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ABSTRACT 

Artificial neural networks, which are inspired by the behavior of central nervous system 
have the capability of  finding  good generalized solutions for many real world problems 
due to their characteristics such as massively parallel, ability to learn and adapt to the 
environment by altering the synaptic weights. However, despite of all the advantages of 
artificial neural networks, determining the most appropriate architecture for the given 
problem still remains as an unsolved problem. This paper presents a pruning method 
based on the backpropagation algorithm to solve this problem. The pruning method is 
inspired by the concepts of neuroplasticity and experimental results show that the 
proposed method approaches the minimal architecture faster than the other existing 
methods.  
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1. INTRODUCTION 
 

The artificial neural network is a computational model, which mimics the behavior of the human’s 

central nervous system. The major unit of the central nervous system, the brain, consists of an 

innumerous number of small functional units called neurons, which are interconnected by dendrites 

and axons. When a dendrite receives a signal from the environment, its electrical potential changes 

and attains to a threshold and emits an electrical pulse thorough axon to several other neurons. 

Likewise, artificial neural networks are created to do similar process and they are made by 

computational units called artificial neurons. In general, it assumes that neurons in artificially designed 



 

network lie on layers and each network contains an input layer, an output layer and the number of 

hidden layers. These stuctures are massively parallel and highly complex structure which are capable 

to grab the knowledge from its environment and interconnected strengths, known as synaptic weights 

are used to store the grabbed knowledge. So that as in human brain, neural networks are also 

capable of adaptive, input-output mapping, evidential response and fault tolerance (Haykin, n.d.-b). 

  

In spite of many advantages, the deciding the most appropriate neural architecture for any specific 

task still remains as an unsolved problem. It has been observed that both too large and too small 

architectures show advantages as well as disadvantages (Castellano et al., 1997). When network is 

too large it learns fast with avoiding local minima (Rumelhart, Geoffrey, & Williams, 1986) (Plaut & 

Hinton, 1987). In (Yu, 1992) it is theoretically explained that local minima problem obtained by 

backpropagation algorithm can be minimized when number of hidden units equal to the number of 

training patterns. Also large networks can form complex decision regions as problem requires 

(Lippmann, 1987) and shows better fault tolerance in damage conditions. However, when there are 

too many parameters generalization ability declines as it fails to distinguish similar neurons. On the 

other hand, networks with too few parameters show better generalization but neurons in these 

networks may not learn data properly (LeCun, 1989), (Denker et al., 1987), (Reed, 1993), (Aran et al., 

2009), (Setiono & Liu, 1995).  

 

To solve this problem different approaches have been used. The algorithms known as pruning 

algorithms start with an over-sized network and eliminate unimportant neurons until the optimal 

network occurs(LeCun et al., 1989),(Kamruzzaman & Hasan, 2010). In contrast, algorithms based on 

constructive methods are starting with minimal network and add neurons and connection weights until 

it reaches to the optimal solution (Ash, 1989), (Fahlman & Lebiere, 1989) The main disadvantage 

constructive method is initial small networks easily stuck with local minima and then training time may 

increase. Some researchers have been used pruning-constructive hybrid algorithms to overcome the 

problem of hidden layer architecture (Islam & Murase, 2001). 

 

This paper presents a pruning algorithm to determine the most befitting topology for hidden layers in 

neural network based on backpropagation algorithm. The proposed method is hypnotized by concepts 

of neuroplasticity. The process begins with a oversized network trained by backpropagation 

(Rumelhart et al., 1986) algorithm. Firstly, it determines the number of hidden layers for the most 

appropriate network by using a bi-search algorithm (Niemann, n.d.) and then eliminate unimportant 

nodes. The delta values obtain by backpropagation algorithm are used to identify weak neurons. 

 

The previous works are discussed in the next section, and Section 3 presents the method of 

determining the number of layers and recognizing the removable nodes. Section 4 discusses the new 

algorithm while the experiments and presents results in Section 5. Finally, conclusions are given in 

Section 6. 



 

2. PREVIOUS WORKS 
 

In this section, we discuss some works carried by other researchers and authors well on optimization 

of hidden layer architecture in artificial neural networks.  
 

