This article can be cited as A. Naseri and S. M. H. Hasheminejad, An Unsupervised Gene Selection Method Based on Multiobjective Ant
Colony Optimization, International Journal of Artificial Intelligence, vol. 17, no. 2, pp. 1-22, 2019.
Copyright©2019 by CESER Publications



An Unsupervised Gene Selection Method Based on
Multiobjective Ant Colony Optimization

Atefeh Naseri' and Seyed Mohammad Hossein Hasheminejad?

'Department of Computer Engineering
Alzahra University
Tehran, Iran
a.naseri@student.alzahra.ac.ir

’Department of Computer Engineering
Alzahra University
Tehran, Iran
smh.hasheminejad@alzahra.ac.ir

ABSTRACT

The feature selection process can be defined as an optimization problem aimed to find all
the relevant and informative features from the whole set of features. Most feature selec-
tion methods use class labels and are considered as supervised methods. But access to
these labels is not possible in many real world problems. The identification of a subset of
effective genes from the microarray data is one of these problems, which plays a key role
in discovery and treatment of diseases. An unsupervised gene selection method based on
the multiobjective ant colony optimization has been proposed in this study in which both
univariate and multivariate techniques are used for evaluation of the relationship between
genes to calculate the fitness function, so that with considering the correlation between
genes it will have a better performance in addition to speed. This method was used to find
the genes with the highest discriminative power and the minimum level of similarity and
redundancy. According to the results, the accuracy of the proposed method has improved
in most cases than other methods. On the other hand, it has reported that the proposed
method has a low computational complexity, so it can be used for large-scale datasets.

Keywords: Gene Selection, Feature Selection, Multi-Objective Ant Colony Optimization
(MOACO), Microarray Data.
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1 Introduction

Microarray-based assay technology provides investigators with the ability to measure the ex-
pression profile of thousands of genes in a single experiment(Kumar, Shaik, Abdul Rahim and
Sravan Kumar, 2016). This technology can accelerate the identification of potential drugs for
treating diseases and provide fruitful results in the drug discovery. But, classification or clus-
tering of microarray data face with the known problem of curse of dimensionality due to the



nature of dimensions of this type of data and low number of samples (Hira and Gillies, 2015).
Gene selection is considered as a common technique for microarray data preprocessing. This
method refers to a process for identifying a subset of effective genes from the major gene set
that improves classification performance and reduces computational costs. Features relevance
and redundancy always are concerned in determining efficiency or usefulness of that feature
or subset of features (Xue, Zhang, Browne and Yao, 2016). By eliminating irrelevant and re-
dundant features, feature selection can reduce data dimension and increase performance by
accelerating the process of learning and simplifying the model. The examples of such features
are shown in Figure 1 (Ang, Mirzal, Haron and Hamed, 2016). As shown in this figure, the
features with redundancy and irrelevant features reduce the discriminative power.
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Figure 1: (a) Feature a and b are redundant because b provides the same information with
regard to discriminating the two clusters. (b) Feature b is irrelevant because it does not con-
tribute to cluster discrimination. On the other hand, if feature a is omitted, then only one cluster
will be recognized (Ang, Mirzal, Haron and Hamed, 2016).

Feature selection methods can be divided into four groups (Xue et al., 2016): filter, wrapper,
hybrid and embedded. The filter approach identifies the features that maximize the evalua-
tion criterion and do not rely on any particular learning model. The wrapper approach uses a
learning algorithm for evaluation of the selected feature subset. This is associated with high
computational costs in a large-scale dataset. On the other hand, the speed of the filter-based
methods is higher than wrapper methods, but the quality of the final result in these methods is
less than that of the wrapper due to the lack of a learning model in the search process. The
computational efficiency of the filter model and the proper performance of the wrapper model
are used in hybrid methods. But because filter and wrapper models are considered as two
separate steps, they don’t have proper performance in terms of accuracy. Finally, methods
integrating feature selection and classifier learning into a single process are called embedded
approaches.

In feature selection approaches, two univariate and multivariate strategies are used for eval-
uation of the relationship between genes (Saeys, Inza and Larranaga, 2007). In a univariate
strategy, evaluation and ranking of each gene is considered separately. Univariate strategy can



effectively identify and remove irrelevant genes independently of any learning algorithms, but
they are unable of removing redundant genes (Moradi and Rostami, 2015). Univariate meth-
ods are fast and efficient, but may have less accuracy due to the neglect of the dependencies
between genes. The multivariate strategy concerns the correlation between genes and can
handle both irrelevant and redundant genes. Therefore, the performance of multivariate-based
methods is better than univariate-based methods, but they can be trapped into the local opti-
mum (Lai, Reinders, van’t Veer and Wessels, 2006).

