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ABSTRACT 

Two mandatory conditions in the development of tele-rehabilitation platforms are: (i) being based 
on affordable technologies and (ii) ensuring the patient is performing the exercises correctly. To 
do so, the present study proposes a cognitive algorithm based on a Hidden Markov Model (HMM) 
approach to assess in real-time the quality of a human movement recorded through a low-cost 
motion capture device. The assessment of the correctness of the exercises, which includes the 
detection of multiple undesirable compensatory movements, shows a very high accuracy (the 
average performance = 97%). In addition, the proposed model shows a potential for providing the 
patients with real-time feedback on their performance (up to five times a second). A certain 
limitation of the model occurs for the compensatory movements characterized by an absence of 
translational motion of the centre of mass (17% of misclassifications). In this situation, additional 
features are required to properly assess the quality of the therapeutic exercise. 
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1. INTRODUCTION 
 

A current trend in medicine is home therapy systems. This concept consists of enabling patients to 

carry out part of the rehabilitation at home and to communicate through the Internet the evolution of 

the recovery process. Thus, health professionals can proceed with a remote monitoring of the 

patient’s performance and an adaptation of the therapeutic program, accordingly. This technology 

could bring several advantages for the individual and the society in terms of healthcare (improvement 

of the recovery process by the possibility of performing rehabilitation exercises more frequently), 

economy (reduction of the number of medical appointments and time spent at the hospital), mobility 

(diminution of the transportations to and from the hospital) and ethics (healthcare democratization and 

increased empowerment of the patient) (Rybarczyk and Vernay, 2016). 



 

The present study is part of a project of a Web-based platform for home motor rehabilitation 

(Rybarczyk et al., 2017a). The tool is developed for patients after hip arthroplasty surgery. This 

orthopaedic procedure is an excellent case study, because it involves people who need a 

postoperative functional rehabilitation program to recover strength and joint mobility. However, the 

condition of these patients makes difficult their transportation to and from the physiotherapist’s office. 

Here, two main issues are tackled. First, the system must make use of a low-cost motion capture 

device, in order to be economically suitable. Second, the platform should automatically detect the 

correctness of the executed movement to provide the patient with real-time feedback. The intention is 

to start with a pre-recorded set of data to build preliminary detection models and, gradually, increase 

the database with patient’s data, in order to enhance the accuracy and generalization of the 

classification models. 

The paper focuses on smart algorithms to assess the correctness of the movements by using a signal 

provided by a low-cost vision-based motion capture (i.e., Kinect camera). The manuscript is divided 

into four sections. The first part is a survey of the main approaches to recognize and assess the 

human movement. The second is a description of the methodology chosen to evaluate a therapeutic 

movement, which is part of the rehabilitation protocol. Section 3 consists of a presentation of the 

results. Finally, some conclusions and perspectives are drawn up regarding the cognitive algorithms 

that can be used for tele-rehabilitation purposes. 

 

 
2. MOTION ASSESSMENT METHOD 

 
2.1. Related work 

 
Human motion analysis and classification are particularly challenging due to the intra and inter-

individual variabilities in the execution of a same movement. Time duration, which is the main 

variance within human movement, can be coped through several time-series algorithms. A widely 

used is Dynamic Time Warping (DTW), which has been successfully applied in assessing 

rehabilitation movements (Antón, Goñi and Illarramendi, 2015; Rybarczyk et al., 2017b). 

DTW finds the optimal alignment between two temporal sequences and calculates a ‘local distance 

measure’ (or local cost value) between the signals. A low Accumulated Cost Value (ACV) over the 

whole aligned signals indicates high similarity. Then, classification algorithms can provide the 

threshold of ACV for which a signal is classified as similar or different from a reference. Other 

algorithms that can be applied in human motion classification are Hidden Markov Models (HMM) 

(Papadopoulos, Axenopoulos and Daras, 2014). It is a statistical approach that models states, which 

are not directly visible (or hidden), from observed variables. 

HMM is described in terms of probabilities. These are initial, transitional and emission probabilities. 

Initial probabilities are the distribution of probabilities of ‘being in a state’ before a sequence is 

observed. Transitional probabilities are represented by a matrix, in which the probabilities indicate the 

possible changes from one state to another. Finally, the emission probabilities model the variance of 

each state’s associated values (mostly Gaussian Probability Density Functions – PDFs) obtained from 



 

continuous variable observations. These model parameters can be learned with the use of the 

Expectation-Maximization (EM) algorithm. Signals can be classified by looking at the probability that a 

signal is generated from a trained HMM. This is done by the use of the forward algorithm, which is 

described in Section 2.2. 

