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Abstract

In this paper, we solve the problem of determining a consistent instantiation of any path-
consistent and atomic network of RCC8 base relations. We already know that such net-
works that contain a finite number of variables have a realization in any dimension d ≥ 1.
The novelty of our work is that given any path-consistent and atomic constraint RCC8 net-
work, possibly with countably infinite variables, we are able to construct in polynomial time
a realization that satisfies it. For this purpose, we suitably instantiate the variables of such
a network by associating to them some regular closed sets of the set of real numbers.
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1 Introduction

Allen’s (Allen, 1983) seminal work on qualitative temporal reasoning paved the way to other re-
searchers in Artificial Intelligence to develop a wide variety of temporal and spatial formalisms
that allow us to reason about objects with respect to time and space (Ligozat, 1991; Vilain
and Kautz, 1986; Skiadopoulos and Koubarakis, 2004). Indeed, for some specific systems,
it appears that only the qualitative representation of their temporal information suffices to de-
scribe them. This is also true for space. The increasing interest concerning qualitative spatial
reasoning is due to its multitude of applications to different fields such as Geographic Infor-
mation Systems, robot navigation, high level vision or natural languages. Several formalisms
(Asher and Vieu, 1995; Balbiani, Condotta and del Cerro, 1999; Condotta, 2000; Ligozat and
Renz, 2004; Farhat and Feuillade, 2015) allow us to qualitatively describe objects in space and
to reason about their respective positions. The works of Clarke (Clarke, 1981; Clarke, 1985)
have been followed by those of Randell, Cui and Cohn (Randell, Cui and Cohn, 1992), who
developed the RCC formalism. This formalism studies the different relations that we can define
between regions in a topological space, based on the primitive relation of connection. Two of
its fragments, namely RCC5 and RCC8, were introduced later on by Bennett (Bennett, 1994).
Since then, several real-life applications of these two formalisms have been found by other
researchers. For example, Bruno Bouzy (Bouzy, 2001) used RCC8 in programming the Go
game, and Andreas et al. (Lattner, Timm, Lorenz and Herzog, 2005) used RCC5 in order to



set up assistance systems in intelligent vehicles. It is worth noting too that Li et al. (Li and
Wang, 2006) consistently extended RCC8 binary networks, and Li (Li, 2007) combined RCC8

with another qualitative spatial formalism in order to get a more expressive language.
Renz and Nebel (Nebel, 1995; Renz and Nebel, 1997) showed that the consistency problem
of a finite path-consistent network of RCC8 constraints is in NP . In order to determine the
complexity of a temporal logic based on RCC, such as the one introduced by Wolter and
Zakharyaschev (Wolter and Zakharyaschev, 2000), we needed to solve atomic constraints in-
volving an infinite, enumerable number of variables.
Nebel and Bürckert (Nebel and Bürckert, 1995) determined a maximal tractable class of the
Interval Algebra introduced by Allen, while Jonsson and Drakengren (Jonsson and Draken-
gren, 1997), followed by Renz and Nebel (Renz and Nebel, 1997; Renz, 1999), enumerated
all the tractable classes of RCC5 and RCC8. A problem that has never been tackled is the
complexity of the consistency of an atomic RCC8 constraint network containing an infinite
number of variables. In the context of RCC5, the above problem was shown to be polynomial
in the length of the elements of the network R (Balbiani, Challita and Condotta, 2003). Due
to the specific properties of the RCC8 relations EC, TPP and TPP−1; the method developed
in (Challita, 2004) appears to be insufficient for answering our question.
Renz (Renz, 1998) already showed that any network of RCC8 relations which is consistent has
a realization in the n-dimensional Euclidean space Rn for each n ≥ 1. Later on, Li (Li, 2006)
gave an O(n3) algorithm for generating a realization of path-consistent networks of RCC8

