. As with the scheme above in LAR, but with no noise resetting at the end of the cycle.

∗ Y = 1√
kσr

RX + (
∑=0
i=−cs +abs(Ψ),

∑=cs
i=0 −abs(Ψ)) + d

Figure 1 graphically illustrates the four variations of linear cumulative noise addition methods.
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Figure 1: Process of Linear Cumulative Noise Addition

The entire process involved with these four variations of linear cumulative noise addition can be
explained using the following pseudo-code (See Algorithm 1).

3.2 Logistic Cumulative Noise Addition Methods

Logistic cumulative noise addition is influenced by the well-known logistic function (Verhulst, 1838)
(illustrated in Figure 2) and the expectation of using this concept in a cumulative noise addition
environment is to further control the noise in the system but still adding it cumulatively. The
mathematical representation of the logistic function is shown below. L = maximum value of the



Algorithm 1 Pseudo Code - Linear Cumulative Noise Addition Methods
Input: Cycle Size (cs), Cumulative Noise Sigma (σ), Projected Dataset (X)
Process: While End of X

for each Record i in each cycle (defined by cs)
do

Generate noise (n) from Gaussian distribution N(0, σ2)
Add n cumulatively to the records (yi = xi + ni)

Use ni OR absolute ni
End Cycle
System Noise = 0 OR System Noise = Current Cumulative Noise
Continue Next Cycle

Output: Perturbed Dataset (Yi)

function, e = Euler’s number, k = logistic growth rate and x0 = x value of the mid-point has been
used here.

ḟ(x) = L

1 + e−k(x−x0) (3.1)

 

Figure 2: Logistic Curve
(Verhulst, 1838)

In this logistic cumulative noise addition environment, the noise was generated from a Gaussian
distribution with mean zero and the standard deviation f(x)× σ (return value of the logistic function
multiplied by the standard deviation of cumulative noise). From here onward, we refer to the noise
generated according to the logistic process as $. Since the logistic function allows controlling the
growth rate and the maximum value returns from the function, it provides an effective way to control
the noise addition rate and the maximum noise level, respectively. It also provides a good platform for
cycle-wise noise addition. Therefore, in cooperating logistic function with cumulative noise addition
appears to be a promising technique to control cumulative noise level that can positively affect to
the accuracy hence allows optimizing the trade-off between privacy and accuracy. Here are the four
variations of the logistic cumulative noise addition method which was experimented with.



• SRW (Logistic Random Walk without Resetting) - Noise is added cycle-wise in a random walk
fashion. No absolute values and no noise value resetting is used

∗ Y = 1√
kσr

RX +
∑=cs
i=−cs($) + d

• SRWR (Logistic Random Walk with Resetting) - Logistic noise is added cycle-wise in a random
walk fashion. No absolute values are used. At the end of each cycle, the noise level is reset
to zero.

∗ Y = 1√
kσr

RX +
∑=cs
i=−cs($) + d ;when i=cs, $ = 0

• SAR (Logistic Absolute with Resetting) - Logistic noise is added in cycles using absolute values.
As with LAR, at the end of each cycle, the noise level is reset to zero.

∗ Y = 1√
kσr

RX + (
∑=0
i=−cs +abs($),

∑=cs
i=0 −abs($)) + d ;when i=cs, $ = 0

• SA (Logistic Absolute without Resetting) - Logistic Noise Addition in cycles using absolute
values. As with LA, no noise value resetting is used.

∗ Y = 1√
kσr

RX + (
∑=0
i=−cs +abs($),

∑=cs
i=0 −abs($)) + d

A graphical representation of the steps conducted in logistic cumulative noise addition methods are
shown in Figure 3
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Figure 3: Process of Logistic Cumulative Noise Addition Methods

The following pseudo-code summarizes the process followed with logistic cumulative noise addition
methods (See Algorithm 2).

3.3 Classification and Evaluation Process

The proposed methodology uses ARF (Gomes et al., 2017) as its learning algorithm. Since we use
this for a data streaming/online learning environment, there are some specific requirements of data
streams that need to be considered. Processing one example at a time for at most one time, uses



Algorithm 2 Pseudo Code - Logistic Cumulative Noise Addition Methods
Input: Cycle Size (cs), Cumulative Noise Sigma (σ), Projected Dataset (X), Maximum Value of
Logistic Function (L), Growth Rate (k)
Process: While End of X

for each Record i in each cycle (defined by cs)
do

Calculate the value of Logistic Function f(x) = L
1+e−k(x−x0)

Generate noise (n) from Gaussian distribution N(0, f(x)× σ2)
Add n cumulatively to the records (yi = xi + ni)

Use ni OR absolute ni
End Cycle
System Noise = 0 OR System Noise = Current Cumulative Noise
Continue Next Cycle

Output: Perturbed Dataset (Yi)

a limited amount of time and memory, and should be ready to predict at any time are the most
significant requirements of a data stream (Bifet et al., 2012), (Gomes et al., 2017) and (Bifet, 2011).
By considering all these requirements, training and testing of the model can be carried out in two
possible ways namely holdout method and interleaved test-then-train or prequential method (Bifet
et al., 2012), (Gomes et al., 2017) and (Bifet, 2011).