Metaheuristic methods have been successfully applied for solving optimization problem in
many fields such as image processing(Kheirinejad, Hasheminejad and Riahi, 2018), soft-
ware design(Tawosi, Jalili and Hasheminejad, 2015), modeling of dynamical systems(Saadat,
Moallem and Koofigar, 2017), Knowledge-based systems(Vascak, 2012), control of aerody-
namic systems(Roman, Precup and David, 2018) and computational biology(Niu, Fan, Wang,
Li and Wang, 2011) (Gao, Song, Cheng, Todo and Zhou, 2018), (Penas, Banga, Gonzalez
and Doallo, 2015). Recently, swarm intelligence based methods such as ACO and PSO have
attracted much attention due to their great function in feature selection area of research (Wan,
Wang, Ye and Lai, 2016)(Varma, Kumari and Kumar, 2016)(Gu, Cheng and Jin, 2018)(Tran,
Xue and Zhang, 2018). Most of the proposed gene selection methods use class labels of the
microarray data in their search processes. However, there are some data whose samples are
incorrectly labeled or misslabeled (Niijima and Okuno, 2009). Therefore, the importance of us-
ing the unsupervised gene selection methods that have been neglected in the DNA microarray
research area is considerable.

In this paper, we present novel multiobjective unsupervised filter based gene selection method
using ACO. The efficiency of the filter approach and the suitable performance of the ant colony
search strategy are combined without using any learning model. A new proposed multiobjec-
tive fitness function evaluates the performance of the found subsets of genes without using
any learning model. Both univariate and multivariate strategies are applied in calculating the
fitness function simultaneously.

The remainder of this study is organized as follows: the studies related to the feature selection
and the main method of the ant colony has been investigated in Section 2. Then, the proposed
method is presented in Section 3 in detail. In Section 4, the proposed algorithm is compared
with other available feature selection methods. The conclusions of this study are presented in
Section 5.

2 Background and related works

Evaluation of all possible subsets is necessary to find the optimal features subset. This means
the evaluation of the search space, n?, which n indicates the number of features. Evalua-
tion of such a space requires time-consuming computations, and can’'t be used even for a
medium-sized dataset. Therefore, the final solution must be provided by the feature selection



methods at an acceptable computational time by establishing an appropriate balance between
the solution quality and the computational cost.

2.1 Related works

Nowadays, the ant colony algorithm has been considered for solving the feature selection
problem. In (Fallahzadeh, Dehghani-Bidgoli and Assarian, 2018), breast cancer diagnosis by
finding the best Raman features using the ACO algorithm is proposed. In this study, error of
classification is considered as cost function and by reducing the number of features, model
complexity and consequently, its construction time decreases. The related features selection
for categorizing the text is developed using an ant colony in (Aghdam, Ghasem-Aghaee and
Basiri, 2008)(Aghdam, Ghasem-Aghaee and Basiri, 2009). These studies have modeled the
problem states as a graph and used a specific classifier to evaluate the quality of subset of
selected features. Kashef and NezamAbadi (Kashef and Nezamabadi-pour, 2015) have used
Binary Ant Colony to select a subset of related features for solving the classification problem.
They rebuild a graph model, so that each node includes two sub-nodes that are used to select
or not to select features. In (Rashno, Nazari, Sadri and Saraee, 2017), a feature selection
method based on ant colony has been proposed to classify astronomical images. In their pro-
posed method, both a feature subset is selected for all classes, as well as a feature subset
is selected for each of the pixel classes. In (Chen, Chen and Chen, 2013), an ant colony-
based feature selection method is proposed for image categorization. (Shunmugapriya and
Kanmani, 2017) has proposed a framework for selecting a set of proper features based on a
combination of ant colony and bees colony algorithms.

Shekofteh et al. have proposed a hybrid method for feature selection for predicting the soil
state using an ant colony algorithm and a fuzzy system in order to minimize the number of
features and classification errors (Shekofteh, Ramazani and Shirani, 2017). In (Jameel and
Rehman, 2018) a feature selection method using a modified wrapper-based ant colony op-
timization is proposed. In the proposed approach, the complete graph is used as a search
space. The search space also consists of a terminal node. The terminal node is utilized to
end the search and is associated with every node in the graph. The classification accuracy is
calculated as a fitness function.

Several methods are proposed based on ant colony algorithm to select genes from a microar-
ray dataset. Li et al. have proposed a two-step dimension reduction method based on the
Ant colony algorithm that irrelevant genes are eliminated using a modified ant colony system
in the first stage, and the final gene set was determined using an improved ant colony sys-
tem in the second stage (Li, Wang, Chen, Shi and Qin, 2013). Yu et al. have introduced a
modified ant colony algorithm to select tumor marker genes and used the SVM classification
in the ant colony search process to evaluate the performance of selected genes (Yu, Gu, Liu,
Shen and Zhao, 2009). Nemati et al. have proposed a hybrid method for features selection
in predicting the pseudoprotective activity of proteins using ant colony and genetic algorithms
(Nemati, Basiri, Ghasem-Aghaee and Aghdam, 2009). Tabakhi et al. (Tabakhi, Najafi, Ran-
joar and Moradi, 2015) have proposed an unsupervised feature selection method using an ant



colony algorithm. The combination of an ant colony algorithm and the neural network clas-
sifier is presented by Kabir et al. to select a subset of prominent features (Kabir, Shahjahan
and Murase, 2012). In (Ahuja and Ratnoo, 2017) an ant colony algorithm is proposed with
multi-objective supervisory using the classifier function.

2.2 Ant colony optimization

The ACO algorithm is a probabilistic technique for solving computational problems that can be
reduced to finding good paths through graphs. This algorithm aims to search for an optimal
path in a graph based on the behaviour of ants seeking a path between their colony and source
of food. Ants are able to indirectly communicate through pheromone (a chemical substance
which every ant deposits while operating in its environment) trails to find the shortest path be-
tween a food source and their nest.