base relations in any RCC8 model. More recently, Huang (Huang, 2012) showed that all the
maximal tractable fragments of RCC8 have patchwork and canonical solutions as long as the
networks are algebraically closed. On the other hand, Amaneddine et al. (Amaneddine, Con-
dotta and Sioutis, 2013) proposed an algorithm to derive all the feasible base relations of a
qualitative constraint network.
We strongly believe that our work will have some useful and practical applications such as in
Geographic Information Systems or a related field, where the number of variables may change
over time. For example, consider the situation where we wish to capture (qualitatively) the rel-
ative positions of a number of cars that are located in some area. We may use RCC8 for this
purpose. But since the number of cars can vary over time (cars may enter or leave the area of
interest) and there is no upper bound on their number (theoretically we could have an infinite
number of variables), we need to design an algorithm that can handle any number of variables.
The implementation of our algorithm should be inspired by relevant studies (Spall, 1992; Pre-
cup, Preitl and Faur, 2003; Attar, Sinha and Wankhade, 2010; Hu and Tan, 2016) in order to be
useful for industrial application.
In this paper, we generalize the work done in (Challita, 2012) and propose an incremental
algorithm that constructs a realization for any infinite, atomic and path-consistent constraint
network of RCC8 base relations. Given a partial solution of n variables, we extend it to n + 1

variables for a total running time of O((n+1)3). We follow Renz’s approach by interpreting the
RCC8 relations over a topological space. Indeed, and using prime numbers, to each element
of such a network, we associate a regular closed subset of the set of real numbers, with its
usual topology.



This paper is divided as follows. In Section 2, we recall some basic results concerning RCC8.
In Section 3, we define the valuation we use to instantiate the variables of any infinite, atomic
and path-consistent constraint network of RCC8 base relations. We prove in Section 4 that ev-
ery infinite, atomic and path-consistent network of RCC8 base relations is consistent. Before
concluding, we give in Section 5 an O(n4) algorithm for instantiating such networks.

2 The qualitative spatial model RCC8

Given a certain number of objects in space, the relations of RCC8 enable us to reason about
the topological relations that relate them. Denoted by EC, DC, PO, EQ, TPP , NTPP ,
TPP−1, NTPP−1, their respective significations for two spatial regions are: ”externally con-
nected”, ”disconnected”, ”partial overlap”, ”equal”, ”tangential proper part”, ”non-tangential
proper part”, ”tangentially contains” and ”strictly contains”. They are jointly exhaustive and
pairwise disjoint. An example of a spatial representation in the plane of these relations is given
in Figure 1.
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Figure 1: Bi-dimensional representation of the relations of RCC8.

Let R = (N,C) be an RCC8 constraint network, where N ⊆ N, and C is a mapping from
N × N to the set of the subsets of RCC8 relations. Semantically, C(x, y) contains all the
possible relations that are allowed to connect the vertices x and y in R. A model for R is
a structure of the form M = (S, v), where S is a topological space and v is a valuation that
maps the elements of N to non-empty regular closed subsets of S. We say that the model M
satisfies the network R if for every i, j ∈ N , the relation that holds between v(i) and v(j) in
S, and usually denoted by RS(v(i), v(j)), belongs to C(i, j). We next give the definition of the
relation RS(v(i), v(j)).

Definition 2.1. Let R = (N,C) be an RCC8 constraint network and M = (S, v) be a model.
∀ i, j ∈ N we have the following:
EQS(v(i), v(j)) iff (v(i) = v(j)),
TPPS(v(i), v(j)) iff (v(i) ⊂ v(j) ∧ Fr(i) 1 ∩ Fr(j) ̸= ∅),
TPP−1

S (v(i), v(j)) iff TPPS(v(j), v(i)),
NTPPS(v(i), v(j)) iff (v(i) ⊂ v(j) ∧ Fr(i) ∩ Fr(j) = ∅),
NTPP−1

S (v(i), v(j)) iff NTPPS(v(j), v(i)),

1Fr(v) = (v̄\ ◦
v) where v̄ and

◦
v designate the adherence and the interior of v in S.



DCS(v(i), v(j)) iff (v(i) ∩ v(j) = ∅),
ECS(v(i), v(j)) iff (

◦
v (i)∩ ◦

v (j) = ∅ ∧ Fr(v(i)) ∩ Fr(v(j)) ̸= ∅),
POS(v(i), v(j)) iff (

◦
v (i)∩ ◦

v (j) ̸= ∅ ∧ (∃ x ∈◦
v (i), x ̸∈ v(j)) ∧ (∃ x ∈◦

v (j), x ̸∈ v(i))).

Definition 2.2. A constraint network is consistent if there exists a model that satisfies it. We
also say that the valuation v is consistent.

