
This article can be cited as  J. Saadat, P. Moallem and H. Koofigar, Training Echo Estate Neural 
Network Using Harmony Search Algorithm, International Journal of Artificial Intelligence, vol. 15, no. 
1, pp. 163-179, 2017. 
Copyright©2017 by CESER Publications 

 
 

Training Echo Estate Neural Network Using Harmony 
Search Algorithm 

 
 

Javad Saadat1, Payman Moallem2 and Hamidreza Koofigar3 
1Department of Electrcial Engineering, Faculty of Engineering, University of Isfahan, 

Hazarjerib Street, Isfahan, Iran 
Email: saadatjavad90@yahoo.com 

2Department of Electrcial Engineering, Faculty of Engineering, University of Isfahan, 
Hazarjerib Street, Isfahan, Iran 
Email: p_moallem@eng.ui.ac.ir 

(Corresponding author) 
3Department of Electrcial Engineering, Faculty of Engineering, University of Isfahan, 

Hazarjerib Street, Isfahan, Iran 
Email: koofigar@eng.ui.ac.ir 

 
 

ABSTRACT 

Echo State Networks (ESN) are a special form of recurrent neural networks (RNNs), 
which allow for the black box modeling of nonlinear dynamical systems. A unique feature 
of an ESN is that a large number of neurons (the “reservoir”), whose synaptic 
connections are generated randomly, is used in such that only the connections from the 
reservoir to the output modified by learning. The computation of optimal weights can 
then be achieved by a simple linear regression in an offline manner. ESNs have been 
applied to a variety of tasks from time series prediction to dynamic pattern recognition 
with great success. In many tasks, however, an online adaptive learning of the output 
weights is required. Harmony Search (HS) algorithm shows good performance when the 
search space is large. Here we propose HS algorithm for training echo state network in 
an online manner. In our simulation experiments, the ESNs are trained for predicting of 
three different time series including Mackey-Glass, Lorenz chaotic and Rossler chaotic 
time series with four different algorithms including Recursive Least Squares (RLS-ESN), 
Particle Swarm Optimization (PSO-ESN), and our proposed methods (HS-ESN and HS-
RLS-ESN). Simulation results show that HS-ESN is significantly the fastest algorithm for 
training ESN whereas can effectively meet the requirements of the output precision. HS-
RLS-ESN algorithm firstly uses HS to close to solution region then it uses RLS to obtain 
less error. HS-RLS-ESN is slower than HS-ESN and faster than RLS-ESN, but its 
generality power is very close to RLS-ESN. 

Key words: echo state network, harmony search algorithm, Recursive Least Squares, 
chaotic time series. 
 
Mathematics Subject Classification: 92B20, 68T05, 62M10 

Computing Classification System: I.2.6 
 

 

 

 



 

1. INTRODUCTION 
 

In traditional implementations of Recurrent Neural Networks (RNNs), all weights were trained 

to adjust the output. It means that the standard training procedures for RNNs have a high 

computational complexity and sometimes, could only find local minimum, therefore, the size 

of these RNNs was usually limited to 3 to 30 internal units. In the Echo State Neural Network 

(ESN), which was proposed and developed by Herbert Jaeger (2001), the reservoir is 

generated randomly and only the readout is trained (Lukosevicius et al. 2007, Jaeger et al. 

2007). In contrast to traditional RNNs, ESNs are therefore usually quite large, with hundreds 

or even thousands of internal units (Lukosevicius et al. 2009). 

The ESNs have drawn great interest in theoretical and practical perspectives. In theoretical 

development of ESN, studying the various ESN schemes (Rodan et al. 2011, Gallicchio et al. 

2013, Najibi et al. 2015), improving the reservoir (Schrauwen et al. 2008, Hongyan et al. 

2014), ESN with wavelet neurons (Niu et al. 2012, Cui et al. 2013), using different reservoir 

units (Jaeger et al. 2007), scrutinizing the output units (Holzmann et al. 2010, Chatzis et al. 

2011), have been carried out. Moreover, different definition of Echo State Property (ESP) has 

been explained in (Manjunath et al. 2013, Yildiz et al. 2012), the influence of the memory 

length on predictive abilities of ESNs has been studied in (Babinec et al. 2011), and the 

interaction between the driving output feedback and the internal reservoir dynamics in ESNs 

has been investigated in (Lohmann et al. 2012). 

Although the theoretical research of ESN is still at an early stage, it have been successfully 

applied to various practical tasks, e.g., chaotic time series prediction (Han et al. 2015), 

ionosphere disturbances behaviour modelling (Massinas et al. 2013), communication channel 

equalization, noise modelling (Jaeger et al. 2004), dynamical pattern recognition (Ozturk et al. 

2007), gene regulatory network modelling (Zhang et al. 2008), speech recognition 

(Skowronski et al. 2006), reinforcement learning (Bush et al. 2005), language modelling (Tong 

et al. 2007), prediction of telephone calls load (Bianchi et al. 2015), prediction of blast furnace 

gas flow (Zhang et al. 2016), and image restoration (Duan and Wang 2016). Furthermore, a 

practical guide to applying ESNs was presented in (Lukosevicius 2012). 

Some applications require online model adaptation, which means online ESN training; in such 

cases one can use Least Mean Square (LMS) algorithm for training ESN output, although its 

convergence performance is unfortunately severely impaired by large eigenvalue spreads of 

cross-correlation matrix of internal network states (Liebald 2004). An alternative to LMS, the 

Recursive Least Squares (RLS) algorithm, is insensitive to the detrimental effects of 

eigenvalue spread and boasts a much faster convergence. The downside is that RLS is 

computationally more expensive and notorious for numerical stability issues (Jaeger 2007). 