Initially, the ants start their search through random movements and drop pheromone at a uni-
form rate. However, the ants that follow the shortest path to the food source and back to the
nest will return faster than the ones following a longer path. As a result, more pheromone
accumulates on the shorter path making this path attractive for other ants to follow. In this
way, increasing amount of pheromone becomes a positive feedback. More and more ants pre-
fer to choose the trail with larger amount of pheromone deposited and eventually all the ants
converge to the shortest path (Dorigo, 1992).

3 The proposed method

Most related works have focused on supervised algorithms, while providing labels is difficult in
microarray data. On the other hand, the use of the univariate technique in the evaluation of
genes has less accuracy, because the dependence between genes is not considered, although
this problem isn’t observed in multivariate techniques, but they can be trapped into the local
optimum. Therefore, this study has proposed a new multiobjective unsupervised gene selec-
tion method based on ant colony optimization for microarray data, in which both univariate and
multivariate strategies are used to calculate the fitness function simultaneously. Then, search
space, transition state, the pheromone update rules, and the multiobjective fitness function are
addressed.

Search Space Display: The search space for genes selection is connected as a fully con-
nected weighted graph in which the nodes represent the major set of genes, and the edges
of the graph indicates the relationship between the genes (Figure 2) (Basiri and Nemati, 2009).
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Figure 2: Representation of the search space (Basiri and Nemati, 2009)

In addition, the edge weight is determined between the g; and g; genes according to the simi-
larity between them, which is calculated using the following formula:
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Where p is the number of samples and g;s represents the amount of the gene i for the sample
s. According to the equation, it can be seen that the similarity value is between 0 and 1, Where
the value of 0 means there are two completely non-identical genes and the value of 1 means
that the two genes are completely similar.

sim (gi, 95) =

Furthermore, to use the ACO algorithm in the gene selection problem, “desirability” and “heuris-
tic information” must be defined as the basic components. The desirability, 7;,Vi = 1......,n
called pheromone, is associated with the graph nodes (i.e.,genes) and shows the information
collected by ants during the search process. Moreover, the heuristic information represents
the prior knowledge about the problem. In the proposed method, the heuristic information is
simply defined as the inverse of the similarity between genes which is assigned to the graph’s
edges.

State Transition Rule: The “state transition rule” is designed based on a combination of the
heuristic information and the node pheromone values as follows:

when the ant & is located on the gene i, the next gene j can be selected in a greedy way or
in a probabilistic way. In the greedy way, the next gene is selected according to the following
formula:

j = arg max{[r;][n(gi» 9u))°},  if ¢ < qo (3.2)
uGJiIC

where J¥ is the unvisited gene set, 7;, is the pheromone value on the edge (g;, 9u) , 7(gi, gu) =
1/sim(g;, g4) is heuristic information which was chosen to be the inverse of the similarity
value between genes, parameter g is a parameter which is used to control the importance
of pheromone versus heuristic information (5 > 0), ¢ is a random number uniformly distributed
in [0...1], and qq is a predefined constant parameter (0 < gg < 1).

In the probabilistic way, the next feature j will be selected based on the probability Py(3, j),
which is defined as follows:

[7i[n(g:,9:))° ifiecJk
Pk: (7/)]) = ZueJﬁ“ [Tiu][n(ghgu)]ﬁ’ f J !

ifq > qo (3.3)
0, otherwise



The probabilistic rule (Equation 3.3) allows the ants to build a variety of different solutions in
order to explore a larger solution space, while the greedy rule (Equation 3.2) has the strong
local search ability.

As we see, state transition rule depends on the parameters ¢ and ¢y, which is a tradeoff be-
tween Ezxploitation and Ezploration. If ¢ < qo, then ants select the best gene in the greedy
way (Ezploitation); otherwise, each gene has a chance of being selected corresponding to
its probability value (Ezploration). The advantage of the probabilistic way is to avoid being
trapped into a local optimum.

The pheromone update rule: The pheromone update rule is applied on all edges after pass-
ing each ant. so future ants can utilise this information. Pheromone values are updated using
the following formulae:

m(t+1)=(1—p)nj(t)+zch ECTa 0] ZA (3.4)

where
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Where, p is pheromone evaporation rate (0 < p < 1) and 7;;(t) and 7;;(t+1) show the pheromone
values on edge (g;, g;) attime ¢ and ¢t + 1, respectively, n is the number of main genes, EC[i, j]
is the number of times which the edge (gi, gj) is viewed by ants and A is the number of ants.
Fitness(k) indicates a fitness function that determines the quality of the £ ant solution, and
the subset (k) represents the subset of genes selected by £"-ant.

Multi-objective fitness function: The proposed method was aimed to use the analysis of
relevance and redundancy in the gene selection process. In other words, on the one hand, a
subset of genes with the highest discriminative power should have a greater fithess function
and, on the other hand, subsets with the least redundancy and similarity between the genes
should be selected by ants. For achieving this purpose, both univariate and multivariate strate-
gies are used for calculating the fitness function.