If for all i, j ∈ N C(i, j) contains exactly one element then the network is said to be atomic. It
is path-consistent iff ∀ i, j, k ∈ N : C(i, i) = {EQ}, C(i, j) = C−1(j, i) and C(i, k) ⊆ C(i, j) ◦
C(j, k). C−1(i, j) contains the inverse of the relations in C(i, j). The composition table of
the RCC8 relations is given in appendix B. This table first appeared in Cui et al. (Cui, Cohn
and Randell, 1993). Renz and Nebel (Renz and Nebel, 1997) used the consistency-based
composition of relations to compute it. We next give its definition.

Definition 2.3. Let E be the set of atomic RCC8 relations, S a topological space and R1,
R2 ∈ E.
The relation R1 ◦R2 is a subset of 2E which satisfies the following:
R1 ◦ R2 contains all the relations Q ∈ E such that there exist non-empty closed subsets a, b, c

of S such that aR1b, b R2c and aQc hold.

We often wish to provide an answer to the following problem:

Input: a constraint network R = (N,C).
Output: is there a model M that satisfies the network R?

The above problem is called RSAT . From now on we will consider models of the form M =

(R, v), where R is endowed with its usual topology.

3 Infinite RCC8 networks

Let R = (N,C) be a path-consistent network of atomic constraints. For practical reasons, we
will denote v(i) and the constraint C(i, j) involving two elements i and j of the network by vi

and Cij , respectively.

The following definitions allow us to simplify the notations of the valuations we will define later
on.

Definition 3.1. Given a network R = (N,C) and an element i of N , let:

E1 = {j ∈ N : Cji ∈ {TPP,EQ}}, (3.1)

E2 = {(j, j′) ∈ N2 : Cji ∈ {TPP,EQ} ∧ Cjj′ = {PO}}, (3.2)

E3 = {(j, j′) ∈ N2 : Cji = {NTPP} ∧ Cjj′ = {PO}}, (3.3)

E4 = {(j, j′) ∈ N2 : Cji ∈ {TPP,EQ} ∧ Cjj′ = {EC} ∧ j′ > j}, (3.4)

E5 = {(j, j′) ∈ N2 : Cij ∈ {TPP,EQ} ∧ Cjj′ = {EC} ∧ j′ < j} (3.5)

E6 = {j ∈ N : Cji = {NTPP}}, (3.6)

E7 = {(j, j′) ∈ N2 : Cji = {NTPP} ∧ Cjj′ = {EC}}. (3.7)



Later on, the instantiation of each variable xi of the network will be denoted by vi. It will be
computed in two steps: the first based on v

′
i as defined below, and the second based on δi as

defined in Definition 3.5.

Definition 3.2. ∀ j ∈ N∗ , let pj be the jth prime number in N. For example, we have p1 = 2,
p2 = 3, p3 = 5, etc.

Definition 3.3. Let ϵ ∈ R, 0 < ϵ < 1
4 . ∀ i ∈ N , keeping the same notations as in definition 3.1,

the static valuation is:

v
′
i = Vi1 ∪ Vi2 ∪ Vi3 ∪ Vi4, (3.8)

where we have

Vi1 =

 ∪
j∈E1

[pj − ϵ, pj + ϵ]

 (3.9)

Vi2 =

 ∪
(j,j′)∈E2

[pj × pj′ − ϵ, pj × pj′ + ϵ]

 (3.10)

Vi3 =

 ∪
(j,j′)∈E4

[−pj × pj′ − ϵ,−pj × pj′ ]

 (3.11)

Vi4 =

 ∪
(j,j′)∈E5

[−pj × pj′ ,−pj × pj′ + ϵ]

 (3.12)

The object of the above definition is to provide a partial instantiation of the networks’ variables
that involve all the relations of RCC8, except the NTPP one.

3.1 Maximal chain

The concept of a maximal chain, as it was introduced in (Challita, 2012), will be used in Defini-
tion 3.5.

Definition 3.4. A chain is any sequence T = (σ1, . . . , σp) ⊆ N containing at least two elements
and satisfying: ∀ 1 ≤ j < p− 1, Cσjσj+1 = {NTPP}.
A chain T is maximal with respect to an element i of the network if i ∈ T and ∀ 1 ≤ j ≤ p− 1,
there is no k less than i such that:

- Cσjk = Ckσj+1
= {NTPP},

- Or Cσpk = {NTPP},

- Or Ckσ1 = {NTPP}.