The holdout method measures the performance of a single holdout set and is most useful when the
division between train and test sets has been pre-defined. On the other hand, in the prequential
method, each example is used to test the model before it is used to train the model, and accuracy is
incrementally updated. When this is performed in the correct order, the model is always being tested
on the samples it has not seen. The prequential method does not need a holdout set or pre-defined
training and testing sets, that take the maximum use of data available (Bifet et al., 2012). These
properties make this method more suitable for a data streaming environment that evolves and learns
incrementally, and we do not have a clear idea about the amount of data or the availability rate
of the data. This arises the need for accuracy to be measured over time. After considering all
these factors and the usability of these methods in a practical environment, we decided to use the
prequential evaluation setting implemented for our model. Therefore, this method does not produce
accuracy measures for training and testing separately.

3.4 Accuracy-Privacy Trade-off Optimization

Optimization is a serious matter that needs to be handled carefully, as it depends on what kind of
problem you are working with. Achieving optimization in different scenarios has been discussed in
the literature. For example, (Precup, Teban, Albu, Borlea, Zamfirache and Petriu, 2020) discuss
optimizing fuzzy models for prosthetic hand myoelectric-Based control, (Roman, Precup, Bojan-
Dragos and Szedlak-Stinean, 2019) have investigated on optimization problem in virtual reference
feedback tuning for tower crane systems and (Yuhana, Fanani, Yuniarno, Rochimah, Kóczy and
Purnomo, 2020) discuss on predicting the minimum passing level of competency achievement which



is also an optimization problem. Though there is a considerable amount of work done in PPDM no
discussion can be found in terms of optimizing the accuracy-privacy trade-off.

The ideal optimization scenario for our study is that where we can achieve perfect values for both
privacy and accuracy. In other words, zero classification error and zero breach probability(Liu,
2007) which is impossible to achieve. A possible way to make this work is, trying to minimize
both classification error and breach probability. Therefore, we define the optimization problem
using classification error and breach probability according to the Privacy Accuracy Magnitude(PAM)
formula (PAM = (error)2 + P(€-privacy breach)2) proposed by (Denham et al., 2020).

We can say that if the PAM is less than a given error threshold (ϑ), the accuracy-privacy trade-off
has been optimized.

If PAM < ϑ; Then the trade-off is optimized.

Deciding a suitable value for ϑ is a complex and important issue. Especially, because the accuracy
and privacy values depend on the characteristics of the data set. Moreover, the optimal level of
privacy and accuracy highly depends on the user’s requirements, and an improved framework should
be needed to handle these scenarios. Therefore, at this stage of the research, we compare the PAM
values for proposed PPDM methods to identify the method which produces the minimum PAM, and
how each method performs in terms of privacy and accuracy.

By considering all these techniques together, our proposed methodology can be briefed as in Figure
4. Data enters into the system sequentially one sample at a time. These data go through the
perturbation process to preserve privacy by hiding their true values. Inside the perturbation module,
we experimented with eight different variations of the cumulative noise addition methods to find
out the best method of them. Then the perturbed data is being classified using Adaptive Random
Forest in a prequential evaluation setting and the accuracy of the classified data is updated for each
record. Simultaneously, the privacy of the data is also measured by performing Known I/O attacks
on the perturbed data. Finally, the overall error score is calculated using error and breach probability
in terms of accuracy and privacy, respectively.

4 Experiments and Results

4.1 Data sets

Two freely available data sets which can be considered as data streams are being used for the
experiments, and these can be considered as streams because the records were ordered according
to the time they were produced. Only the numerical features of the data sets were considered for
the experiments, and both data sets contain potentially sensitive data. Data is being pre-processed
accordingly. Details of the experimented data sets are represented below.

• Activity Recognition system based on Multisensory data fusion (AReM data set from UCI
Machine Learning Repository) – This contains real-world data which includes 35,999 records,
6 features, and 5 classes.