In this paper, the difference between Term variance (Theodoridis and Koutroumbas, 2008) as
a univariate criterion and mutual correlation (Haindl, Somol, Ververidis and Kotropoulos, 2006)
as a multivariate criterion is used for calculating the fitness function for each gene. The max-
imum term of Term variance and minimum mutual correlation will be more appropriate and
result in a higher fitness function value.

Term Variance is the simplest univariate evaluation of relevance of genes, and shows that
genes with larger variance contain more valuable information that is computed as follows:

1 p
72 gis — Gi) (3.6)
s=1
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where p is the number of samples, g;s denotes the value of gene i for sample s, and g; is the
average value of all the samples corresponding to gene i. Pearson correlation coefficient to



measure correlation between different genes as follows:
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where Cor(g;, g;) is the correlation coefficient between two gene i and j, and p is the number of
the samples, ¢;s and g;s denote the values of the genes i and j for the s sample, respectively,
and g; and g; represent the mean values of g; and g; over all of the p samples.

According to equation 3.7, the correlation coefficient between two genes computes the sim-
ilarity between the genes. After computing the correlation coefficient for all possible combina-
tions of genes, the correlation value for gene i is calculated as follows (Moradi and Gholam-
pour, 2016):

! o
Cor (g = 220 g i 9)

where f is the number of all genes and Cor(g;, g;) denotes the Pearson correlation value be-
tween genes i and j.

Whatever correlation value for a gene is higher, that means this gene is highly similar to other
genes and causes redundancy, while the lower value means that this gene is more distinct
from others and can provide a higher discriminative power.

The fitness value of solution & is computed as follows:

1 |subset (k)|

= e 2 (Vi) — Cortah) (3.9)
=1

fitness(k)

where subset(k) is the subset of genes selected by ant k, |subset(k)| is the size of subset(k),
g¥ is the i-th gene in subset(k). This particular type of fitness function is independent of any
learning model.

This is due to the fact that the filter-based methods dose not employ a learning model in their
search operations and thus in each iteration of these algorithms, the classifier accuracy is not
needed to compute the fitness of each solution. Training a given classifier with the full gene set
is time-consuming especially due to the high-dimensionality of microarray datasets (Figure 3).
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Figure 3: The overall flowchart of the proposed method

3.1 The framework of the proposed gene selection method based on ACO

The proposed method has two main parts including the initialization part and the gene selection
part. In the initialization part, the similarity values between genes are calculated and assigned
to the edges in the graph. Then, the initial intensity of pheromone values on the edges is set to
a constant value. Finally, the relevance of each gene is simply evaluated using the new fitness
function.

The gene selection part is an iterative process. At each iteration, the edge counter (EC) is
defined to count the number of times that a specific edge between two genes is visited by ants,
and their initial values are set to zero. Additionally, ants are randomly placed on the graph
nodes as their starting nodes. Each ant constructs a candidate solution by iteratively adding
a gene to the current selected gene subset according to a “state transition rule” which is a
combination of the heuristic information and the pheromone values. An ant prefers to visit an
gene with low similarity to its previously selected gene as well as high intensity of pheromone
values. When a given edge is visited by the ant, its corresponding edge counter (i.e., ECi, j])
is increased. This step continues until a given number of genes are selected by each ant.

The candidate subsets of genes are evaluated using a new proposed fitness function. Then,
the subset of genes with the better fithess value is kept as the best result in the current itera-
tion. The intensity of pheromone values on the edges are updated according to a “pheromone
updating rule”. In other words, a fraction of pheromone values on each edge is evaporated; the
edges with greater EC values get the greater amount of pheromone; and all ants deposit an



amount of pheromone on the edges which belong to the fitness of their selected gene subsets.
This process continues until the maximum number of iterations I is reached. Finally, the global
best subset of genes in all iterations is chosen as the final subset of genes. The pseudo code
of the proposed algorithm is shown in Figure 4.

Algorithm 1.

Input

D:p X n matrix, p patterns of a n dimensional training set.

m(< n): the number of genes for the final reduced gene set.

I: the maximum number of allowed iterations.

A: the number of ants.

NG: the number of genes selected by ants in each iteration.
Output

D:p X m matrix, reduced dimensional training set.

Begin
1. Compute the similarity sim(g;, g;) between pairs of genes, V i,j = 1...n.
2. Compute the relevance 1; of genes, Vi = 1...n.
3:  Ser the initial intensity of pheromone 7;;(1) on the edges to constant value ¢, V i,j = 1...n.
4. for r=11to I do
9 Initialize the edge counter ECJ{, j] to zero, V i,j = 1...n.
6: Place the ants randomly on the nodes in the graph.
i for i=1 to NG do
8: for k=1 to A do
9: Choose the next gene among unvisited genes according to the state transition rule.
10: Move the k-th ant to the new selected gene.
11: Increment edge counter corresponding to the visited edge.
12 end for
5% end for
14: Evaluate the candidate subsets of selected genes using fitness function.
15: Find global best solution.
16: Update pheromone values by applying the pheromone updating rule.
17: end for

18: Keep the global best solution in all iterations.
19: Build D from D based on the global best solution.