Informally, a chain T is said to be maximal with respect to an element i if it is impossible to
”insert” into it any element k of the network that does not appear in T such that k < i and k is
in the relation NTPP (resp. NTPP−1) with the next (resp. preceding) element of the chain.
Notice that there may be several maximal chains with respect to a specific element.



Example 1. Consider the following atomic and path-consistent network where N = {1, 2, 3, 4, 5},
C21 = C31 = C32 = C34 = C51 = {NTPP}, and all the remaining constraints being equal to
{PO}.
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Figure 2: Graphical representation of the network of Example1 .

All the chains of this network are: T1 = (3, 2), T2 = (3, 1), T3 = (2, 1), T4 = (3, 2, 1), T5 = (3, 4),
T6 = (5, 1). For instance, T1 and T2 are not maximal with respect to the element 3, because
despite the fact that C32 = C21 = {NTPP} vertices 1 and 2 do not appear in the chains T1

and T2, respectively. On the other hand, the chains T4, T5, and T6 are maximal with respect to
3, 4, 5, respectively.

3.2 The relation NTPP

The aim of the following construction is to solve the problems related to the relation NTPP .
Suppose that the elements of N are ordered arbitrarily. To each one of them we associate a
radius δi ∈ R, computed inductively. In other words, while instantiating the networks’ elements,
we wish that the following property always holds: ∀ i, j ∈ N,Cij = {NTPP} ⇒ δi < δj .

Definition 3.5. Let ϵ ∈ R, 0 < ϵ < 1
4 . For all i in N , we inductively compute δi as shown below.

Let δ0 = ϵ+ ϵ
2 . Exhaustively, three cases are to be considered:

1. If ∃ j < i such that Cji = {EQ}, then δi = δj .

2. If ∀ j < i, Cji ̸∈ {TPP, TPP−1, NTPP,NTPP−1}, then δi = δ0.

3. If ∃ j < i such that Cji ∈ {TPP, TPP−1, NTPP,NTPP−1}, then we distinguish two
cases to compute δi.

(a) ∃ j < i such that Cji ∈ {NTPP,NTPP−1}.
Consider all the maximal chains T = (σ1, . . . , σp) with respect to i, that satisfy:
∀ 1 ≤ j ≤ p, σj ≤ i. Classify them in an arbitrary order and denote them by



Tl(i) = (σl
1, . . . , σ

l
pl
), (1 ≤ l ≤ m). Three cases are possible: Tl(i) = (i, σl

2, . . . , σ
l
pl
),

Tl(i) = (σl
1, . . . , σ

l
tl
, i, σl

tl+1, . . . , σ
l
pl
) or Tl(i) = (σl

1, . . . , σ
l
pl−1, i). If {Tl(i), 1 ≤ l ≤

m} ̸= ∅, then from path-consistency we deduce that one of the previous cases
holdÓ.

i. For Tl(i) = (i, σl
2, . . . , σ

l
pl
), let δli = δσl

2
. Define δ

′
i = min(1≤l≤m)(δ

l
i − ϵ

4i
).

ii. For Tl(i) = (σl
1, . . . , σ

l
pl−1, i), let δli = δσl

pl−1
. Define δ

′
i = max(1≤l≤m)(δ

l
i +

ϵ
4i
).

iii. For Tl(i) = (σl
1, . . . , σ

l
tl
, i, σl

tl+1, . . . , σ
l
pl
), let δli+ = δσl

tl+1
and δli− = δσl

tl

. Define

δ+i = min(1≤l≤m)δ
l
i+ and δ−i = max(1≤l≤m)δ

l
i− . The value of δ+i follows from

some γ1, ..., γr, where ∀ (1 ≤ l, k ≤ r), δγl = δγk . Let σ = max(1≤k≤r)γk. Later
on, we will say that δ+i corresponds to σ. In the same way, suppose that δ−i
corresponds to σ

′
. Then we define δ

′
i =

δ+i +δ−i
2 .

(b) ∃ j < i such that Cji ∈ {TPP, TPP−1}.
Let S1(i) = {j < i : Cij = {TPP−1}} and S2(i) = {j < i : Cij = {TPP}}. Three
cases are to be considered:

i. For S1(i) = ∅ and S2(i) ̸= ∅, let δ
′′
i = minj∈S2(i)δj .

ii. For S2(i) = ∅ and S1(i) ̸= ∅, let δ
′′
i = maxj∈S1(i)δj .

iii. For S1(i) ̸= ∅ and S2(i) ̸= ∅, let δ
′′
i = maxj∈S1(i)δj and δ

′′′
i = minj∈S2(i)δj .