Calin (2016) describes a comparative analysis between DTW and HMM for gesture recognition using 

both Kinect V1 and V2. Although obtaining a high overall accuracy with DTW, the study points out the 

fact that the performance of the algorithm is very sensitive to the database size. In addition, the 

authors claim that it is preferable to use HMM than DTW for gesture recognition, because it enables 

the system to be dynamically created and adjusted. Unlike HMM, DTW cannot model the stochastic 

nature of the signals. As it is a deterministic method, there is no knowledge about the variance within 

a specific movement. A hard boundary decides if a movement belongs to a category or another. 

Some authors attempted to implement a probability based on a DTW approach (Hernández-Vela et 

al., 2014), but this is not yet applied successfully in practice (Riccadonna et al., 2016). Another 

disadvantage is its limitation for a real-time implementation. If a signal is classified on the fly, a 

temporal segment needs to be matched to a part of the reference signal. This is possible, as shown in 

Müller (2007), but it involves an additional matching threshold, which makes it prone to errors in 

classifying stochastic signals, especially on small datasets. 

Due to the facts that a real-time assessment is crucial and the movement variations play an important 

role in the evaluation of the exercises, the HMM is chosen to classify motions. HMMs can be used in 

real-time without the limitations mentioned for DTW (Lin and Kulic, 2014). Considering that HMMs are 

generative models, it is possible to find out how the categories differ from each other, based on the 

distribution differences. 
 
 

2.2. Classification 
 
Learning the model parameters (states and transitions) by optimizing the likelihood is essential to 

make meaningful use of the HMM in classification. The distribution function defined by a Gaussian, 

Mixed Gaussian or multinomial density function, as well as the covariance type, need to be 

characterized prior to this process. An observation is merely a noisy and variable representation of a 

related state. A state is a clustering of observations that relate to a distribution with a specific mean in 

the parameter space. A likely state is retrieved by finding the cluster that the observation is member 

of. Also, the transition probabilities between states creates a sequence of the most likely temporal 

succession of states. Estimating the model parameters is done by utilizing the Baum-Welch 

Expectation-Maximization algorithm, which is based on a forward-backward algorithm used in 

classifying Hidden Markov Chains (Yamato, Ohya and Ishii, 1992; Fiosina and Fiosins, 2014). The 

probabilities are calculated at any point of a sequence by inspecting previous observations, to find out 

how well the model describes the data, and following observations, to conclude how well the model 

predicts the rest of the sequence. This is an iterative process, in which the objective is to find an 

optimal solution (state sequence) for the HMM. This optimal sequence of states is inferred using the 



 

Viterbi algorithm. Also, the forward algorithm can be used to calculate the probability that a sequence 

is generated by a specific trained HMM, making it applicable for classification. 

This classification is based on training an individual HMM per subclass of an exercise. For instance, 

one HMM could be trained on ‘running’ whiles another one would be trained on ‘walking’ (both 

subclasses of the human locomotion class). When calculating the forward probabilities of a sequence 

of observations and comparing the probabilities of all the HMMs, the sequence is classified as the 

category that provides the highest probability, as described in Equation 1 (where λi represents a 

determined model and O is a sequence of observations): 
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2.3. HMM state assignment 
 
The amount of states in a HMM is a free parameter. The Bayesian Information Criteria (BIC) is a 

technique that aids to define a determined number of parameters by taking into account the possibility 

of overfitting the data when the number of states increases. BIC penalizes HMMs that have a high 

number of states, as described in Equation 2 (where n is the data size and s the amount of states): 
 

)ln(2)ln( MLEsnBIC −=                                                                   (2) 

 

Therefore, the optimal amount of states is retrieved by selecting the model with the lowest BIC score. 

HMMs trained with multiple states are evaluated by cross-validation on their Maximum Likelihood 

Estimation (MLE) and the previously mentioned penalizing term. 
 