On the other hand, training of an ESN can be considered as a general optimization problem. 

However, various optimization approaches have been recently used in many practical and 

real applications, while evolutionary methods have attracted more attentions (Martin et al. 



 

2009, Precup et al. 2012, Moallem and Razmjooy 2012, Ghosn et al. 2016, Solos et al. 2016). 

Different evolutionary-based optimization algorithms like Genetic Algorithm (GA) (Dongming 

et al. 2005), evolution and learning (Chatzidimitriou and Mitkas, 2013), Artificial Fish Swarm 

Algorithm (ASFA) (Wang and Ping Guo, 2014), and Particle Swarm Optimization algortihm 

(PSO) (Song et al. 2009, Heshan et al. 2015) are further options for training ESN output 

connections, such algorithms don’t require initial values and uses a random search instead of 

a gradient-based search, so derivative information is unnecessary. 

Recently, Harmony Search (HS) optimization algorithm which is inspired by music 

phenomenon was proposed. Geem et al. (2001) developed a new HS meta-heuristic 

algorithm that was conceptualized using the musical process of searching for a perfect state 

of harmony. Although the HS algorithm is a comparatively simple method, it has been 

successfully applied to various optimization problems. It has been showed that for problems 

with large dimensions, HS optimization is more effective and faster than some other 

evalutionary methods (Wang et al. 2015). In this paper, we fistly use HS algorithm for fast 

ESN online training. Then, we combine classical RLS with HS algorithm for ESN online 

training to establish a tradeoff between training speed and output accuracy. 

The remainder of this paper is organized as follows. In Section 2, we present a brief review on 

the ESN model, the echo state property and offline training algorithm. This is followed by 

review on online training algorithms in Section 3. In Section 4, we present a brief review on 

the harmony search algorithm which we used for ESN training. Our proposed online training 

algorithms for ESN, including HS-ESN and HS-RLS-ESN are presented in section 5. 

Simulation results of different online learning of ESN on different time series prediction and 

discussions about obtained results are given in Sections 6 and 7, which demonstrates the 

performance of our proposed HS-ESN and HS-RLS-ESN algorithms in compassion with other 

online learning algorithms. Finally, we briefly conclude our work in Section 8. 

 

 

2. ECHO STATE NETWORK 
 

ESN as a special form of recurrent discrete-time neural network, which is shown 

schematically in Figure 1, is fully characterized by its weight matrices and activation functions. 

In general, the classical ESN consists of K input units u(n)=(u1(n),…,uk(n))T, N internal units 

x(n)=(x1(n),…,xN(n))T, L output units y(n)=(y1(n),…,yL(n))T, an N×K input weight matrix Win, an 

N×N internal weight matrix W (reservoir), an L×(K+N+L) output weight matrix Wout, possibly 

an N×L back projection weight matrix Wback, an activation function f (usually tanh or another 

sigmoid function) and an output function fout (usually the identity). 



 

 

Figure 1. The basic ESN architecture where solid arrows indicate fixed and random 
connections, and dotted arrows indicate trainable connections. 

 

Input signals are fed into the input units and propagate into the internal units. The activation of 

internal units is updated according to: 

))()()1(()1( nnnfn yWWxuWx backin +++=+      (1) 

The output is computed according to : 

[ ]( ))()1()1()1( nnnfn out yxuWy out ++=+      (2) 

[u(n+1)  x(n+1)  y(n)] is the concatenation of the input, internal, and previous output activation 

vectors. 

In order to correctly working the ESN approach, the reservoir should satisfy the so-called 

Echo State Property (ESP): the state of the reservoir x(n) should be uniquely defined by the 

fading history of the input u(n). It means that for a long enough input u(n), the reservoir state 

x(n) should not depend on the initial conditions of the input. For most practical purposes, the 

ESP can be easily satisfied by merely ensuring that the reservoir weight matrix W is 

contractive, i.e., by scaling the reservoir weight matrix so that it's spectral radius ρ(W), which 

is defined as its largest absolute eigenvalue, is less than one (Venayagamoorthy et al. 2009). 

As shown in Figure 1, the only trainable connections are Wout, which is leading from the 

internal units (x(n)) to the output units, while all other connections remain fixed. This gives us 

the possibility to employ each of arbitrary fast linear regression algorithms for training. The 

training error to be minimized can be expressed by Mean Square Error (MSE) as: 

∑
=

−=
T

n
nn

T
MSE

1

2)()(1 yd         (3) 

where T is the number of training data, d(n) and y(n) are the desired and output vectors, 

respectively. 



 

In summary, to use ESN in an application, it is necessry to bulid, train and then finally exploit  

the ESN, which are explained here: 

 

2.1. Building an untrained ESN 

At the first step, it is necessary to build an untrained ESN (Win, W, Wback) which has the echo 

state property: 

a. Generate a random weight matrix W0 that obviously the crucial parameter is N, which is 

the number of units in the reservoir. Although the reservoir size N is task-dependent. As a 

rule of thumb, reservoir sizes are usually selected between 1/10 to 1/2 of number of 

samples in the training data set (Song et al. 2010). 

b. Normalize matrix W0 to matrix W1 with spectral radius λmax of W0 as W1=W0/λmax, W1 has 

now unit spectral radius. 

c. Scale matrix W1 to matrix W=αW0 where α≤1, it means that W has now a spectral radius 

of α. One of the most central global parameters of an ESN is spectral radius of the 

reservoir connection matrix W, the spectral radius determines how fast the influence of an 

input dies out in a reservoir with time, and how stable the reservoir activations is. 

d. Generate random weight matrices Win and Wback. Based on practical experiences, sparse 

connections tend to give a slightly better performance (Jaeger 2013). So, connect each 

reservoir unit to a small fixed number of other units (e.g. 10 on average), irrespective of 

the reservoir size. Exploit this reservoir sparsely results in improving computation speed. 