At this stage, we are able to give the value of δi. We distinguish three cases:

(a) If ∀ j < i, Cji ̸∈ {TPP, TPP−1} then let δi = δ
′
i.

(b) If ∀ j < i, Cji ̸∈ {NTPP,NTPP−1}, then let δi = δ
′′
i .

(c) If ∃ j, j′ < i such that (Cji ∈ {TPP, TPP−1} ∧ Cij′ ∈ {NTPP,NTPP−1}), then we
distinguish three subcases:

i. S1(i) = ∅. Let δi = min(δ
′
i, δ

′′
i ).

ii. S2(i) = ∅. Let δi = max(δ
′
i, δ

′′
i ).

iii. S1(i) ̸= ∅ and S2(i) ̸= ∅.
For δ

′′
i = δ

′′′
i , let δi = δ

′′
i .

For δ
′′
i ̸= δ

′′′
i , we have three possibilities:

- If δ
′
i > δ

′′′
i , then δi = δ

′′′
i .

- If δ
′
i < δ

′′
i , then δi = δ

′′
i .

- If δ
′′
i ≤ δ

′
i ≤ δ

′′′
i , then δi = δ

′
i.

In this way, to each i in N corresponds a radius δi.

4 A consistent instantiation of RCC8 networks

The aim of this section is to prove the consistency of any atomic, path-consistent network of
RCC8 relations.
As we already noted before, our semi-dynamical method for instantiating an element i of N will
be done in two steps: (1) first statically solve the problem related to the relation EC, (2) then
dynamically solve the one related to the relation NTPP , which refers to Definition 3.5.



4.1 Validation of δi

We intend to show that the choice of δi is convenient. Formally, we must prove the following
lemma:

Lemma 1. For all i in N, δi is well defined in the following sense:
∀ j ≤ i and ∀ j′ < i, ((Cjj′ = {TPP}) ⇒ δj ≤ δj′ ∧ (Cjj′ = {NTPP}) ⇒ δj < δj′).

Proof: Denote by Pi the following property:
∀ j ≤ i and ∀ j′ < i, (Cjj′ = {TPP} ⇒ δj ≤ δj′ ∧ Cjj′ = {NTPP} ⇒ δj < δj′).
Let us show by induction on i that Pi is true.
Obviously P1 is true. Suppose that Pi−1 holds. We must prove that Pi is also true. Three cases
are to be considered:
1stcase: if there exists j < i such that Cji = {EQ}, then δi = δj . Due to the induction
hypothesis and to path-consistency, the property Pi is satisfied.
2nd case: for all j < i, Cji ̸∈ {TPP, TPP−1, NTPP,NTPP−1}. By definition we have δi = δ0.
3rd case: there exists j < i such that Cji ∈ {TPP, TPP−1, NTPP,NTPP−1}. Before dealing
with this case, we show the following result:

Fact 1. For all i in N , let Tl(i) = (σl
1, . . . , σ

l
pl
) be a maximal chain with respect to i, where

(1 ≤ l ≤ m) for some integer m. If there exists j < i such that Cji ∈ {NTPP,NTPP−1}, then:
∀ 1 ≤ l ≤ m, ∀ j ≤ pl, ((Cσji = {NTPP} ⇒ δσj < δ

′
i) ∧ (Ciσj = {NTPP} ⇒ δ

′
i < δσj )).

Proof: Tl(i) being one of the three expressions given previously, three cases are possible:

- Tl(i) = (i, σl
2, . . . , σ

l
pl
): by definition of δ

′
i, ∀ 1 ≤ l ≤ m, δ

′
i < δσl

2
holds.

- Tl(i) = (σl
1, . . . , σ

l
pl−1, i): by definition of δ

′
i, ∀ 1 ≤ l ≤ m, δ

′
i > δσl

pl−1
holds.

- Tl(i) = (σl
1, . . . , σ

l
tl
, i, σl

tl+1, . . . , σ
l
pl
): we next check that δ−i < δ+i .