 

2.4. Gesture representation 
 

A skeletonized 3D image from a Kinect camera provides Cartesian x, y and z coordinates of twenty 

joints. The gesture representation is chosen to be a skeletonized image as this has been shown to 

improve the model accuracy (Yao et al., 2011). This representation depends on the position of the 

subject in relation to the camera and the roll, yaw and pitch angles of the device. The causal 

relationships between different joints are not captured by this representation. This means that physical 

constrains, such as a movement of the ankle that could be influenced by bending the knee, are not 

accounted for. To overcome these limitations, the joints are used to create a new representation that 

contains angles of multiple joints in respect to the frontal and sagittal planes, as well as multiple 

angles between relevant limbs. Figure 1 shows a graphical representation of the features in 

relationship to the skeleton image. Table 1 describes the feature vector of the joint movements 

according to the anatomical terminology. 



 

 
Figure 1. Graphical representation of the features used in the study. The movements in the 

egocentric frontal plane and sagittal plane are represented in green and red, respectively. The purple 
arrow represents the angle of the knee (independent from any plane). 

 

Table 1: Feature vector describing the joint movements. For the purpose of the assessment these 
features are also transformed into speed and acceleration. 

Right hip 
Frontal plane 

rotation 

(abduction) 

Left hip 
Frontal plane 

rotation 

(abduction) 

Right hip 
Sagittal plane 

rotation 

(flexion) 

Left hip 
Sagittal plane 

rotation 

(flexion) 

Right hip 
Frontal plane 

rotation 

(adduction) 

Left hip 
Frontal plane 

rotation 

(adduction) 

Right hip 
Sagittal plane 

rotation 

(extension) 

Left hip 
Sagittal plane 

rotation 

(extension) 

Spine centre 
Frontal plane 

rotation 

(lateral left) 

Spine centre 
Frontal plane 

rotation 

(lateral right) 

Spine centre 
Sagittal plane 

rotation 

(flexion) 

Spine centre 
Sagittal plane 

rotation 

(extension) 

Right knee (flexion) Left knee (flexion) 
 

In this study, the motion is defined from the following joints: ankles, knees, hips, and spine. The 

angles of the knees are obtained by calculating the angle between ankle, knee and hip. The 

orientation of the knees induced by hip activity are expressed in four angular representations, 

following the two opposite directions for both sagittal and frontal planes. The same method is applied 

to describe the orientation of the torso, by finding the displacement of the centre between the two 

shoulders in relation to the hips. This leads to a description of the movement into fourteen features. It 

is the principal representation followed by a first order and second order derivatives of these features 

that provide speed and acceleration of the movement. Overall, a total amount of 42 features is used. 



 

Figure 2 represents a diagram of the HMM’s implemented in this study, in which State(t) and 

Observation(t) are state id and associated feature values at t time, respectively. ∈  stands for takes 

value out of; and ∀  stands for out of all. F and S are the collection of features (42) and states (13), 

respectively. The definition of the optimal number of states is explained in Section 4.1. Each state is 

dependent on its previous state and observations are samples of the associated current state. 

 
Figure 2. Graphical representation of the HMM for the exercise assessment. 

 

 
3. EXPERIMENT 

 
3.1. Protocol 

 

Four subjects participated in the experiment. They were asked to take place at approximately two 

meters distance from a Kinect camera. The motion capture device was placed at the height of the 

subject’s xiphoid apophysis. Each participant executed 70 movements leading to a total of 280 

records. The rehabilitation exercise was a sequence, in which the subjects had to do one step 

forward, one step sideways and one step backward, with variations. These variations are staged 

executions of errors or compensatory movements that can occur during the rehabilitation in practice. 

The exercise was performed in batches of ten in the following order: (I) correct execution, (II) steps 

too short, (III) execution without moving the centre of mass, (IV) steps too large, (V) steps with 

bended knee, (VI) steps with bended knee and flexed torso. The last ten trials (VII) are partially wrong 

executions of the exercise, in which the faults II to VI are only occurring in the beginning, middle or 

end of the sequence. These last executions are used to evaluate the real-time applicability of the 

HMM technique. 
 

 

3.2. Materials 
 

An application is created to capture the skeletonized image of the subjects performing an exercise. 

Python 2.7 is used to create a graphical user interface with the option to name, start and stop a 

recording. In addition, Python is used for the later processing steps, which are feature transformations 

and classifications. The application communicates with the Kinect SDK and whiles in recording mode 

writes the data into a CSV file with a frequency of 60Hz. The developed programs and raw data are 

available at http://docentes.fct.unl.pt/y-rybarczyk/files/programs.rar and http://docentes.fct.unl.pt/y-

rybarczyk/files/data.rar, respectively. The HMMLearn package for python 2.7 is used for the training 

and application of the HMMs (https://github.com/hmmlearn/hmmlearn). 
 