End

Figure 4: Pseudo code of the proposed gene selection method

4 Results

In this section, we empirically evaluate the performance of the proposed method upon five
wellknown microarray datasets. Seven frequently used gene/feature selection methods were
selected to be compared with the proposed method. Term Variance(TV) (Theodoridis and
Koutroumbas, 2008) and Laplacian Score(LS) (Liao, Jiang, Liang, Zhu, Cai and Cao, 2014) are



univariate methods that can eliminate unrelated genes in an effective manner. The relevance-
redundancy feature selection(RRFS) (Ferreira and Figueiredo, 2012), the random subspace
method(RSM) (Lai, Reinders and Wessels, 2006) and mutual correlation(MC) (Haindl et al.,
2006), are considered as multivariate methods that eliminate unrelated genes with redundancy.
Since the proposed method is an ant colony-based gene selection method, MGSACO(Tabakhi
et al., 2015) and UFSACO(Tabakhi, Moradi and Akhlaghian, 2014) have been selected as the
benchmark approaches which are the latest ACO-based gene selection methods.

As the proposed method is a filter-based gene selection method without using any classifiers in
the gene selection process, it should have good performance on different types of classifiers.
Therefore, three frequently used classifiers including support vector machine(SVM)(Guyon,
Weston, Barnhill and Vapnik, 2002), naive Bayes(NB)(Wang, Tetko, Hall, Frank, Facius, Mayer
and Mewes, 2005), and decision tree(DT)(Chen, Wang, Tsai, Wang, Adrian, Cheng, Yang,
Teng, Tan and Chang, 2014) were considered to evaluate the classification prediction capability
of the selected genes over the datasets.

The true positive (TP), false positive (FP), true negative (TN) and false negative (FN) criteria
are used to evaluate the results of the classifiers. The formula for the performance criteria used
is as follows:

TP + TN
A = 41
MY = TP L TN f FN 1 FP (4.1)
TP
Precision = ———— 4.2
recision = TP (4.2)
TP
l= ——— 4.
Reca TP + PN (4.3)

And the classification error is calculated as follows:
ClassificationErrorRate = 1 — ClassificationAccuracy (4.4)

The description of the datasets used in the experiment, the parameter settings, and the exper-
imental results are presented in the following subsections.

4.1 Datasets

The proposed method was evaluated using five microarray datasets related to different types
of cancer. These sets are available in the UCI datasets. Table1 shows some characteristics of
datasets.

Dataset Genes | Classes | Patterns
Colon 2000 2 62
SRBCT 2308 4 83
Leukemia 7129 2 72
Prostate Tumor | 10509 2 102
Lung Cancer | 12600 5 203

Table 1: Characteristics of the datasets used in the experiments.



4.2 Parameters setting

The proposed method includes a different number of adjustable parameters. The proper val-
ues of these parameters were chosen after a number of preliminary runs, and not meant to
be optimal. The maximum number of cycles is set to 50, the number of ants is set to 100,
parameter gy in equation 3.2 and 3.3 is set to 0.7, the initial pheromone values on each edge
are setto 0.2 (1;; = 0.2,Vi,j = 1...n), importance of the pheromone and heuristic information
is assumed equal (8 = 1), and the evaporation rate parameter is setto 0.2 (p = 0.2).

For the rest of the methods, there are parameters to be set. To make a fair comparison, the
parameters of MGSACO and UFSACO are set to NCuaz = 50, Nane = 100, as reported in
(Tabakhi et al., 2014) and (Tabakhi et al., 2015). Moreover, for the RRFS method, the maxi-
mum allowed similarity between pairs of features is set in the range of [0.5,1). Finally, for the
RSM method, the number of iterations is set to 50, and the size of the subspace in each itera-
tion is set to 200.

Three frequently used classifiers including support vector machine(SVM)(Guyon et al., 2002),
naive Bayes(NB)(Wang et al., 2005), and decision tree(DT)(Chen et al., 2014) were used to
evaluate the classification prediction capability of the selected features over the datasets.

The WEKA machine learning software library (Hall, Frank, Holmes, Pfahringer, Reutemann
and Witten, 2009) is used to implement classifiers. SMO with the polykernel was selected
as the SVM classifier and it was applied with the one-against-rest strategy for the multiclass
problems. Also, in SMO classifier, the complexity parameter ¢ was set to 1 and the tolerance
parameter was set to 0.001. Additionally, NaiveBayes was used as the NB classifier. Moreover,
J48 was adopted as the DT classifier, in which the post-pruning technique was used in the
pruning phase, its confidence factor was set to 0.25, and the minimum number of samples per
leaf was set to 2. The dataset is randomly divided into the training dataset (% dataset) and
the test dataset in each run. The tests are performed on a Core i5 processor with 2.13 GHz
processor with 4 GB of RAM using Java.

4.3 Experimental results

The results of comparison between the proposed method and unsupervised methods includ-
ing MGSACO, UFSACO, RSM, MC, RRFS, TV, and LS in terms of the average error of clas-
sification (in percent), using the support vector machine and Bayesian and the decision tree
classifiers when the number of selected genes is 20, over 5 independent runs are presented
in tables 2 to 4.



Table 2: Average classification error rate over 5 independent runs of different feature selection

methods using SVM classifier.