• New York City Taxi Trip Duration (Taxi data set from Kaggle, 2017) - This contains real-world
data which includes 50,000 records, 7 features, and 3 classes.
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Figure 4: Proposed Methodology

4.2 Experimental Setup

Experiments are carried out to measure the privacy and accuracy of the above-mentioned data
sets. Privacy and accuracy measures used in (Denham et al., 2020) are adopted. The following
Configurations are used for the experiments.
The noise was generated from a Gaussian distribution with a mean zero and a variance of 3.90× 10
− 6. Noise variance for the cumulative noise addition was selected according to the method proposed
in (Denham et al., 2020) which generates a similar amount of noise when adding independent noise
with a variance value of 0.0625. Cycles mean the virtually broken-down sets of the entire data set,
defined by cycle size. Experiments were carried out for the cycle sizes 300, 600, 1000 and 2000.
Here is the configuration of other parameters used in the experiment.

General Configuration

• Classification Method – Adaptive Random Forest (ARF) with Naive Bayes leaf Prediction in
a prequential evaluation setting

• Attacking Method – Known Input/ output Attack

• Cycle Sizes – 300, 600, 1000, 2000

• Variance of Cumulative Noise – 3.90 x 10− 6

• Number of Known Input/ output pairs – 4 per attack

• Number of Attacks – 5% of total record count

• € - epsilon – 0.2

Configurations of logistic function

• Maximum Value – 1

• Growth Rate – 0.01, 0.02



4.3 Measuring Privacy and Accuracy

In (Denham et al., 2020) for the privacy perspective known input/output MAP attacks were con-
ducted and the €- privacy breach probability was measured while for the accuracy perspective relative
error was calculated. The same methods have been used in our research work also. In (Denham
et al., 2020) authors have extended the known input/output attacking method to random projection-
based cumulative noise addition environment which was originally proposed by (Giannella et al., 2008)
for multiplicative data perturbation. To measure the accuracy of the data stream, Adaptive Random
Forest (ARF) proposed by (Gomes et al., 2017) is used as the classifier and relative error represents
the degree of success achieved by a record recovery attempt is measures. It is defined as the magni-
tude of the difference vector between the original record and its recovered counterpart, normalized
by the magnitude of the original record vector (Denham et al., 2020). An “€-privacy breach” of a
record occurs if the relative error of the recovered record is less than a specified threshold (€; € >
0) (Liu, 2007).

Overall error score/performance was evaluated according to the Privacy-Accuracy Magnitude (PAM)
proposed in (Denham et al., 2020) and we modified the process by using normalized values of relative
error and breach probability to maintain fairness.

4.4 Results

This section explains the results of the experiments carried out, including overall performance, relative
error, and breach probability behavior with different cycle sizes. Results of the cycle size 300 and 2000
of AReM data set are represented here and a similar trend of results was displayed by the other cycle
sizes also. The code for the experiments can be found in https://github.com/whewage/Variations-
of-Cumulative-Noise-Addition.git

Table 2: Overall Performance using PAM (AReM data set, Cycle size 300)1

Method
Relative Error Breach Probability Overall Error Score

k = 0.01 k=0.02 k = 0.01 k=0.02 k = 0.01 k=0.02

LAR 0.6174 0.5502 0.1111 0.2857 0.3936 0.1349

LA 1.0000 0.9110 0.4444 0.7143 1.1975 0.1600

LRWR 0.3462 0.2945 0.4444 0.7143 0.3174 0.1199

LRW 0.6053 0.5388 0.0000 0.1429 0.3664 0.1339

SAR 0.2833 0.3482 1.0000 0.5714 1.0803 0.1228

SA 0.9540 1.0000 0.2222 0.0000 0.9595 0.1649

SRWR 0.0000 0.0000 0.8889 1.0000 0.7901 0.1038

SRW 0.2845 0.2877 0.4444 0.4286 0.2785 0.1188

1Normalized values of relative error and breach probability were used for the convenience of under-
standing.