 



 

3.3. Evaluation methods 
 

Using the BIC score to select the appropriate amount of states is done for each type of trained HMMs 

(I-VI). It provides insight on the semantic variation within the exercises. For instance, less states 

assigned to a faulty movement relative to the good execution implies that ‘there is something missing 

in the execution’, whereas the detection of extra states implies that ‘there is something added to the 

movement. 

For each type of execution (I-VI) an HMM is trained, leading to a total of six distinct HMMs. In order to 

build a general model that can assess the movements of any subject, models that classify the 

executions of a subject are exclusively trained on the recordings of the other remaining subjects. This 

leads to a total of 24 trained models (6 per subject). The initial model parameters are set with a 

Gaussian density function and a full covariance matrix type (the initializations of the model parameters 

are done randomly, HmmLearn standard initialization is used, and EM iterates a 1000 times unless 

log-likelihood gain is less than 0.01). The HMM topological structure is fully connected, because priory 

knowledge about the expected state sequence cannot be estimated with sufficient certainty. In 

addition, as the outcome of six classifiers determines the most likely model that is associated with the 

sequence, unpredicted variance in a signal (or noise) should not drastically influence the likelihood of 

the signal. The outcome of the six classifiers is calculated by means of the forward probabilities. Then, 

these probabilities are ranked from 1 to 6, where 1 and 6 are assigned to the highest and the lowest 

probability, respectively. A confusion matrix is used to map these values in terms of average 

prediction rank of each type of execution. In addition, an indication of the similarity of a type of 

execution in relation to the combination of all the other executions is provided. Finally, a range of 

sliding temporal windows is used to evaluate the real-time suitability of the approach. It is applied to 

assess the correct detection of the present types of faults in executions VII. These windows classify a 

subsequence in a fixed number of samples, which partially overlap over time. 
 

3.4. Validation 
 

To get a reliable result that validates the models, it is important that the test data are different from the 

training data. Both training and test sets must be produced by independent sampling from an infinite 

population, which avoid a misleading result that would not reflect what it is expected when the 

classifier will be deployed. This section describes the used method that enables us to apply this 

mandatory rule in machine learning. A 10 times repeated random sub-sampling, Monte Carlo cross-

validation (MCCV) is used to evaluate the performance of each model (6 per subject and 24 in total). 

Results with Gaussian mixtures on real and simulated data suggest that MCCV provides genuine 

insight into cluster structure (Smyth, 1996). This is a method to select the most appropriate model for 

classification. To assure the ability of the model to generalize well, the validation is executed by 

applying, for each subject, the other three subject’s recordings. This means that each trained HMM is 

used as classifier of the data of an unrelated subject. Each fold contains a trial of the three subjects. 

The split (80% train, 20% validation) is newly created during every validation (10 times) with a random 

assignment of the trials in the training and test sets. This leads to a model trained with 24 exercises (8 



 

of each subject). To perform the random assignment, the python built-in random function that 

implements the Mersenne Twister regenerator method is used. During each validation, 6 HMMs 

(models I-VI) are trained such as the best performing (based on the validation score) set of HMMs is 

selected as models set for classification. Forward probabilities are calculated for each HMM. When 

the correct HMM outputs the highest probability the classification value becomes 1 and contrary 0. 

Per fold, each HMM classifies the remaining 6 exercises where the performance per fold is the 

fraction correctly classified exercises (sum of classification results) of the total classifications (36) of 

the 6 HMMs combined. The model’s parameters differ slightly between the sets as the random data 

selection alters the learned state Probability Density Functions (PDFs) per fold. The best performing 

model set out of the 10 validations is then selected to perform the classification for the test subject. 

3.5. Optimization methods 
 

Optimization takes place in case the classification does not result in high classification performs. It 

needs to overcome the model’s incapability by uncovering HMM specific states/features space that 

are associated to non-ambiguous characterization of the HMM. Each HMM learns a correct 

representation of a movement, but does not provide class distinguishing information. This information 

can be revealed by means of inspection of the distribution overlap. First, the predicted state 

occurrence in the classified sequences is characterized by the Viterbi algorithm (this algorithm 

predicts a state sequence given an observation sequence). This leads to a percentage value of each 

state occurrence per HMM (Pseudo code 1). Second, the Monte Carlo method is used to approximate 

the overall distribution by means of generated data draws from all HMM states. From each state, its 

percentage times 10000 from the PDFs are sampled. 
 