Suppose that δ+i and δ−i correspond to σ and σ
′
, respectively. We have Cσ′ i = Ciσ =

{NTPP} p.c. 2
=⇒ Cσ

′
σ = {NTPP}. Due to the induction hypothesis, δσ′ < δσ. The fact 1 is

proven.

This ends the proof of Fact 1.
The third case can be decomposed into three subcases.

1. ∀ j < i, Cji ̸∈ {TPP, TPP−1}. By definition, we have δi = δ
′
i and the property Pi

coincides with Fact 1.

2. ∀ j < i, Cji ̸∈ {NTPP,NTPP−1}. By definition, we have δi = δ
′′
i and we easily check

that Pi is true.

3. ∃ j < i and ∃ j′ < i such that (Cji ∈ {TPP, TPP−1} ∧ Cij′ ∈ {NTPP,NTPP−1}). We
distinguish three cases:

(a) S1(i) = ∅. By definition, δi = δ
′
i or δi = δ

′′
i .

2p.c. is an acronym for path-consistency



i. δi = δ
′
i. By definition of δi, and referring to the induction hypothesis, for all j in

S2(i), δi ≤ δj . As δ
′
i = δi, we deduce from Fact 1 that Pi is satisfied.

ii. δi = δ
′′
i . By definition, for all j in S2(i), we have δi ≤ δj and δ

′′
i ≤ δ

′
i. From Fact 1

it is easy to see that for all j < i such that Cij = {NTPP} we have δi < δj .
On the other hand, if there exists k < i such that Cki = {NTPP} then ∀ j ∈
S2(i), ∀ 1 ≤ l ≤ m, (Cij = {TPP} ∧ Cσl

tl
i = {NTPP}) p.c.

=⇒ Cσl
tl
j = {NTPP}.

From the induction hypothesis we have δσl
tl

< δj . Thus δσl
tl

< δi.

(b) S2(i) = ∅. We proceed in the same way as we did in the previous case.

(c) S1(i) ̸= ∅ and S2(i) ̸= ∅. Suppose that δ
′′
i and δ

′′′
i correspond to j0 and j

′
0, respec-

tively. Two cases are possible:

i. δi = δ
′′
i = δ

′′′
i . By definition of δi and due to the induction hypothesis we have:

∀ j, j′ ≤ i, Cjj′ = {TPP} ⇒ δj ≤ δj′ . If there exists k < i such that Cik ∈
{NTPP,NTPP−1} then it suffices to show that for all l such that 1 ≤ l ≤ m

we have δσl
tl

< δi < δσl
tl+1

. We already know that (Cσl
tl
i = {NTPP} ∧

C
ij

′
0
= TPP )

p.c.
=⇒ C

σl
tl
j
′
0
= {NTPP}, and that (Ciσl

tl+1
= {NTPP} ∧ Cj0i =

{TPP}) p.c.
=⇒ Cj0σl

tl+1
= {NTPP}. Referring to the induction hypothesis we

deduce that δσl
tl

< δ
j
′
0

and δj0 < δσl
tl+1

. Thus ∀ 1 ≤ l ≤ m, δσl
tl

< δi < δσl
tl+1

.

ii. δ
′′
i ̸= δ

′′′
i (i.e. δ

′′
i < δ

′′′
i ). For δi = δ

′′′
i or δi = δ

′′
i , the proof is analogous to the one

in 3(c)i. For δi = δ
′
i, we proceed in the same way as we did in 3(a)i.

5 A consistent valuation of RCC8 networks

At this point, we find ourselves able to give a consistent instantiation of any atomic and path-
consistent constraint network of RCC8.

Definition 5.1. Recall the notations used in Definition 3.1. For k ∈ {3, 6, 7, 8}, let Fk be the set
Ek with the supplementary condition (j, j′ < i). Formally, Fk = {(j, j′) ∈ Ei : j, j′ < i} for
k ∈ {3, 7, 8} and F6 = {j ∈ E6 : j < i}.

Given an atomic and path-consistent constraint network R = (N,C), the algorithm for finding
a realization of R in the set R is given in Algorithm 1.

Proposition 1. Every atomic and path-consistent network of RCC8 base relations containing
countably many variables has a realization in time O(n3).