Dataset Our Method | MGSACO | UFSACO | RSM MC | RRFS TV LS
Colon 20.36 21.81 21.81 2454 | 38.18 | 24.54 | 21.81 | 33.63
SRBCT 22.069 25.51 28.27 37.93 | 45.51 | 31.72 | 39.31 | 36.55
Leukemia 23.7 17.94 41.02 37.64 | 38.23 | 23.52 | 20.58 | 35.29

Prostate 19.143 26.85 40.57 22.85 | 34.28 | 30.85 28 48

Lung Cancer 11.429 14.28 17.14 35.71 | 28.57 | 19.14 | 27.71 18

Table 3: Average classification error rate over 5 independent runs of different feature selection

methods using Bayesian classifier.

Dataset Our Method | MGSACO | UFSACO | RSM MC | RRFS TV LS
Colon 18.182 20 28.18 26.36 | 31.81 | 32.72 | 41.81 | 47.27
SRBCT 11.034 15.86 20 37.92 | 37.93 | 28.27 | 38.62 | 32.41
Leukemia 26.77 7.69 41.02 4235 | 29.41 | 35.29 | 32.35 | 8.82
Prostate 34.286 37.14 39.42 30.28 | 33.71 | 31.42 | 33.14 | 32.57
Lung Cancer 17.143 20 35.71 23.57 | 59.04 | 21.71 | 31.99 | 29.99

Table 4: Average classification error rate over 5 independent runs of different feature selection

methods using decision tree classifier.

Dataset Our Method | MGSACO | UFSACO | RSM MC | RRFS TV LS
Colon 20.909 23.63 24.54 28.18 | 33.63 | 34.54 | 31.81 | 39.09
SRBCT 21.149 22.75 27.58 58.62 | 44.13 | 28.96 | 22.75 | 45.51
Leukemia 23.529 23.07 30.76 38.82 | 32.35 | 20.58 | 20.58 | 29.41
Prostate 25.714 29.71 33.71 33.71 36 37.71 | 38.85 | 43.99
Lung Cancer 18.571 20 28.57 30.71 | 31.42 | 20.28 | 24.28 | 21.43

It can be seen from Table 2 and 4 that the proposed method obtains the lowest classification
error rate compared to the other methods on all of the datasets, expect for the Luekemia Tumor
dataset, that gets the second lowest error rates.

The performance of the proposed method on the SRBCT dataset for different numbers of
genes was evaluated using different types of classifiers in the second series of experiments
and the results are presented in Tables 5 to 7. In these tables, the average classification error
rates, over 5 independent runs of the proposed method and those of unsupervised methods is
reported. In most cases, the performance of the proposed method is better than other methods.



Table 5: Average classification error rates (in percent) over 5 runs of the gene selection meth-
ods on SRBCT dataset using SVM classifier. The best result is marked in boldface and under-
lined and second best is in boldface.

f selected genes | Our Method | MGSACO | UFSACO | RSM MC | RRFS | TV LS
10 44.828 39.3 51.72 59.99 | 64.13 | 45.51 | 46.89 | 44.13
20 22.069 25.51 28.27 37.93 | 4551 | 31.72 | 39.31 | 36.55
30 13.793 14.48 14.48 35.86 | 41.38 | 15.86 | 28.96 | 28.96
40 6.897 7.58 9.65 39.3 | 34.48 | 13.79 | 25.51 | 13.79
50 2.759 7.58 4.14 18.62 | 17.23 | 4.14 | 19.31 | 17.24
60 4.138 414 4.14 18.62 | 17.93 | 4.14 6.9 13.1
70 3.448 3.45 4.14 16.55 | 14.48 | 8.96 | 3.45 | 18.62
80 2.06 2.07 3.45 15.86 | 15.17 | 2.76 | 552 | 10.34
90 0.2 0.69 5.52 13.79 | 11.03 | 4.14 | 3.45 | 9.65
100 1.379 2.07 0.69 896 | 965 | 207 | 3.45 | 6.89

Table 6: Average classification error rates (in percent) over 5 runs of the gene selection meth-
ods on SRBCT dataset using Bayesian classifier.

f selected genes | Our Method | MGSACO | UFSACO | RSM MC | RRFS | TV LS
10 10.345 18.62 31.03 46.2 | 35.17 | 37.24 | 47.58 | 42.06
20 11.034 15.86 20 37.92 | 37.93 | 28.27 | 38.62 | 32.41
30 9.31 11.72 10.34 39.31 | 20.69 | 22.06 | 27.58 | 27.58
40 6.897 9.65 11.72 25.51 | 26.89 | 22.75 | 24.13 | 27.58
50 6.552 15.17 12.41 22.75 | 23.44 | 23.45 | 18.62 | 26.2
60 12.414 7.58 6.21 22.75 | 21.37 | 15.86 | 17.93 | 27.58
70 3.44 3.45 11.03 20.68 | 17.24 | 11.72 | 19.31 | 12.41
80 3.448 4.14 13.1 2551 | 2344 | 552 | 8.96 | 22.76
90 6.207 8.27 3.45 20.69 | 23.44 | 10.34 | 8.96 | 26.89
100 6.897 5.52 13.1 22.06 | 16.55 | 22.75 | 17.24 | 24.13

Table 7: Average classification error rates (in percent) over 5 runs of the gene selection meth-
ods on SRBCT dataset using decision tree classifier.