Def Sample_from_models(models): 

S_numbers = 10000 

Sample_data = zeros(S_numbers,Features,States,size(models)) 

For mod_num, model in enumerate(models): 

Predicted = [statesequence_O1, ..., statesequence_On] 

Percentage_Values = Histogram(Predicted,Amount_of_States)/size(Predicted) 

For n in States: 

 New_Samples = Model[n].sample(Percentage_Values[n]*S_numbers) 

Sample_data[:,:,n,mod_num].append(New_Samples) 

 Return Sample_data 

 

Pseudo code 1. Finding the percentage of each states general contribution to create a sampled 
data distribution of a given HMM. 
 

Then, each dimension (feature) can be inspected on sample overlap in a histogrammed fashion (30 

bins with range min/max sampled values of evaluated HMMs). The overlap value per feature is 

calculated between two different HMM samplings expressed as a ratio (Pseudo code 2, i.e. number of 

samples of one HMM compared to samples of another one where the denominator is always the 

greatest value). The ratio only counts for those bins that contain at least 1% of the sampled data, 

since probabilistic outliers do not always occur in an exercise and, therefore, could not be a class 

separator. Finally, the features with the lowest average ratio are used to determine the sample area of 



 

interest for class separation. This area of interest is set to be the area of the 50% most distinguishing 

bins. Samples falling outside of this sampling area are not considered when calculating the forward 

probabilities. Applying more feature value restrictions leads to less data usage in the classification. 
 
# Optimal Feature comparing two models 

Def Optimal_Feature(models): 

sample_Hist = zeros(Features,30,models) 

For F in Features: 

sample_Hist(F,:,:) = Histogram(Sample_data(:,F,:,[models]),30) 

# keep only the bins with more than 1% 

sample_Histogram[sample_Histogram<S_numbers/100]= 1 

ratio_Matrix = Devide(sample_Hist(:,:,models[0]),sample_Hist(:,:,models[1])) 

Invert_index = where(ratio_Matrix>1) 

ratio_matrix[Invert_index] = 1/ratio_Matrix[Invert_index] 

ratio_matrix.sum(axis=1) 

Return Optimal_Feature = Argmin(ratio_Matrix) 

 

Pseudo code 2. Finding the optimal feature, in which the class differentiation between 2 HMMs is 
the highest. 
 
 

4. RESULTS 
 

4.1. State assignment and classification 
 

The MLE for each HMM up to twenty states is used to define the BIC scores against the amount of 

states (Figure 3). The profile of the BIC score against the amount of states is similar between the 

HMMs. Thus, it is possible to identify a consensual optimal amount of states at thirteen. This makes 

intuitively sense as the exercise is constructed out of three distinctive parts (a multiple of three is 

expected), plus an initial/ending part (inactive state). Hence, each part in the exercise is described by 

four states. 
 



 

 
Figure 3. BIC scores for each type of execution (I-VI) and an averaged BIC score over these 

executions (blue bold broken line). The black vertical line indicates the optimal amount of states. 
 

The classification performance shows a high level of accuracy (Table 2) in classifying a whole 

sequence into the classes (I-VI). A value of 1 means the model always gave the highest probability, 

with respect to the other models and for any sequence of the related movement, whereas a value of 6 

indicates the lowest probability. The values in this table are averaged prediction ranks for each model 

of each movement (I-VI). The average prediction rank of HMM I is the highest (2.78), which means 

that the execution type I (correct movement) is most closely related to all the other types. The overall 

performance of the classification for each class (I-VI) is shown in Table 3. It is to note that the 

execution type III (i) is more likely to be classified as type I, and (ii) has the lowest prediction accuracy 

compared with the other classes. This could be caused by the difficulty in staging this type of 

execution or a lack of descriptive power in the gesture representation. 

In order to increase the overall classification accuracy of the movements, an additional data 

processing step is proposed. The main misclassifications in the previous approach seem to be caused 

by a lack of descriptive power of the feature vector or a large overlap within movement I and III. 