Proof: Indeed, let R = (N,C) be a network satisfying the hypotheses of the above proposition.
To an element i of the network we associate the valuation vi. According to Lemma 1 the fol-
lowing is true: ∀ j, j′ ∈ N , Cjj′ = {NTPP} ⇒ δj < δj′ . Therefore the valuation vi is consistent.

Now we turn our attention to determining the running time of the algorithm given in Table 1.
Note that we use Iterative Deepening Search (IDS) to compute v

′
i since, theoretically speaking,

we should be able to instantiate all the v
′
i before instantiating any vi. Practically this is not pos-

sible given the fact that our network may contain an infinite number of variables. The idea of
using IDS is to allow us to instantiate infinite networks by re-instantiating the variables one step



Step 1. Arbitrarily order the elements of N ,
Step 2. For each i in N ,

(i) Using Iterative Deepening Search, Compute v′i as described in Definition 3.3,
(ii) Evaluate δi,
(iii) Compute vi as follow:

vi = v
′
i ∪

(∪
j∈F6

[pj − δi, pj + δi]
)

∪
(∪

(j,j′)∈F3
[pj × pj′ − δi, pj × pj′ + δi]

)
∪

(∪
(j,j′)∈F7

[−pj × pj′ − δi,−pj × pj′ + δi]
)

∪
(∪

(j,j′)∈F8
[−pj × pj′ − δi,−pj × pj′ + δi]

)
Table 1: Algorithm for constructing regions vi

at a time: this is done by increasing the depth of the search space by one at each iteration. It
turns out to be a very efficient method in our case and the overhead of these re-instantiations
of all the network’s variables is about 10% (Russel and Norvig, 2009).
Step 1 requires O(n) time, and points (i) and (iii) of Step 2 also require linear time. As for
point (ii), it requires time O(n2). Indeed, and in order to compute δi, we need to determine
all the maximal chains w.r.t. i (refer to Definition 3.5, case 3(a)). This can be done by a
breadth-first search for example, which requires time O(n2) (see (Cormen, Leiserson, Rivest
and Stein, 2001) for more details). Since we need to compute δi for every node i of the network
R, we deduce that the overall running time of our algorithm is O(n3).

We next give two examples to describe how our instantiation of atomic and path-consistent
constraint networks of RCC8 proceeds. In the first two examples we consider finite networks,
whereas in the third example we consider an infinite network. For each i in N , the instantiation
will proceed in three steps. Firstly determine v′i, secondly compute δi, and finally give the
valuation vi. Notice that while we instantiate a variable i we only consider the constraints
NTPP (if they exist) that relate it to the previously instantiated elements of the network.

Example 2. Consider the following network.

DC TPP

PO

PO

NTPPEC

4

3

2

1

According to Definition 3.3, we first have:
v
′
1 = [p1 − ϵ, p1 + ϵ] ∪ [p1 × p3 − ϵ, p1 × p3 + ϵ] ∪ [−p1 × p4 − ϵ,−p1 × p4].



v
′
2 = [p2 − ϵ, p2 + ϵ] ∪ [p2 × p4 − ϵ, p2 × p4 + ϵ] ∪ [p3 − ϵ, p3 + ϵ] ∪ [p1 × p3 − ϵ, p1 × p3 + ϵ].
v
′
3 = [p3 − ϵ, p3 + ϵ] ∪ [p1 × p3 − ϵ, p1 × p3 + ϵ].
v
′
4 = [p4−ϵ, p4+ϵ]∪[−p1×p4,−p1×p4+ϵ]∪[p2×p4−ϵ, p2×p4+ϵ]. Secondly, by the definition of
δi, we have: δ1 = δ0 = ϵ+ ϵ

2 , δ2 = δ1+
ϵ
42

, δ3 = δ2 and δ4 = δ0. Finally, referring to Definition 5.1,
we conclude that: v1 = [2− ϵ, 2 + ϵ] ∪ [10− ϵ, 10 + ϵ] ∪ [−14− ϵ,−14], v2 = [3− ϵ, 3 + ϵ] ∪ [21−
ϵ, 21+ ϵ]∪ [5− ϵ, 5+ ϵ]∪ [10− ϵ, 10+ ϵ]∪ [2− δ2, 2+ δ2]∪ [10− δ2, 10+ δ2]∪ [−14− δ2,−14+ δ2],
v3 = [5− ϵ, 5 + ϵ] ∪ [10− ϵ, 10 + ϵ], v4 = [7− ϵ, 7 + ϵ] ∪ [−14,−14 + ϵ] ∪ [21− ϵ, 21 + ϵ].