Table 3: Overall Performance using PAM (AReM data set, Cycle size 2000)1

Method
Relative Error Breach Probability Overall Error Score

k = 0.01 k=0.02 k = 0.01 k=0.02 k = 0.01 k=0.02

LAR 0.8056 0.8127 0.1111 0.1111 0.6614 0.6728

LA 1.0000 1.0000 0.2222 0.2222 1.0494 1.0494

LRWR 0.3136 0.3385 1.0000 1.0000 1.0984 1.1146

LRW 0.2479 0.2751 0.4444 0.4444 0.2590 0.2732

SAR 0.3568 0.4606 0.8889 0.7778 0.9174 0.8171

SA 0.7606 0.7167 0.0000 0.0000 0.5785 0.5137

SRWR 0.0000 0.0000 0.5556 0.6667 0.3086 0.4444

SRW 0.0329 0.0914 0.1111 0.4444 0.0134 0.2059

According to the results of Tables 1 and 2, we can observe that for k=0.01, the lowest error score
(the highest performance) was achieved by SRW for both cycle sizes. For k=0.02, with cycle sizes
of 300 and 2000, the lowest error scores were given by SRWR and SRW, respectively. But for a
cycle size of 300, we can see that SRW returns the second-lowest error score, which is quite close
to the error score of the SRWR. Initially, it was assumed that the noise resetting at the end of each
cycle would make a considerable change in the performance, but from the results, we can see that it
only makes a marginal improvement in accuracy (1− relativeerror) but does not have a significant
impact on the overall error score. Therefore, the perturbation method SRW (Logistic random walk
without noise resetting) was selected as the best performer as it gives the minimum overall error.
When we compare the results with the state-of-the-art work (LRW), SRW has outperformed in both
cycle sizes considering both growth rate values.

Analyzing the behavior of accuracy and privacy with different cycle sizes and growth rates is important
to understand the effects of those two parameters, and also in selecting optimal values for these
parameters. Relative error and the breach probability of the “AReM” data set were analyzed with
four different cycle sizes (cs = 300, 600, 1000, 2000) and two different growth rates (k = 0.01, 0.02).
Note that the growth rate only affects the logistic noise addition methods (highlighted in both Table
3 and 4).
According to the results in Table 3, we can see that relative error increases with the cycle size in
both linear and logistic cumulative noise additions. A possible reason for this behavior can be that
the noise contained in the system is high when it comes to the higher cycle sizes. On the other
hand, increasing the growth rate negatively affects the accuracy, since the relative error increases
with the growth rate. In such cases, the classifier is not able to adapt its model fast enough to
cope with the rate of increase of noise, which in turn leads to a greater error. But as you can see in
the table, SRWR and SRW have low relative errors in all the cases compared to the state-of-the-art
work (LRW) and LRWR and SAR have outperformed LRW in low cycle sizes.
According to the results represented in Table 4. in most of the cases breach probability decreases



Table 4: Behavior of relative error with different cycle sizes and growth rate values.

Method

Cycle Size

300 600 1000 2000

k=0.01 k=0.02 k=0.01 k=0.02 k=0.01 k=0.02 k=0.01 k=0.02

LAR 0.3664 0.3907 0.404 0.4248

LA 0.3980 0.4040 0.4224 0.4455

LRWR 0.3440 0.3545 0.3657 0.3724

LRW 0.3654 0.3654 0.3654 0.3654

SAR 0.3388 0.3487 0.3596 0.3607 0.3708 0.3671 0.3770 0.3859

SA 0.3942 0.4058 0.3920 0.3973 0.4203 0.4245 0.4200 0.4142

SRWR 0.3154 0.3182 0.3308 0.3340 0.3293 0.3345 0.3390 0.3350

SRW 0.3389 0.3434 0.3403 0.3466 0.3418 0.3443 0.3425 0.3451

Table 5: Behavior of breach probability with different cycle sizes and growth rate values

Method

Cycle Size

300 600 1000 2000

k=0.01 k=0.02 k=0.01 k=0.02 k=0.01 k=0.02 k=0.01 k=0.02

LAR 0.025 0.025 0.005 0.005

LA 0.040 0.033 0.015 0.010

LRWR 0.040 0.017 0.025 0.045

LRW 0.020 0.020 0.020 0.020

SAR 0.065 0.035 0.017 0.033 0.030 0.020 0.040 0.035

SA 0.030 0.015 0.033 0.008 0.010 0.015 0.000 0.000

SRWR 0.060 0.050 0.025 0.042 0.055 0.045 0.025 0.030

SRW 0.040 0.03 0.017 0.058 0.015 0.045 0.005 0.020

with the cycle size and hence the privacy increases. Unlike the classification error, we cannot see a
clear movement of the behavior of the breach probability with the growth rate. But we can see that
SA and SRW (logistic cumulative noise additions without noise resetting) show an approximately
similar behavior and on the other hand, SAR and SRWR show a similar trend with different k values.
But it is not sufficient to explain the behavior of privacy with different growth rates. When we
compare results with LRW a clear pattern cannot be seen but SRW has produced equal/low breach
probability values for k = 0.01 in cyclesize = 600 and 1000 and both k values in cyclesize = 2000.