Therefore, an analysis is performed to find the most distinctive parts of these movements by 

examining the overlap and difference of the best-defined distributions of the two most discriminative 

feature spaces of the HMMs, of those that are trained specifically on movements I and III. In this case, 

‘best-defined’ means a feature space where HMM I and HMM III have the least overlapping samples 

(see optimization method presented in Section 3.5). In the recorded movements, the feature 

combination of the angular acceleration of the torso in the sagittal plane (feature 1) and the angular 

acceleration of the right upper leg in the sagittal plane (feature 2) define the best feature dimensions 

in non-overlapping samples.  

 



 

Table 2: Confusion matrix of executions (I-VI). Each column represents the types of movement and 
each row the output prediction ranks of the HMMs (I-VI). The closer is the value to 1 (green cells) the 

better is the prediction. 
 

 

Table 3: Performance of the classification of movements I-VI. 
 

I II III IV V VI 

100% 100% 57% 97% 100% 100% 

 

4.2. Performance optimization 
 

Figures 4 and 5 represent the 7 most prominent states (highest percentage of occurrence in 

classification) and the transitions between them in the feature space for HMM I and HMM III, 

respectively. The rest of the states are discarded in this representation as: (i) high deviation states are 

too general and mostly describing states that provide the function of a last resource in state 

assignment; and (ii) low deviation states on the other hand are too specific, which indicates a situation 

of overfitting. 
 



 

 

Figure 4. Best defined states (HMM I) in the feature space described by features 1 and 2 in rad·s-2. 
The state distributions are visualized in terms of their first order standard deviation. The black arrows 

represent the most likely route of state transitions. 
 

 

Figure 5. Best defined states (HMM III) in the feature space described by features 1 and 2 in rad·s-
2. The state distributions are visualized in terms of their first order standard deviation. The black 

arrows represent the most likely route of state transitions. 
 

As shown in Figures 4 and 5, a similar state transition occurs in an oscillating manner, from neutral (0) 

to high and low acceleration, visiting intermediate accelerations during this interval. Although the 

same feature space is described for the two types of movement, one state is missing in movement III 

(state 1). In addition, the variance of the most extreme states (3 and 6) is bigger for HMM I than HMM 



 

III and the deceleration values seem to be higher for HMM I. Thus, the main states that can clearly 

differentiate movement I from movement III are states 3 and 6. The other states are highly 

overlapping, which means that they are not contributing to the model discriminative power. 

There are several approaches to improve the classification at this point. The post variance of 

observation assigned as state 3 and 6 can be analysed and count as a weighted additional value. 

However, a value filter approach is used for values that repeat frequently and have a very low 

descriptive power (same predicted sample coverage for HMM I and HMM III). This approach is 

chosen as a trade-off between the critical amount of necessary observations in classification and a 

selection of the most discriminative values. An average loss of data that still allows an appropriate 

sample rate for a real-time classification (20Hz) is estimated as 60%, which is reached when applying 

the filter in 2 dimensions. This percentage is the basis for the filter boundaries. In Figure 6 the filtered 

region is shown as red rectangles, where the inner area is the filter area retrieved by analysing the 

50% most overlapping bins per dimension. This filter excludes any observation for the classification, in 

which the values of the two features are <1.5 rad.s-2 and >-1.5 rad.s-2 for feature 1 (y-axis) and <3 

rad.s-2 and >-3 rad.s-2 for feature 2 (x-axis). In addition, values >5 rad·s-2 and <-5 rad·s-2 for feature 1 

(y-axis) and <10 rad·s-2 and >-10 rad·s-2 for feature 2 (x-axis) are eliminated, as well. 

 

 
Figure 6. Representation of the remaining states after observation filtering. The brown distributions 
belong to HMM I and the grey/blue distributions to HMM III. The red squares represent areas where 

observations are not considered for the classification. 
 

Thus, by applying the filter, roughly 60% of the data in each sequence is discarded before the 

reclassification. Most of these values are zeros, which causes no changes between the consecutive 

frames. These values could result from: (i) the variance in recording frequency, produced by the 

memory caches that may not cope with the short recording span per frame; or (ii) an actual 

undetectable movement (i.e., still body) between consecutive frames, which are all useless for 



 

classifying movement. The results show that this technique improves the classification of movement 

III (from 57% to 83%) and does not alter the classification of the other movements (Table 4). 