 

2.2. Training and exploting the ESN 
As previously mentioned, to train the ESN dynamics, only the the output wigths Wout should 

be trained, which can be done in the following offline manner: 

a. Initialize arbitrarily the state of the units. 

b. Run the ESN by driving it with the training input signal and by applying update equation 

(1). 

c. Collect remaining input and network states row-wise into a matrix M. Usually some initial 

portion of the states thus collected are discarded to accommodate for a washout of the 

arbitrary (random or zero) initial reservoir state needed at time the first iteration. 

d. Collect simultaneously the remaining training pre-signals into a column vector T. 

e. Compute the output weights Wout  by multiplying the pseudo-inverse of M with T, as: 
T1out )( TMW −=          (4) 

In fact, the ith column of Wout contains output weights from all network units to the ith output 

unit. 

After training, the network (Win, W, Wback, Wout) is now ready for exploitng, it can be driven by 

an untrained input sequences u(n), using the update equations (1) and (2), to produce the 



 

output. More details of the offline training algorithm for the ESN can be found in (Jaeger 

2013). 

 

 

3. ONLINE TRAINING ALGORITHMS 
 

The offline algorithm have been applied to a variety of tasks with great success, however, in 

many tasks that reservoir states have feedback connection from output units or parameters 

change during the actual task, an online adaptive learning of the output weights is required. 

For example, when the characteristics of the noise change over time, the ESN needs to 

modify its internal parameters adaptively. 

The most well-known online learning algorithm, the Least Mean Square (LMS) algorithm, 

however, is difficult to use with ESNs as the cross-correlation matrix of internal states shows 

a large eigenvalue spread. This leads to a very slow convergence behaviour of the weight 

vector Wout, rendering the LMS algorithm useless with current ESN implementations. So far, 

ESN tasks that required online learning of weights employed the Recursive Least Square filter 

algorithm (Song et al. 2011). However, RLS algorithm has a number of disadvantages: It has 

higher computational cost (quadratic in filter length) and space complexity, it is more difficult 

to implement and can fall prey to instability (Jaeger 2002).  

For ESN, Song and Feng (2009) show that the output connection weight (Wout) adaptation 

problem can be considered as a kind of constrained optimization problem, which results in a 

sufficient condition for the asymptotic stability. Therefore, they proposed using  Particle 

Swarm Optimization Echo State Network (PSO-ESN) to solve the optimization problem and 

computing the output connection weight Wout.  

 

 

4. HARMONY SEARCH ALGORITHM 
 

The harmony search algorithm is an optimization technique inspired by music phenomenon. 

Just as musical instruments are played with certain discrete musical notes based on 

musician’ experiences, or randomness in an improvisation process, so design variables can 

be assigned with certain discrete values based on computational intelligence or randomness 

in the optimization process (Lee et al. 2005)(Wang et al. 2015). Just as musicians improve 

their experiences based on an aesthetic standard, design variables in computer memory can 

be improved based on objective function. 

HS algorithm includes a number of optimization operators, such as the Harmony Memory 

(HM), the Harmony Memory Size (HMS, number of solution vectors in harmony memory), the 

Harmony Memory Considering Rate (HMCR), and the Pitch Adjusting Rate (PAR). In the HS 

algorithm, the harmony memory stores the feasible vectors, which are all in the feasible 

space. The harmony memory size determines how many vectors it stores. Then a new vector 



 

is generated (next we explain how) and if the new harmony is better than existing worst 

harmony in the HM, the new harmony is included in the HM and the worst harmony is 

excluded from the HM. This procedure is repeated until fantastic harmony is found. The 

optimization procedure of the HS algorithm is shown in Figure 2 and for better understanding, 

briefly described in the following subsections, the whole steps of the harmony search 

algorithm could be found in (Geem 2009, Lee et al. 2004) (Wang et al. 2015). 

1. Initialize the problem and algorithm parameters: First, the optimization problem is 

specified, a suitable objective function (f(x)), a set of decision variable (xi) and the set of 

possible range of values for each decision variable (Xi). Then the HS algorithm 

parameters that are required to solve the optimization problem are also specified in this 

step: HMS (number of solution vectors), HMCR, PARmax, PARmin, bwmax, bwmin and NI (the 

maximum number of searches). 

 

 
Figure 2. HS algorithm optimization procedure. 
 

2. Initialize the harmony memory: In this step, the harmony memory matrix is filled with 

many randomly generated solution vectors as the size of the HMS, and then sorted by the 

values of the objective function f(x). 

3. Improvise a new harmony: A new harmony vector ),....,( 1
t
N

tt xxx =  is generated based 

on three rules as following: 

No 

No 

Yes

Yes

Start 

Initialize the optimization problem 
and algorithm 

Initialize the harmony memory 

Improvise a new harmony 

Is the new harmony better 
than the worst harmony? 

Update 
HM 

Stop

Termination criterion 
satisfied? 



 

{ }
HMCRDx

HMCRxxxx
j

i

HMS
iii

j
i

-1y probabilitwith 
y probabilitwith ...