 
2.1. Pruning Algorithms  

 
Pruning algorithms make network smaller by eliminating unnecessary weights or nodes. So that it is 

enable to reduce the cost of network while improve the generalization. 

 

Le Cun et al (LeCun et al., 1989)  proposed method called ‘Optimal Brain Damage’ to eliminate 

unimportant neurons from the network by measuring ‘saliency’ by using the second derivative of the 

error with respect to the connection weights. The main objective of algorithm is to find parameters 

whose removal will cause to minimize the error. When network is large Hessian matrix (Haykin, n.d.-

a) becomes enormous. Hence, authors assume that the matrix is diagonal. By presenting ‘Optimal 

Brain Surgeon’ Hassibi et al  (Hassibi & Stork, 1993) argue that Hessian matrix is strongly non 

diagonal for all the considered networks and hence, it may eliminate incorrect weights. However, 

optimal brain damage method also stuck with complex computations specially when working with 

inverse of the Hessian matrix. 

 

G. Castellano et al (Castellano et al., 1997) proposed a method to iteratively prune hidden neurons 

from a feed-forward neural network by solving a system of linear in the least square sense using pre-

conditioned conjugate gradient procedure. This algorithm has applied to solve some problems. 

Nevertheless, when for large network matrix corresponds to system of linear equations may have 

deficiency rank and hence, infinite number of solution may occur.  

 

Augasta et al (Augasta & Kathirvalavakumar, 2011) applied pruning method called Neural Network 

Pruning by Significance (N2PS) by defining the significance which is computed by sigmoidal activation  

of a neuron as the sum-norm of its output and identify removable neurons by comparing this 

significant with a pre decided threshold value. 

 

Authors presented an algorithm to determine the hidden layer architecture by using a pruning 

algorithm previously (N. M. Wagarachchi & Karunananda, 2013b), (N. Mihirini Wagarachchi & 

Karunananda, 2014). The proposed algorithm firstly decides the number of hidden layers in the most 

appropriate network by using accuracy factor defined by  

                                                     
E

MRAF =                                                          (1) 

 
where MR denotes the generalization power and E is the error at the output layer. Although this 

algorithm chooses the number of hidden layers in the most appropriate network very correctly, it 



 

needs to train the network several times by using backpropagation algorithm.  So that it needs to put 

much effort to obtain the most appropriate network. 
 
 

2.2. Constructive Algorithms 
 
In constructive neural networks, the network structure is built during the training process by adding 

hidden layers, nodes and connections to a minimal neural network architecture. However, determining 

whether a weight should be added and it adds to the existing hidden layer of new layer is complex. 

Therefore in most algorithms, pre-defined and fixed number of nodes are added in the first hidden 

layer and the same number of nodes are added to second layer and so on (Sharma & Chandra, 

2010). This number is crucial for the better performance of the network and it makes as small as 

possible to avoid the complicated computations during the training. 

 

The cascade correlation algorithm (CCA), firstly proposed by (Fahlman & Lebiere, 1989). CCA is a 

well known and mostly used constructive algorithm. This algorithm has proposed as a solution of 

problems such as local minima problem. 

 

The dynamic node creation (DNS) algorithm (Ash, n.d.) is supposed to be the first constructive 

algorithm for designing single layer feed-forward networks dynamically. Sridar et al (Sridhar & 

Ponnavaikko, 2011) improved the adaptive learning algorithm for multi-category tiling constructive 

neural networks for pattern classification problems. 

Nevertheless, there are several such approaches; they are confined to single hidden layer networks 

or networks with a small number of hidden neurons and they do not match with the theoretical 

background as human brain consists of large enormous number of neurons and synaptic connections. 
 