Nevertheless, the classification accuracy of movement III is still slightly lower than the rest of the 

movements. The main difference between movement III and the other movements is the fact that it 

does not involve a translational motion of the torso. It suggests that the linear movements, and not 

only the angular rotations of the joints, must be considered as useful discriminative features. 
 

Table 4: Performance of the classification of movements I-VI after applying the feature value filter. 
 

I II III IV V VI 

100% 100% 83% 97% 100% 100% 

 

 

4.3. Real-time testing 
 

In the previous section, entire executions are categorized according to the most typical compensatory 

movement. However, it does not provide insight regarding the severity of the execution error. An 

example of the lack of this insight is a low likelihood score caused by a long persisting small error vs. 

a short persisting large error. In other words, this section focuses on the duration, location and degree 

(e.g. bending knee a little or a lot) of the error. Since the objective of the platform is not only to provide 

an overall classification (see previous section) of the movement (correct vs. types of fault), but also to 

give a qualitative and quantitative assessment of the movement, a real-time classification is 

addressed. This classification aims to create awareness when the patient receives a feedback on 

phases of the movement, in which certain errors tend to occur. The result of this instantaneous 

classification will be displayed as a real-time feedback when the patient executes the exercise. 

The samples of execution type VII, those that contain local errors within a correct execution, are used 

to evaluate the ability to apply the developed models in a real-time fashion. These models (HMM I-VI) 

provide the forward probabilities for an indefinite sequence, which would enable us to perform an 

assessment on a partial completion of the movement. Performing successive classifications during 

the execution of the exercise can disclose a switch in the class likelihood over time and, thus, localize 

the errors. The classification takes place over a selection of frames within the movement. Three 

different sizes of windows (length of the partial analyses) are used for the classification: 100, 60 and 

20 frames. These different samplings are made to study the effect of the window size on the 

consistency and accuracy of the assessment. After classifying the frames of a determined window 

size, the window shifts half the number of frames in the total sequence and the classification is 

repeated until the end of the sequence is reached. This so called overlapping window is used to 

obtain a smoother classification path over time. There are multiple classification values during the full 

exercise. At each newly created classification moment in the exercise the values of the six classifiers 

are normalized in a fashion that the highest value becomes 1 and the other values are expressed as a 

fraction of this value. Detection is considered accurate if the majority of the movement’s phase where 



 

the error occurred assigns the value of 1 to the expected error type. In the case of the execution type 

VII, there are three phases: step forward, step sideways, and step backward. 

 
Figure 7. Classifications of execution of type VII where the beginning (left column), middle part (i.e., 
step to the side, middle column) and last part (right column) of the exercise is performed as type V. 

Three different window sizes are represented: 100, 60 and 20 samples. The orange dotted line 
represents the prediction of HMM V and the blue line indicates the prediction of HMM I (correct 

movement). 
 

There is a certain trade-off for choosing the window size. A smaller window can provide a frequent 

feedback, but a slightly noisier prediction. Nevertheless, there is a very high detection rate (21/24) 

when errors of types IV to VI are present in the sequence of the movements, for any sampling size. 

Detecting execution types II and III are less successful (9/16). It can be explained by the fact that 



 

these two types share high similarities with execution I (see Table 2). Figure 7 presents three 

examples of a correct sequence, except in the initial, middle or ending parts, which are performed as 

execution V (step with bended knee), respectively. In this figure, the amount of feedback moments is 

represented on the x-axis and a normalized classification value on the y-axis. The sampling rate is 50 

Hz (20 ms per sample). Window sizes of 100, 60 and 20 represent approximately every second, twice 

a second and five times a second feedback, respectively. This example shows that the accuracy of 

the prediction (identification of correct vs. incorrect executions) is not significantly altered by the 

window sizes, which confirms the pertinence of an HMM approach for real-time applications. 
 

 

5. CONCLUSIONS AND PERSPECTIVES 
 

This study presents a HMM approach for real-time assessment of a physiotherapeutic exercise, which 

will be included in a project of tele-rehabilitation platform for patients after hip replacement surgery. To 

be able to detect variance within movement, caused by errors or compensatory movements that may 

occur during the completion of the therapeutic exercise, HMMs are trained on these errors and 

compensatory actions. Although the setting of the experiment was controlled, the classification 

included intrapersonal and interpersonal variances as a model that classified a determined subject 

was merely trained with the data of the other participants. It suggests that the proposed assessment 

algorithm has a fair capability of generalization. 