'

21'

∈
∈

    (5) 

where D is random value between -1 to +1. Every component chosen by harmony 

consideration (with probablity HMCR) is examined for pitch adjustment based on the following 

rule, pitch adjusting decision given as: 

⎩
⎨
⎧

←
)(-1y   probabilitwith no

)(y   probabilitwith yes
gnPAR

gnPAR
xt

i       (6) 

The value of (1-PAR(gn)) sets the rate of doing nothing. If pitch adjustment decision for t
ix  is 

yes, t
ix is modified as: 

())( randgnbwxx t
i

t
i ×+=         (7) 

where rand() is a random number between 0 and 1 and bw is an arbitrary distance bandwidth 

which is dynamically changed as a function of generation number gn, as follows: 

NI
bw
bw

c

gncbwgnbw

)ln(

).exp()(

max

min

max

=

=

        (8) 

PAR is also related to the generation number gn, as: 

gn
NI

PARPARPARgnPAR minmax
max)( −

−=       (9) 

4. Update the HM: The new memory is judged in terms of the objective function value 

(fitness function f(x) and if the new memory is better than the previous memory in the HM, 

then new harmony memory is included in the HM and, the existing worst harmony is 

excluded from the HM. 

5. Check for stopping criteria: If maximum number of improvisations is reached, then stop, 

otherwise steps 3 and 4 are repeated. 

The common factor in meta-heuristic algorithms is that they combine rules and randomness 

to imitate natural phenomena. Compared to gradient based mathematical optimization 

algorithms, the HS algorithm imposes fewer mathematical requirements to solve optimization 

problems and does not require initial starting values for the decision variables. The HS 

algorithm uses a stochastic random search based on the HMCR and PAR, which effactively 

guide a global search rather than a gradient search, so that derivative information is 

unnecessary. Furthermore, the HS algorithm generates a new vector after considering all of 

the existing vectors based on the HMCR and the PAR, rather than considering only two 



 

(parents) as in genetic algorithms. These features increase the flexibility of the HS algorithm 

and produce better solutions. 

Moreover, for optimization problems with large dimensions, HS algorithm is more effective 

and faster than some other evalutionary methods (Wang et al. 2015). As previously 

mentioned, ESN reservoir is usually large in practical applications, which results in large 

dimension of Wout. Therefore it is expected that HS algorithm works well for ESN online 

training.  

 

 

5. PROPOSED TRAINING ALGORITHMS: HS-ESN AND HS-RLS-ESN 
 

In this paper, we propose two training algorithms for ESN neural networks. The first one is 

HS-ESN that is similar to PSO-ESN (Mahdavi et al. 2007), but it replaces HS instead of PSO 

which results in more accurate and faster learning. Our simulation results show that HS-ESN 

is very faster that RLS-ESN, but its accuracy is lower. The following steps explain our 

propsoed HS-ESN in details: 

1- Build an untrained ESN (Win,W,Wback) (subsection 2.1)  

2- Consider the training dataset for the ESN (u(n): training inputs, d(n):desired outputs) 

3- Compute the ESN internal state (x(n)) after applying the training inputs (u(n)) using 

Equation (1) 

4- Initialize the parameters of HS optimization algorithm (which are described in the step 1 

of “Harmony Search Algorithm”, section 4). The HS objective function is MSE of ESN 

training dataset (u(n),d(n)), which can be computed by Equations (1) through (3). 

5- Generate HMS random ESN output matrix (Wout), sort them by the values of the objective 

function MSE, and put them in HM (which are described in the step 2 of “Harmony 

Search Algorithm”, section 4). 

6- Run HS optimization algorithm to compute the best ESN output matrix (Wout) (which are 

described in the steps 3 trough 5 of “Harmony Search Algorithm”, section 4). The 

stopping criteria for HS algorithm are maximum number of improvisations or achieving to 

a desired MSE. 

 

In many applications, the accuracy of HS-ESN is sufficient but there may some applications 

which need more accuracy. The accuracy of RLS-ESN is the best but it is execution time is 

very high which is not suitable for many online training. Therefore, we also propose another 

training algorithm, HS-RLS-ESN, which firstly uses HS for a pre-training based on a part of 

training dataset, and then it complementary trains by RLS based on the remained training 

dataset, in order to improve its accuracy. The following steps explain our proposed HS-RLS-

ESN method, briefly: 

1. Pre-train ESN with 80% of training dateset using HS-ESN algorithm. 

2. Retrain the pre-trained ESN with the remained 20% of training dataset using RLS 

algorithm. 



 

Our simulation results show that HS-RLS-ESN establishes a trade off between HS-ESN and 

RSL-ESN, from points of accuracy and execution time. 

 

 

6. SIMULATON RESULTS 
 

In this section, three illustrative examples are given to demonstrate the performance of our 

proposed online ESN HS algorithm that trained ESN (HS-ESN) for prediction of the Mackey-

Glass, Lorenz, and Rossler chaotic time series. The prediction performance is measured by 

the mean squared error on the both train (MSEtrain) and test (MSEtest) sequence as well as 

execution time during network training. In all experiments, 90% of generated data is 

considered as train data and, the remained 10% is considered as test data. To investigate the 

results statistically, the experiments are carried out over 10 runs from different random initial 

points, and the averages and standard deviations are reported. All the experiments were 

carried out in MATLAB 2010a environment, by the personal computer with CPU speed of 

2.67GHz and RAM size of 4.00GB. 

The size of reservoir (W) is chosen as 500×500 for all simulations and, the spectral radius of 

W is chosen as 0.95, for the first and third experiments and 0.90 for the second experiment, 

which will guarantee the reservoir to work in stable regions. The sparsity of W is also set to 

10%. 