 

3. NEUROPLASTICITY APPROACH ON ARTIFICIAL NEURAL NETWORKS 
 

This research is inspired by the fact that the nature has always over estimated. In the same line 

neuroscientists claim that while part of a body is paralyzed, another part could be maximized their 

function to compensate the damaged neurons. So that artificial neural networks are modelled to mimic 

the functional behaviour of human brain (Sun, 2008) (Bringsjord, 2008) (Jain, Mao, & Mohiuddinis , 

1996). Until recently, scientists and the philosophers in the field of neuroscience worked with the 

notion that the human brain is immutable and hard wired. It was postulated that no new neurons are 

born and functions of brain structures are fixed (Vollmer, 2010).  The recent studies show that these 

assumptions are no longer correct and brain functions change throughout one’s life. The change of 

brain neurons and its pathways to adapt to the surrounding environment is called ‘neuroplasticity’  and 

also referred as the ‘brain plasticity’ (Kuo, 2007) (Kleiner, 2011) (Kolb et al., 2003). 

 

The structural changes in human brain  can be occurred due to the various types of behaviour of 

neurons such as neurogenesis, neural migration, neural cell death, synapto genesis and synaptic 



 

pruning (Stiles & Jernigan, 2010) (Stiles, Brown, Haist, & Jernigan, 2015). Moreover, Adapting to the 

surrounding by changing its pathways and functional abilities is one of the most fascinating features in 

human brain. These changes happens almost all the cortex and region in the brain and they can 

occur as Adaptive-dependent plasticity (Fu & Zuo, 2011), competitive plasticity , positive and negative 

plasticity.  
 

 

3.1. Synaptic Pruning 
 

The elimination of unnecessary synapses from the central nervous system is known as synaptic 

pruning (Santos & Noggle, 2011). Although this process last through the life span, the majority of the 

synapses eliminates from the human brain between the childbirth and the puberty. At the birth, human 

brain consists of more than 80 billion of neurons. During the first two years after the child’s birth size 

of the brain grows significantly. In this period, there is no much neurogenesis take place. The growth 

of the brain occurs as the result of creation of new synapses and myelination of nervous fiber. 

Myelination refers the forming white substance surrounding the axon. Creation of new synapses is 

called the synaptogenesis. At the child’s birth, generally a neuron consists of 2,500 connections. At 2 

years, it becomes about 15,000 and this is far more than the functionally needed. 

 

When synaptogenesis reaches peak level it starts to prune weak and unnecessary synapses from the 

central nervous system. Pruning occurs due to environmental factors and learning. While infant 

learning weak synapses eliminate by strengthening the functions of the remaining ones. Pruning 

process last until the death of healthy persons, but significantly occur until the adolescence. At the 

end of this process, brain contains about 50% synapses that were in two-year-old child. 
 

 

3.2. Artificial Neural Networks and the Human Brain 
 

Human brain which is having a phenomenal power is the most complex organ in the human body and 

known as a massively parallel and highly complex information-procession structure (Haykin, n.d.-b). 

The extraordinary power of human brain is far beyond that of any supercomputer today. The 

mechanism of human brain is far different from the conventional ‘Von Neumann’ architectural 

computer, which works gradually, sequentially through an algorithm. Among a big crowd in a town, we 

can recognize a friend, or identify a known voice in a noisy place. Is there any machine to model such 

complex behaviour? To answer this question artificial neural networks are developed by mimicking the 

some of the fascinating and remarkable features of the human brain. 

 

In the human brain, dendrites, which project from the cell body or soma, receive signals and pass 

them to another cell body through an axon. When accumulated signals in cell body reach to a certain 

threshold limit, the neuron fires and electrical impulses pass through the axon. At the end, each axon 

is branched into number of synaptic knobs, also known as axon terminals. With synaptic connects, it 



 

connects to other neighboring neurons and signal passes to those adjacent neurons through the 

synapses. Some synapses get positive outcomes from dendrites and they influence neurons to fire 

while some get negative outcomes and they weaken the signals. Approximately, a single neuron 

connects to 105 synapses and about 1016 synaptic connections.  

 

Artificial neural networks are created to model this complex functional behaviour of the human brain 

by directly transferring the concepts of neurons. Neurons are represented by nodes or artificially 

designed neurons. The axons are corresponding to the connections between neurons. Dendrites and 

cell body are represented by connection weights and activation functions respectively. The synaptic 

weights of artificial neural networks represent the synapses of central nervous system.  