A high classification accuracy of the movements (97%) is obtained by building a general model that 

can be applied to any subject. A real-time analysis enables us to detect four out of five faulty 

movements, when these errors briefly occur in the beginning, middle or end of a correct execution of 

the exercise. The same level of accuracy is maintained whatever the detection rate (windows size 

down to 200 ms). These findings demonstrate that the HMM is an appropriate method to provide real-

time feedback regarding the correctness of the rehabilitation movement performed by a patient. This 

approach is successfully applied on a real-time assessment of components of the movement, which 

are discriminated in several classes that differ on extremely subtle aspects. A previous work 

(Rybarczyk et al., 2017b) has shown comparable accuracy utilizing a DTW approach. Nevertheless, 

this study addressed a problem of lower complexity, since it was limited to a movement classification 

between good and bad assessment that could be applied after the complete execution of the 

movement, only. In addition, the used feature representation did not account for intrapersonal 

differences, since the classification models were dependent on the location of the user with respect to 

the camera. On the contrary, the high classification accuracy and successful generalization obtained 

in the present study strengthens the further development of a HMM approach to assess the 

rehabilitation movements. The possibility to perform a real-time evaluation is a significant advantage 

of the HMM method, as it can provide the user with instantaneous feedback on the quality of the 

performed exercise. Another advantage of utilizing HMMs is that it enables the systems to be 

dynamically created and adjusted (Calin 2016). Since HMM is a probabilistic approach, the accuracy 

of the classification will increase with the individual use of the platform and the systematic update of 

the models. 



 

Further work needs to include an optimization of the class separability. Robust and successful 

biologically inspired optimization methods such as Particle Swarm (PS), Gravitational Search 

Algorithms, Simulated Annealing, and Robust Ant Colony (Chen, Zhou and Luo, 2017) have shown to 

create stable systems (Vrkalovic, Teban and Borlea, 2017), which outperform models that are initially 

not optimized with such techniques (Precup, Sabau and Petriu, 2015). These methods can thus 

improve the performance by shaping a weighted vector of state impact in an evolutionary and robust 

way. This adds (i) quick insight whether multiple compensations (types of executions) can be 

considered simultaneously and (ii) mark possible candidate windows where errors occur (for the 

purpose of manual labelling of future data in the platform). In such an approach, the initial exploratory 

search considers the accuracy and the subsequent sequential search maximizes the classification 

difference between correct and incorrect HMMs. Baruah and Angelov (2014) propose a dynamic 

evolving clustering method, in which the weight per data point evolves (decreases), losing significance 

as time progresses. This notion could be integrated for optimizing the real-time application, where the 

sliding window can be updated in a similar fashion, creating a more suitable dynamic classification. In 

addition, integrating Genetic Algorithms (GA) while estimating the model parameters can increase 

diagnostic results of the HMMs (Zheng et al., 2017). Xue et al. (2006) show that the biologically 

inspired optimizations PS-HMMs outperforms both GA-HMMs and conventional HMMs. While Baum-

Welch (EM algorithm) tends to get stuck in local optimum, the biologically inspired optimization 

methods can aid in a more robust parameter estimation. 

Furthermore, the descriptive power of the movements can be extended by (i) including additional 

features (e.g., ankle/torso displacement and normalized speed/acceleration paths of these different 

joints, percentages of the maximum amplitude of the movement), and (ii) creating a preliminary 

detection method for the recognition of noise. This noise could be caused by computational overload. 

Therefore, vector quantization could be applied as it can reduce the computational costs (Mahapatra 

et al., 2014). In addition, exercises can be expressed into their state sequences to learn distributions 

of state duration as variable parameter, which provides a further insight on the ontological structure of 

an exercise. State sequences are modelled in terms of duration distributions and can be used as a 

transition model, like in the Hidden Semi-Markov Models (HSMMs) (Baratchi et al., 2014). This 

approach allows for a higher flexibility of the transition probability than in the HMMs, which at the end 

should increases the classification accuracy (Wang et al., 2014). Finally, applying new cognitive 

algorithms such as Linear Discriminant Analysis (LDA) and Deep Convolutional Neural Networks 

(DCNN) may help to find the optimal descriptor combination to distinguish between the different 

classes in a non-handcrafted manner (Yang et al., 2015), which diminishes the human error in 

selecting appropriate features. 
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