In ESN-based time series prediction, the direct connection from input to output and Wback are 

not necessary. Since the ESN with one output is enough, it means that the size of Wout is 

1×500. Moreover, for ESN with R input unit, the size of Win is 500×R, in which R is dependent 

to necessary delay time and the embedded dimension of chaotic time series. The sparsity of 

Win is also set to 5% and the weights of Win are generated by a uniform random generator in 

interval of [-1,+1]. 

The length of training sequence pairs {u(n),d(n)} is 3500 in which the first 500 samples will be 

discarded to wash out the initial transient. The zero-mean Gaussian noise is also added to the 

original time series, and the noise level (ratio between the standard deviation of noise and the 

signal standard deviation) is 20%. The length of the validation set is 500. It is noted that the 

validation set is still noisy (noise level is 20%), because the noiseless test data set is not 

available before the predictor is created. 

For all examples presented in this paper, the HS algorithm parameters set to HMS=10, 

HMCR=0.8, PARmax=0.5, PARmin=0.1, bwmax=0.4, bwmin=0.1, D∈{-0.4,-0.2,0,0.2,0.4} and NI=500. 

The weights of all initial Wout for primary HM are generated by a uniform random generator in 

interval of [-1,+1]. 

To further demonstrate the performance of the proposed algorithms, HS-ESN and HS-RLS-

ESN, two other algorithms, RLS-ESN and PSO-ESN, are used to compare the prediction 

results. For HS-RLS-ESN training algorithm, in all simulations, 80% of the training datasets 



 

are considered for pre-training by HS and the remained 20% are considered for 

complementary training by RLS. 

 

 

6.1. Mackey-Glass time series 
 

The Mackey-Glass time series is derived from a time-delay differential system with the form 

(Mackey et al. 1997) 

10)(1
)(.)(.

δ
δαβ

++
−

+=
tx
txtx

dt
dx

                  (10) 

where x(t) is the value of time series at time t. The system is chaotic for δ ≤16.8, and the 

parameter values are chosen as β =-0.1, α =0.2 and δ =17. The data set is constructed using 

second-order Runge-Kutta method with a step size of 0.1. The embedded data vector 

consists of four values of the time series uMG(n)={x(n) x(n-6) x(n-2×6) x(n-3×6)}, where the 

delay time and the embedded dimension for phase space reconstruction are six and four 

(Kennel et al. 1992). Therefore, for Mackey-Glass chaotic time series, Win dimension of ESN 

is 500×4. Table 1 summarizes the averages and standard deviations of MSEs (training and 

testing) and execution times, over 10 runs, by applying the four different training algorithms 

for prediction of the Mackey-Glass chaotic time series. In this table, the standard deviations 

are in parenthesis. 

 

Table 1: Performances of different ESN training algorithms for prediction of Mackey-Glass 
chaotic time series. The averages and standard deviations of MSE (training and testing) and 
execution times are reported separately, over 10 runs. The standard deviations are also 
reported in parenthesis. 

Training algorithm MSEtrain MSEtest Execution time (sec) 

PSO-ESN 1.77×10-6 

(3.94×10-6) 
1.31×10-4 

(2.68×10-4)  
327.0 
(7.2) 

HS-ESN 
4.16×10-7 

(3.23×10-7)  
7.91×10-6 

(1.04×10-5)  
232.3 
(6.9) 

RLS-ESN 8.11×10-9 
(6.54×10-9)  

1.76×10-7 
(1.34×10-7)  

1549.5 
(15.5) 

HS-RLS-ESN 5.49×10-8 
(6.61×10-8)  

3.79×10-7 
(2.40×10-7)  

933.4 
(7.5) 

 



 

6.2. Lorenz Chaotic Time Series 
 

In this example, the data is derived from the Lorenz system, which is given by three time-

delay differential systems: 

)(.)().(

)().()()(.

)(.)(.

tzctytx
dt
dz

tztxtytxb
dt
dy

tyatxa
dt
dx

−=

−−=

+−=

                  (11) 

where x(t), y(t) and z(t) are the values of time series at time t. A typical choice for the 

parameter values are as: a=10, b=28 and c=8/2, In this case, the system is chaotic. The data 

set is constructed by using four-order Runge-Kutta method with the initial value as: x(0)=12, 

y(0)=2 and z(0)=9 and the step size is chosen as 0.02. 

In order to extract the dynamic characteristic of Lorenz system to predict x(n+1), the 

embedded data vector is chosen as: uL(n)={x(n) x(n-8) x(n-2×8) … x(n-5×8)}, where the delay 

time and embedded dimension for the phase space reconstruction are eight and six, 

respectively. Therefore, for Lorenz chaotic time series, Win dimension of ESN is 500×6. Table 

2 summarizes the averages and standard deviations over 10 runs, by applying the four 

different training algorithms for prediction of the Lorenz chaotic time series by ESN. In this 

table, the standard deviations are in parenthesis. 

 

Table 2: Performances of different ESN training algorithms for prediction of Lorenz chaotic 
time series. The averages and standard deviations of MSE (training and testing) and 
execution times are reported separately, over 10 runs. The standard deviations are also 
reported in parenthesis. 