A graphical representation of the solution is given in Appendix A.

Example 3. We consider here an infinite network based on an extension of the one given in
Example 2. All the given constraints remain the same and we assume that all the new vertices
are in the relation PO with all the other nodes of the network. Formally, ∀ i ≥ 5, ∀ j ≥ 1,
Cij = PO, where j ̸= i, since obviously Cii = EQ.

According to Definition 3.3, we first have:
v
′
1 = [p1−ϵ, p1+ϵ]∪[p1×p3−ϵ, p1×p3+ϵ]∪[−p1×p4−ϵ,−p1×p4]∪(

∪
j≥5[p1×pj−ϵ, p1×pj+ϵ]).

v
′
2 = [p2 − ϵ, p2 + ϵ] ∪ [p2 × p4 − ϵ, p2 × p4 + ϵ] ∪ [p3 − ϵ, p3 + ϵ] ∪ [p1 × p3 − ϵ, p1 × p3 + ϵ] ∪
(
∪

j≥5[p2 × pj − ϵ, p2 × pj + ϵ]).
v
′
3 = [p3 − ϵ, p3 + ϵ] ∪ [p1 × p3 − ϵ, p1 × p3 + ϵ] ∪ (

∪
j≥5[p3 × pj − ϵ, p3 × pj + ϵ]).

v
′
4 = [p4−ϵ, p4+ϵ]∪[−p1×p4,−p1×p4+ϵ]∪[p2×p4−ϵ, p2×p4+ϵ]∪(

∪
j≥5[p4×pj−ϵ, p4×pj+ϵ]).

We notice that the valuations remain the same as in Example 2 except for the last part, which
is due to the set E2 given in Definition 3.1.
Secondly, by the definition of δi, we still have: δ1 = δ0 = ϵ + ϵ

2 , δ2 = δ1 +
ϵ
42

, δ3 = δ2, δ4 = δ0,
since all these values are computed inductively.
Finally, referring to Definition 5.1 and noticing that only the valuation v(2) changes (due to the
set E3 given in Definition 3.1), we conclude that: v(1) = v

′
1, v(2) = v

′
2 ∪ (

∪
j≥5[p1 × pj − ϵ, p1 ×

pj + ϵ]), v(3) = v
′
3 and v(4) = v

′
4. As for the remaining valuations, we have:

∀ i ≥ 5, v(i) = [pi − ϵ, pi + ϵ] ∪ (
∪

j∈N[pi × pj − ϵ, pi × pj + ϵ])

6 Conclusion

As we already stated in the introduction, most of the work concerning the complexity and
the tractability results of finite networks of RCC5 and RCC8 relations has been achieved.
The problem of determining a consistent instantiation of a path-consistent and atomic con-
straint network of RCC5 relations, containing an infinite number of variables was successfully
solved in (Challita, 2004), whereas the same question that concerns the RCC8 relations re-
mained unanswered. This problem is of interest to us because we already showed in (Balbiani
et al., 2003) that in order to determine the complexity of a spatio-temporal logic introduced
by Wolter and Zakharyaschev (Wolter and Zakharyaschev, 2000) that is based on RCC8, we
need to be able to solve atomic constraint involving an infinite, enumerable number of vari-
ables.
In this paper we solved the problem of determining a realization of a path-consistent and atomic
constraint network of RCC8 base relations, containing an infinite number of variables. Our



proof was done in two steps. We first considered constraint networks containing a finite num-
ber of variables, and succeeded in constructing a model that satisfies any such network in time
O(n2). Then we extended our method to infinite networks and gave an O(n3) algorithm that
satisfies any path-consistent and atomic constraint network of RCC8 base relations.
Moreover, Renz and Nebel (Renz and Nebel, 1997) showed that every finite and path-consistent
constraint network of RCC8 whose variables are linked by ORD-Horn relations is consistent.
Our next goal is to try to generalize Renz and Nebel’s result and provide a consistent instan-
tiation of any atomic ORD-Horn network, possibly containing a countably infinite number of
elements.
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A Appendix
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Figure 3: Graphical solution of Example 2, given in Section 4
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Figure 4: Composition table of the RCC8 relations where the symbol * denotes the union of all
possible relations.