f selected genes | Our Method | MGSACO | UFSACO | RSM MC | RRFS | TV LS
10 26.207 21.37 31.03 53.1 | 55.17 | 36.55 | 41.37 | 50.34
20 21.149 22.75 27.58 58.62 | 44.13 | 28.96 | 22.75 | 45.51
30 22.89 19.3 26.89 41.37 | 39.31 | 24.82 | 32.41 | 24.83
40 12.414 22.07 14.48 4551 | 35.16 | 22.07 | 27.58 20
50 18.621 16.56 25.51 34.48 | 41.37 | 26.2 | 24.13 | 25.51
60 19.31 17.93 21.38 37.24 | 29.65 | 22.75 | 23.44 | 22.75
70 17.241 13.79 26.2 40 28.96 | 20.69 | 24.13 | 21.37
80 22.069 17.24 20 37.93 | 36.55 | 17.93 | 17.24 | 21.37
90 20 22.06 18.62 37.93 | 40.68 | 22.06 | 20.68 | 26.2
100 18.379 15.86 22.75 31.72 | 38.62 | 23.44 | 31.03 | 28.96

The results of 30 independent runs of the proposed method, UFSACO, MGSACO methods



and the best, worst, mean and standard deviation of the classification performance on different
dataset for selecting 30 genes are presented in Tables 8 - 16. According to the results, the
proposed method has better accuracy in most cases.

Table 8: Calculating the best, worst, mean and standard deviation of classification performance
of proposed method over 30 independent runs on Colon dataset for selecting 30 genes using
different classifiers.

Classifier Support Vector Machine Naive Bayesian Decision Tree
- Max Min Avg Std | Max Min Avg Std | Max | Min Avg Std
Accuracy | 95.45 | 68.18 | 82.12 | 7.05 | 95.45 | 68.18 | 82.57 | 6.86 | 90.9 | 68.18 | 79.84 | 7.32
Precision | 100 | 61.11 | 81.16 | 7.91 100 | 66.66 | 8542 | 83 | 100 | 66.66 | 82.65 | 8.01
Recall 100 | 78.57 | 9451 | 5.84 | 100 | 73.33 | 89.02 | 6.8 | 100 60 85.69 | 12.13
Table 9: Calculating the best, worst, mean and standard deviation of classification performance
of proposed method over 30 independent runs on SRBCT dataset for selecting 30 genes using
different classifiers.
Classifier Support Vector Machine Naive Bayesian Decision Tree
- Max | Min Avg Std Max Min Avg Std | Max | Min Avg Std
Accuracy | 93.1 | 55.17 | 7793 | 88 | 96.55 | 79.31 | 89.54 | 5.83 | 100 | 58.62 | 78.03 | 10.69
Precision | 100 | 46.15 | 85.67 | 16.58 100 | 66.66 | 92.2 | 9.44 | 100 | 44.44 | 84.27 | 16.61
Recall 100 | 53.84 | 89.21 | 12.99 100 | 77.77 | 94.82 | 7.23 | 100 | 41.66 | 77.95 | 15.32
Table 10: Calculating the best, worst, mean and standard deviation of classification perfor-
mance of proposed method over 30 independent runs on Luekemia dataset for selecting 30
genes using different classifiers.
Classifier Support Vector Machine Naive Bayesian Decision Tree
- Max Min Avg Std | Max Min Avg Std | Max Min Avg Std
Accuracy 92 60 76.01 | 9.44 | 91.17 | 58.82 | 73.23 | 9.37 | 91.17 60 741 7.99
Precision | 88.88 | 62.5 | 75.33 | 8.48 | 94.73 60 72.01 | 9.21 100 | 66.66 | 76.03 | 8.26
Recall 100 | 73.33 | 93.32 | 7.33 | 100 80 92.16 | 5.52 95 60 83.83 | 8.83
Table 11: Calculating the best, worst, mean and standard deviation of classification perfor-
mance of UFSACO method over 30 independent runs on Colon dataset for selecting 30 genes
using different classifiers.
Classifier Support Vector Machine Naive Bayesian Decision Tree
- Max Min Avg Std | Max Min Avg Std | Max Min Avg Std
Accuracy | 90.90 | 59.09 | 77.12 | 8.13 | 90.90 | 59.09 | 77.12 | 8.13 | 90.90 | 54.54 | 75.9 | 7.74
Precision | 100.0 | 56.25 | 75.86 | 9.75 | 100 | 56.25 | 75.86 | 9.75 | 100.0 | 61.11 | 76.73 | 8.33
Recall 100.0 | 81.25 | 95.87 | 5.68 | 100 | 81.25 | 95.87 | 5.68 | 100.0 | 63.63 | 88.81 | 9.95




Table 12: Calculating the best, worst, mean and standard deviation of classification perfor-
mance of UFSACO method over 30 independent runs on SRBCT dataset for selecting 30
genes using different classifiers.