Training algorithm MSEtrain MSEtest Execution time (sec) 

PSO-ESN 1.36×10-6 
(2.34×10-6)  

2.13×10-4 
(2.93×10-4)  

334.2 
(6.0) 

HS-ESN 
6.74×10-7 

(7.61×10-7)  
3.03×10-5 

(1.56×10-5)  
235.3 
(4.7) 

RLS-ESN 4.12×10-9 
(2.84×10-9)  

1.52×10-7 
(2.38×10-7)  

1530.5 
(6.5) 

HS-RLS-ESN 4.85×10-8 
(2.27×10-8)  

6.34×10-7 
(5.24×10-7)  

926.8 
(3.7) 

 
 

6.3. Rossler Chaotic Time Series 
 

The sequence of the Rossler time series (Precup et al. 2014) is generated from the 

differential systems, as: 



 

))().((

)(.)(

)()(

ftxtze
dt
dz

tydtx
dt
dy

tytz
dt
dx

−+=

+=

−−=

                  (12) 

For the series, a typical choice for the parameter values are as d=0.15, e=0.2 and f=10. In this 

case, the system is chaotic and the step size in the four-order Runge-Kutta method is 0.01. 

To predict the desired output x(n+1), the delay time and embedded dimension are chosen as 

five and four. It means that the embedded data vector is chosen as uR(n)={x(n)  x(n-5)  x(n-

2×5)  x(n-3×5)  x(n-4×5)}. Therefore, for Rossler chaotic time series, Win dimension of ESN is 

500×5. Table 3 show the simulation results of prediction Rossler chaotic time series with ESN 

that trained by four different algorithms. 

Table 3: Performances of different ESN training algorithms for prediction of Rossler chaotic 
time series. The averages and standard deviations of MSE (training and testing) and 
execution times are reported separately, over 10 runs. The standard deviations are in 
parenthesis. 

Training algorithm MSEtrain MSEtest Execution time (sec) 

PSO-ESN 1.37×10-6 
(2.73×10-6)  

2.61×10-4 
(3.42×10-4)  

317.3 
(4.1) 

HS-ESN 
2.94×10-7 

(3.12×10-7)  
4.02×10-5 

(2.16×10-5)  
226.1 
(4.6) 

RLS-ESN 4.01×10-9 
(7.53×10-9)  

1.43×10-7 
(2.54×10-7)  

1514.9 
(6.1) 

HS-RLS-ESN 4.98×10-8 
(9.01×10-8)  

7.81×10-7 
(6.49×10-7)  

918.5 
(3.6) 

 
 

7. DISCUSSION 
 

Experimental results in Tables 1, 2 and 3 show that HS-ESN algorithm is the fastest training 

algorithms, about 30% and 85% faster than PSO-ESN and RLS-ESN, respectively. The 

accuracy of HS-ESN demonstrates improvement about one order, regarding to PSO-ESN, 

both in training and testing. The accuracy of RLS-ESN shows highest value, but in testing, 

which shows generality power and is the most important parameter of a training algorithm, 

HS-RLS-ESN and RLS-ESN are close to each other. Moreover, HS-RLS-ESN is about 40% 

faster than RLS-ESN. It means that HS-RLS-ESN can be used in online applications which 

need high accuracy. If the accuracy of HS-ESN is sufficient, it can be used as fastest training 

algorithm. 

The HS parameters used in HS-ESN and HS-RLS-ESN are primary selected based on the 

suggestions in the literatures (Geem 2009, Lee et al. 2004, Wang et al. 2015) and then tuned 

by trial and error. Our experiments also show that the results are also robust against about 

10% variations in the HS parameters. 



 

 

 

8. CONCLUSIONS 
 

Echo State Networks have been used successfully in a broad range of applications. In fact, 

their simplicity and ease of use, paired with their underlying mathematical power make them 

an ideal choice in many black-box modelling tasks. For many applications, however, it is 

mandatory to learn and adjust the ESN parameters online. In this paper the harmony search 

(HS) meta-heuristic search algorithm has been used for training ESN readout online. 

Simulation results show that the first proposed algorithm, HS-ESN, spent much less time than 

the other compared algorithms during training network whereas can effectively meet the 

requirements of the output precision. 

In most practical cases, the prediction error using the proposed method are acceptable, 

however, the error can be reduced by using the second proposed algorithm, HS-RLS-ESN, 

which is firstly used HS-ESN and then its accuracy improves by HS-RLS. The generality of 

HS-RLS-ESN is close to HS-RLS algorithm which demonstrates the highest accuracy among 

all compared algorithm. The execution time of HS-RLS-ESN is lower than HS-RLS which 

means that both HS-RLS-ESN and HS-ESN are more suitable for online training while the 

generality and execution time of HS-RLS-ESN is higher than HS-ESN. 

 

 

REFERENCES 
 

Babinec, S., Pospichal, J., 2011, Modular echo state neural networks in time series 
prediction. Computing and Informatics, 30, 321-334. 

 
Basterrech, S., Rubino, G., 2013, Echo State Queueing Network: A new reservoir computing 
learning tool. In: Proc. IEEE 10th Consumer Communications and Networking Conference 
(CCNC), Las Vegas, VN, 11-14 Jan, 118-123. 

 
Bianchi, F.M., Scardapane, S, Uncini, A.,Rizzi, A., Sadeghian, A., 2015, Prediction of 
telephone calls load using Echo State Network with exogenous variables. Neural Networks, 
71, 204-213. 

 
Buehner, M., Young, P., 2006, A tighter bound for the echo state property. IEEE Transactions 
on Neural Networks, 17, 820-824. 

 
Bush, K., Anderson, C., 2005, Modeling reward functions for incomplete state representations 
via echo state networks. In: Proc. Int. Joint Conf. Neural Networks, Montreal, Canada, 2995-
3000. 

 
Chatzidimitriou, K.C., Mitkas, P.A., 2013, Adaptive reservoir computing through evolution and 
learning. Neurocomputing, 103,198-209. 