Moreover, we have conducted the attacks to the starting and ending flat areas of the logistic cycle
instead of performing random attacks to the data stream. Starting flat area of the logistic cycle
is the most vulnerable location because of two main reasons. The first reason is the noise level
added is very low in that area, and the second one is the noise addition rate is very low. On the
other hand, when we consider the ending flat area it is also vulnerable because noise is added at a
constant noise addition rate which makes it easier for the attackers to breach the privacy regardless
of the high noise level of that area. Therefore, starting and ending flat areas have been identified
as the most vulnerable to attacks and to prove our claim we have conducted the attacks on those
identified areas of the best performing perturbation method SRW.

Attacks were performed in two different manners namely, attacks to the flat areas of randomly
selected cycles and attacks to the flat areas of each cycle and compared the results with the breach
probability of performing random attacks to the data stream. Table 5 displays the average breach
probabilities of AReM and Taxi data sets respectively after conducting 50 rounds of attacks. We
conducted 50 rounds of attacks to reduce the possible bias when conducting a single round of
attacks.

Table 6: Comparison of breach probabilities after performing attacks to the different locations of
the data stream

Data sets

Attacks-starting flat period Attacks-ending flat period

Random attacks

Random cycles Each cycle Random cycles Each cycle

AReM 0.0310 0.0312 0.0296 0.0319 0.0270

Taxi 0.0273 0.0341 0.0250 0.0366 0.0200

The results prove that the selected perturbation method SRW is relatively more vulnerable when
the attacks are performed to the flat areas of the logistic cycle. Both data sets have shown that it
is easy to breach privacy when attacking the starting flat period of randomly selected cycles with
breach probabilities of 0.002 and 0.0023 than the breach probabilities of ending flat areas of AReM
and Taxi data sets, respectively. When the attacks were performed to the flat areas of each cycle,
the starting flat area seems to be less/equally vulnerable with the ending flat area. However, even
with those changes, SRW has been succeeded in maintaining more than 97% of privacy in all the
scenarios, which proves the reliability of the method.

5 Discussion

By analyzing the results of the experiments, the perturbation method SRW can be identified as the
best performer considering both privacy and accuracy perspectives. In cooperating logistic function
with the cumulative noise addition certainly shows a positive impact towards optimizing the trade-off
between privacy and accuracy. The nature of the logistic function helps to control the maximum
noise level of the cumulative noise addition, which avoids noise from dominating the data. This



leads to increasing the accuracy level, hence provides an opportunity to minimize the trade-off.

Noise addition in cycles seems effective since relative error decreases, hence accuracy increases in
smaller cycle size (cs). On the other hand, beach probability decreases hence privacy increases when
cycle size increases. The growth rate(k) of the logistic function also makes an impact, since relative
error increases with it. But the impact of growth rate on breach probability should be investigated
further, since results do not show a clear pattern. However, it is vital to select the appropriate cycle
size and the growth rate values. Noise resetting does not give the expected results as it only does
a marginal improvement of the accuracy but does not have any significant change to the overall
score. Using absolute noise values is not a good technique to control the noise level because noise
injection distorts the data irrespective of addition or subtraction.

Flat areas of the logistic cycle are the most vulnerable to the attacks, and if the attacker can find
out the cycle size, he can succeed in attacking those most vulnerable areas. Therefore, cycle size is
an important parameter that needs to be protected.

6 Conclusion and Future Work

In summary, we experimented with different techniques which can be combined with cumulative noise
addition to controlling the maximum noise added to the data stream. Controlling the maximum
noise level is essential in the cumulative noise addition environment, as the system has to face
a huge amount of noise with the time when the data stream unfolds, which can highly decrease
the classification accuracy. By doing so, our objective was to maintain the maximum data privacy
benefits which receives from cumulative noise addition while doing a minimum negative impact
on the classification accuracy that leads to optimizing the trade-off between privacy and accuracy.
According to our experiments, cumulative noise addition in cycles combined with the concept of
logistic function turned to be a promising method to control the maximum noise level of the stream.
Therefore, cumulative noise addition combined with logistic function has been proved a better
approach to optimize the trade-off between privacy and accuracy by controlling the maximum noise
level of the system.

As for future work, the use of noise resetting should be investigated further conceptually and exper-
imentally with different data sets, as it appears to be a promising method to control the noise level
of the system. Moreover, instead of using a fixed cycle size noise can be added in randomly selected
cycle sizes to ensure high privacy by avoiding attacks to the flat areas and this can be considered
as an important improvement to this work. In addition to that, a well-formulated privacy-accuracy
framework using the selected method can be the next step of the work. This framework should be
able to answer the optimization of accuracy privacy trade-off issue according to the user’s accuracy
and privacy requirements.
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