Classifier Support Vector Machine Naive Bayesian Decision Tree
- Max Min Avg Std | Max | Min Avg Std Max Min Avg Std
Accuracy | 89.65 | 48.27 | 69.88 | 9.32 | 93.1 | 68.96 | 83.44 | 7.09 | 89.65 | 55.17 | 73.44 | 9.92
Precision | 100 | 35.29 | 74.18 | 22.3 | 100 | 58.33 | 89.49 | 12.27 | 100 | 44.44 | 80.87 | 14.01
Recall 100 | 46.15 | 83.93 | 16.48 | 100 | 54.54 | 83.9 | 13.09 | 100 40 | 74.46 | 15.81
Table 13: Calculating the best, worst, mean and standard deviation of classification perfor-
mance of UFSACO method over 30 independent runs on Luekemia dataset for selecting 30
genes using different classifiers.
Classifier Support Vector Machine Naive Bayesian Decision Tree
- Max | Min Avg Std | Max | Min Avg Std Max Min Avg Std
Accuracy | 88 48 | 716 | 11.08 | 92 56 | 74.26 | 9.43 | 88 48 | 69.2 | 10.02
Precision | 93 | 45.83 | 75.46 | 12.61 | 100 | 61.11 | 83.56 | 11.44 | 91.66 | 52.94 | 75.59 | 10.47
Recall | 100 | 66.66 | 90.59 | 10.62 | 100 | 42.85 | 78.28 | 14.29 | 9411 | 55 | 79.41 | 9.87
Table 14: Calculating the best, worst, mean and standard deviation of classification perfor-
mance of MGSACO method over 30 independent runs on Colon dataset for selecting 30 genes
using different classifiers.
Classifier Support Vector Machine Naive Bayesian Decision Tree
- Max | Min Avg Std | Max | Min Avg Std Max Min Avg Std
Accuracy | 100 | 63.63 | 80.45 | 9.99 | 100 | 45.45 | 76.81 | 10.96 | 95.45 | 59.09 | 79.54 | 9.07
Precision | 100 | 61.9 | 80.39 | 11.46 | 100 | 54.54 | 82.91 | 10.57 | 93.33 | 58.82 | 80.46 | 8.86
Recall | 100 | 82.35 | 95.1 | 5.82 | 100 | 33.33 | 81.22 | 17.44 | 100 | 70.58 | 90.66 | 9.17
Table 15: Calculating the best, worst, mean and standard deviation of classification perfor-
mance of MGSACO method over 30 independent runs on SRBCT dataset for selecting 30
genes using different classifiers.
Classifier Support Vector Machine Naive Bayesian Decision Tree
- Max | Min Avg Std Max Min Avg Std | Max | Min Avg Std
Accuracy | 100 | 48.27 | 73.9 114 | 96.55 | 75.86 | 89.77 | 5.08 | 93.1 | 51.72 | 75.51 | 9.59
Precision | 100 | 34.78 | 81.06 | 20.28 | 100 | 71.42 | 95.06 | 7.45 | 100 | 37.5 83.6 | 15.51
Recall 100 | 375 | 878 | 15.88 | 100 | 66.66 | 92.72 | 9.53 | 100 50 78.73 | 13.06




Table 16: Calculating the best, worst, mean and standard deviation of classification perfor-
mance of MGSACO method over 30 independent runs on Luekimia dataset for selecting 30

genes using different classifiers.

Classifier Support Vector Machine Naive Bayesian Decision Tree
- Max | Min Avg Std | Max | Min Avg Std | Max | Min Avg Std
Accuracy | 96 60 76.66 | 9.1 96 56 76.13 | 954 | 92 52 74.13 | 10.69
Precision | 100 | 619 | 779 | 10.57 | 100 | 68.18 | 83.43 | 9.26 | 100 | 64.7 | 80.26 | 9.39
Recall 100 | 66.66 | 92.26 | 8.81 | 100 | 47.05 | 80.75 | 14.23 | 100 | 47.05 | 81.68 | 11.86

An example of changes in the total fitness function of proposed method for different datasets
is shown in Figure 5. These changes are reported for each 20 replicates from 800 replicates
set for a run.
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Evaluation of the execution time of the proposed method over different numbers of genes on all
of the datasets was done. The average execution time of the proposed method and MGSACO
(in seconds) is shown in Figure 6. It can be concluded that, when the number of main genes
in the datasets increases, more time is required to find the subset of genes.
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Figure 6: Evaluation of the execution time: a)proposed method b)MGSACO(Tabakhi et al.,
2015)

An example of genes that are selected by the proposed method is shown in table 17. The
numbers listed in this table are the indexes of the genes in the dataset.

Table 17: genes selected by the proposed method

Dataset subset gene selected
Colon 260-261-262-263-317-408-415-765-878-1208-1312-14-17-1423-1617-1810-1895
SRBCT 129-187-198-220-566-1227-1319-1764-1916-2046
Leukemia 1734-1735-1893-2913-3486-5987-6201-6794-6954
Prostate 160-454-1098-1249-3982-4692-6144-7003-9354-10193
Lung Cancer 205-1182-3526-4943-6240-6641-9405-11316-11655-12515

5 Conclusion

In the present study, an unsupervised gen selection method in microarray data is proposed
based on ant colony algorithm. In order to improve the efficiency of the proposed method, the
computational efficiency of filter selection method and the good efficiency of the Ant colony
search strategy is combined. In addition, a new and multi-objective fitness function has been
used to evaluate the subset of selected genes without using a learning model in order to in-
crease the efficiency of the proposed method. The performance of the proposed method was
examined on five datasets using three different classifiers. According to the results, the pro-
posed method has better performance.
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