 

The concept of training of artificial neural networks came from the psychologist Donald O. Hebbs 

famous theory “When an axon of cell A is near enough to excite cell B or repeatedly or persistently 

takes part in firing it, some growth process or metabolic change takes place in one or both cells such 

that A’s efficiency, as one of the cells firing B, is increased” (Hebb, n.d.). 

 

However, it is still challenging to model human brain artificially. The Biological neurons and neuronal 

activity are absolutely complex than artificially created neurons. Generally, neurons in human brain do 

not simply sum the weighted inputs and the dendritic mechanisms in biological systems are much 

more perfected. Also, real neurons do not stay on until the inputs change and the outputs may encode 

information using complex pulse arrangements (“Overfitting,” 2016). 
 

 

4. DETERMINING THE HIDDEN LAYER ARCHITECTURE 
 

Determining the hidden layer architecture is a great challenge in artificial neural networks. Although 

there are several approaches on hidden layer architecture, we find that available methods have 

various shortcomings. Therefore, still the problem of hidden layers remaining as an unsolved 

problem.In this research, firstly we propose an algorithm to determine the number of hidden layers in 

the most appropriate network and then discuss a pruning method to reach the optimal solution by 

removing unimportant nodes from each hidden layer.  
 

 

4.1. Determining Number of Hidden Layers 
 

The procedure of determining the number of hidden layers in the most appropriate network starts with 

a larger sized trained network. The main objective of this process is to reduce the number of layers in 

the given network where smaller sized network shows similar of better performance. We hypothesized 

that a large network can be reduced to a smaller sized network without degrading its performances by 

removing hidden layers and hidden neurons. The proposed algorithm works by comparing the 

generalization defined in eqn (3) corresponds to number of hidden layers of the middle value of the 



 

array. According to the inequality holds, lower or upper part of the array eliminates and repeats the 

procedure until it reaches to the maximum value. The proposed algorithm is to search number of 

hidden layers nH  , which provides the maximum generalization )( nHϕ . 

 

The algorithm begins with a network with H  hidden layers, trained with backpropagation algorithm. 

Searching starts with middle element [ ]2
H   of the array ( )H......,,2,1 . Where [N] denotes the 

integer part of the number N. A binary comparison tree represents the procedure. Iteration continues 

by selecting alternatively middle elements of left and right parts of previously choose middle element. 

The process terminates when there is no integer between two values, which provide the highest 

generalization. The worst case arises when tree contains maximum branches. The number of 

iterations of the worst case is computed as  

                                                              
)2ln(

)ln(2 H×
                                                                    (2) 

 

It could be noted that various search algorithms (Ramírez-Ortegón, Märgner, Cuevas, & Rojas, 2013), 

(Precup, David, Petriu, Preitl, & Rădac, 2014) are available for parameter estimation problems. This 

algorithm is faster than the other available algorithms to peak search (Demaine, 2002) (Scholkmann, 

Boss, & Wolf, 2012) that reach to the peak by considering 3 consecutive numbers. Nevertheless, the 

proposed algorithm concerns the behaviour in the corresponding interval and hence, it reaches to 

target value with lesser iterations. 

 

The proposed algorithm starts by a trained network with H hidden layers, and then compares the 

generalization of the middle value of the range and choose the network which gives the maximum 

generalization. 

 

The generalization of the network for h hidden layers is given by 

                   %100)( ×=
settestingindataofnumbertotal

outputdesiredprovideswhichdataofnumber
hϕ                                          (3) 

The detailed algorithm is given below.  

Input:   
H:  Number of hidden layers in the trained network  

Output: 
Hn: Number of hidden layers in the most appropriate network 

1) Compute the generalization for H  hidden layers, ( ),Hϕ  

2) Compute the generalization for  1 hidden layer, )1(ϕ  

3) If  100)1( ≠ϕ , then 10 =H  and  HH n =  

else 1=nH  

4) Compute the middle value  
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and then 20 HH = and 3HH n =  

6) Repeat  4)  and 5) until 1.0 <−HH n . 