 
Chatzis, S., Demiris, Y., 2011, Echo state Gaussian process. IEEE Transactions on Neural 
Networks, 22, 1435-1445. 

 
Cui, H., Feng, C., Liu, Y., 2013, Analysis of prediction performance in wavelet minimum 
complexity echo state network. The Journal of China Universities of Posts and 
Telecommunications, 20, 59-66. 



 

 
Deng, Z., Zhang, Y., 2007, Collective behavior of a small-world recurrent neural system with 
scale-free distribution. IEEE Transactions on Neural Networks, 18, 1364-1375. 

 
Dongming, X., Jing, L., Principe, J.C., 2005, Direct adaptive control: an echo state network 
and genetic algorithm approach, In: Proc. IEEE Int. Joint Conf. Neural Networks, Montreal, 
Canada, 31 July - 4 Aug., 3, 1483-1486. 

 
Duan, H., Wang, X., 2016, Echo state networks with orthogonal pigeon-inspired optimization 
for Image restoration, IEEE Transactions on Neural Networks and Learning Systems, 27, 
2413-2425.  

 
Gallicchio, C., Micheli, A., 2013, Tree echo state networks. Neurocomputing, 101, 319–337. 

 
Geem, Z.W., 2009, Music-inspired harmony search algorithm theory and applications. Studies 
in Computational Intelligence. 191, Springe-Verlag. 

 
Geem, Z.W., Kim, J.H., Loganathan, G.V., 2001, A new heuristic optimization algorithm: 
Harmony search. Simulation, 76, 60-68. 

 
Ghosn, S.B., Drouby, F., Harmanani, H.M., 2016, A parallel genetic algorithm for the open-
shop scheduling problem using deterministic and random moves. International Journal of 
Artificial Intelligence, 14, 130-144. 
 
Han, M., Xu, M., 2015, Predicting multivariate time series using subspace echo state network. 
Neural Processing Letters, 41, 201-209. 

 
Heshan, W., Xuefeng, Y., 2015, Optimizing the echo state network with a binary particle 
swarm optimization algorithm. Knowledge-Based Systems, 86, 182–193. 

 
Holzmann, G., Hauser, H., 2010, Echo state networks with filter neurons and a delay & sum 
readout. Neural Networks, 23, 244-256. 

 
Hongyan, C., Chen, F., Yuan, C., Ren, L., Yunjie, L., 2014, Effect of hybrid circle reservoir 
injected with wavelet-neurons on performance of echo state network. Neural Networks,57, 
141–151. 

 
Hongyan, C., Xiang, L., Lixiang, L., 2012, The architecture of dynamic reservoir in the echo 
state network. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22, 033127. 

 
Jaeger, H., 2001, The ‘echo state’ approach to analysing and training recurrent neural 
networks. Technical Report, Jacobs University. 

 
Jaeger, H., 2013, A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF 
and the ‘echo state network’ approach. Technical Report, International University Bremen, 
Fifth revision. 

 
Jaeger, H., 2002, Short term memory in echo state networks. Technical Report, Jacobs 
University. 

 
Jaeger, H., 2007, Discovering multiscale dynamical features with hierarchical echo state 
networks, Technical Report, Jacobs University. 

 
Jaeger, H., Hass, H., 2004, Harnessing nonlinearity: Predicting chaotic systems and saving 
energy in wireless telecommunication. Science, 304, 78-80. 

 
Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U., 2007, Optimization and applications of 
echo state networks with leaky-integrator neurons. Neural Networks, 20, 335-352. 

 



 

Jaeger, H., Maass, W., Príncipe, J. C., 2007, Special issue on echo state networks and liquid 
state machines. Neural Networks, 20, 287-289. 

 
Kennel, M.B., Brown, R., Abarbanel, H. D. I., 1992, Determining embedding dimension for 
phase-space reconstruction using a geometrical construction. Physical Review A, 45, 3403-
3411. 

 
Lee, K. S., Geem, Z. W., 2005, A new meta-heuristic algorithm for continuous engineering 
optimization:  harmony search theory and practice. Computer Methods in Applied Mechanics 
and Engineering, 194, 3902-3933. 

 
Lee, K. S., Geem, Z. W., 2004, A new structural optimization method based on the harmony 
search algorithm. Computers and Structures, 82, 781-798. 

 
Liebald, B., 2004, Exploration of effects of different network topologies on the ESN signal 
cross correlation matrix spectrum. Bachelor’s Thesis, Jacobs University. 

 
Lohmann, D., Butz, M. V., 2012, Balanced echo state networks. IEEE Transactions on Neural 
Networks, 36, 35-45. 

 
Lukosevicius, M., 2012, A practical guide to applying echo state neural networks, Tricks of the 
Trade, Lecture Notes on Computer Science, 7700, 659-686. 

 
Lukosevicius, M., Jaeger, H., 2009, Reservoir computing approaches to recurrent neural 
network training. Computer Science Review, 3, 127-149. 

 
Lukosevicius, M., Jaeger, H., 2007, Overview of reservoir recipes. Technical Report, Jacobs 
University. 

 
Mackey, MC., Glass, L., 1977, Oscillation and chaos in physiological control systems. 
Science, 197, 287-289. 

 
Mahdavi, M., Fesanghary, M., Damangir, E., 2007, An improved harmony search algorithm 
for solving optimization problems. Applied Mathematics and Computation, 188, 1567-1579. 

 
Manjunath, G., Jaeger, H., 2013, Echo state property linked to an input: exploring a 
fundamental characteristic of recurrent neural networks. Neural Computation, 25, 671-697. 

 
Martin, D., Toro, R.D., Haber, R., Dorronsoro, J., 2009, Optimal tuning of a networked linear 
controller using multi-objective genetic algorithm and its application to one complex 
electromechanical process. International Journal of Innovative Computing, Information and 
Control, 5, 3405-3414. 

 
Massinas, B.A., Doulamis, A., Doulamis, N., Paradissis, D., 2013, An echo state network for 
ionospheric disturbances behavior modeling on spaceborne interferometric synthetic aperture 
radar, In: Proc. AIAA Space 2013 Conference and Exposition, San Diego, USA, 10-12 Sep. 

 
Moallem, P., Razmjooy, N., 2012, A multi layer perceptron neural network trained by invasive 
weed optimization for potato color image segmentation, Trends in Applied Sciences Research 
7, 445-455. 

 
Najibi, E., Rostami, H., 2015, SCESN, SPESN, SWESN: Three recurrent neural echo state 
networks with clustered reservoirs for prediction of nonlinear and chaotic time series. Applied 
Intelligence, 43, 460-472. 

 
Niu, D., Ji, L., Wang, Y., Liu, D., 2012, Echo state network with wavelet in load forecasting. 
Kybernetes, 41, 1557-1570. 

 
Ozturk, M.C., Príncipe, J.C., 2007, An associative memory readout for ESNs with applications 
to dynamical pattern recognition. Neural Networks, 20, 377-390. 



 

 
Precup, R.-E., Tomescu, M.-L., Dragos, C.-A., 2014, Stabilization of Rossler chaotic 
dynamical system using fuzzy logic control algorithm. International Journal of General 
Systems, 43, 413-433. 

 
Precup, R.-E., Tomescu, M.-L., Radac, M.-B., Petriu, E.M., Preitl, S., Dragos, C.-A., 2012, 
Iterative performance improvement of fuzzy control systems for three tank systems. Expert 
Systems with Applications, 39, 8288-8299. 

 
Qianli, M., Weibiao, C., Jia, W., Zhiwen, Y., 2014, Direct model of memory properties and the 
linear reservoir topologies in echo state networks. Applied Soft Computing, 22, 622–628. 

 
Rodan, A., Tino, P., 2011, Minimum complexity echo state network. IEEE Transaction on 
Neural Networks, 22, 131-144.  

 
Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J., Stroobandt, D., 2008, Improving 
reservoirs using intrinsic plasticity. Neurocomputing, 71, 1159-1171. 

 
Skowronski, M., Harris, J., 2006, Minimum mean squared error time series classification using 
an echo state network prediction model. In: Proc. IEEE Int. Symp. Circuits Syst, Island of Kos, 
Greece, 21-24 May, 3153-3156. 

 
Solos, I.P., Tassopoulos, I.X., Beligiannis, G.N., 2016, Optimizing shift scheduling for tank 
trucks using an effective stochastic variable neighbourhood approach. International Journal of 
Artificial Intelligence, 14, 1-26. 

 
Song, Q., Feng, Z., 2009, Stable trajectory generator-echo state network trained by particle 
swarm optimization. In: Proc. IEEE Int. Symp. Computational Intelligence in Robotics and 
Automation, Daejeon, China, 15-18 Dec, 21-26. 

 
Song, Q., Feng, Z., 2010, Effects of connectivity structure of complex echo state network on 
its prediction performance for nonlinear time series. Neurocomputing, 73, 2177–2185. 

 
Song, Q., Zhao, X., Feng, Z., Song, B., 2011, Recursive least squares algorithm with adaptive 
forgetting factor based on echo state network. In: Proc. World Congress on Intelligent Control 
and Automation, Taipei, Taiwan, 21-25 June, 295-298.  

 
Steil, J., 2007, Online reservoir adaptation by intrinsic plasticity for backpropagation 
decorrelation and echo state learning. Neural Networks, 20, 353-364. 

 
Tong, M. H., Bicket, A., Christiansen, E., Cottrell, G., 2007, Learning grammatical structure 
with echo state network. Neural Networks, 20, 424-432. 

 
Venayagamoorthy, G.K., Shishir, B., 2009, Effects of spectral radius and settling time in the 
performance of echo state networks. Neural Networks, 22, 861–863. 

 
Wang, J.Sh., Ping Guo, Sh.H., 2014, Echo state networks based predictive model of vinyl 
chloride monomer convention velocity optimized by artificial fish swarm algorithm. Soft 
Computing, 18, 457-468. 

 
Wang, S., Yang, X., Wei, C. J., 2006, Harnessing non-linearity by sigmoid-wavelet hybrid 
echo state networks (SWHESN). In: Proc. 6th World Congress on Intelligent Control and 
Automation, Dalian, China, June 21-23. 

 
Wang, X., Gao, X.-Zh., Zenger, K., 2015, An Introduction to Harmony Search Optimization 
Method, Springer Briefs in Computational Intelligence, Springer International Publishing. 

 
Yildiz, I. B., Jaeger, H., Kiebel, S. J., 2012, Re-visiting the echo state property. Neural 
Networks, 35, 1-9. 

 



 

Zhang, B., Wang, Y., 2008, Echo state networks with decoupled reservoir states. In: Proc. 
IEEE Workshop Mach. Learn. Signal Process, Cancun, Mexico, 16-19 Oct, 444-449. 

 
Zhang, L., Hua, C., Tang, Y., Guan, X., 2016, Ill-posed echo state network based on L-curve 
method for prediction of blast furnace gas flow. Neural Processing Letters, 43, 97-113. 