7)  nH is the desired number of layers in the most appropriate network. 

 

 

4.2. Eliminate Unimportant Neurons 
 

The traditional method of training a feed-forward artificial neural network is backpropagation algorithm 

that can be used successfully in many real world problems. The procedure starts with an over-sized 

network, which is trained by backpropagation algorithm. Number of hidden layers is decided by using 

the method discussed in previously. However, still this network contains some unnecessary neurons 

and this research uses  the algorithm proposed by authors in (N. Mihirini Wagarachchi & 

Karunananda, 2014) and (N. M. Wagarachchi & Karunananda, 2013a) to eliminate those. 

 

The basic idea behind the training network is to minimize the error  between desired output ( ) and 

actual output ( ).    After  training cycles error  is given as  

                                             ( )
2

1

)()(
2
1)( ∑

=

−=
m

j
jj nyndnE                                                            (4) 

where  and  are desired and actual outputs of th neuron respectively.  is the number of neurons 

in the output layer. For  number of input/output training patterns, error becomes  
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The proposed algorithm prunes neurons as much as possible from the hidden layers of over-sized 

network while maintaining the same or better performance as the initial network. Pruning is done by 

using delta values of hidden layers. The delta value of the th neuron of the hidden layer immediately 

before the output layer is given by 

                                                       ( )∑=
k

kikihi wnetf δδ '                                                        (6) 



 

where  is the pre-defined activation function of the hidden layer,  is the connection weight of the 

neurons of the last hidden layer and neuron of the output layer.  refers the delta value of kth 

neuron in the output layer define by 

                                                   ( )( )kkkok ydnetf −= 'δ                                                        (7)       

where  is the activation function defined for output layer and  and  are the desired and actual 

outputs respectively. The intension of choosing a delta value is that the delta value of ith neuron in last 

hidden layer at nth training cycle  is calculated by using the error . While training the network 

connection weights are updated as follows. 

                                          )()()()1( nfnnwnw h
h
i

h
ki

h
ki ηδ+=+                                                   (8) 

where h   is the number of hidden layers in the network and η   is the learning rate. The above Eqn. 

(8) implies that zero delta value means there is no update of the particular weights. Therefore, hidden 

neurons with zero delta values are not contributed to decrease the error in the training process. So 

that the hidden neurons with zero delta values are identified as less salience neurons and elimination 

of them from the topology does not affect on the performance of the network. 

 

Empirical results show that very often, there is a correlation between summation of delta values of 

hidden layers and the output error, which can be positive or negative. Thus, we use this correlation to 

identify the removable neurons to obtain a more precise network. Let this correlation be denoted by 

Eh ,δγ . 
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Therefore, to obtain optimal network, the correlation defined in the above is used. If the correlation is 

positive, minimal architecture obtains by removing neurons with positive delta that are very close to 

zero. In contrast, when the correlation is negative, neurons with large negative delta values remove to 

obtain the desired architecture. 

 

The pruning neurons have the same meaning as the synaptic pruning in neuroscience. It facilitates 

changes in neural configuration by removing weak neurons and synapses while strengthening the 

remaining. As in synaptic pruning, while pruning the weak neurons and the synaptic connections from 

the network it merges the similar neurons to strengthen their functions. 
 

 

 

4.3. Merge Similar Neurons 
 

The entire process of pruning neurons is inspired by the concepts of neuroplasticity and synaptic 

pruning. When an infant is learning unnecessary neurons remove from the human brain while  

increasing the functions of the remaining. In similar, the process of the proposed algorithm maximizes 

the weights of synaptic connections while removing the unimportant neurons. However, the 



 

contribution of these weights in the error decay process is not negligible. Hence, while removing these 

connection weights are merging with the similar neurons to obtain more efficient network.  

 

Let k th neuron of hidden layer h  be identified as a removable neuron. Suppose ( )
pqijvV

×
=   and 

( )
qrijwW

×
=  are input and output vectors of layer h  respectively. When removing k th neuron, the row 

vector ],...,,[ 21 kqkk
R vvvV k =  and the column vector T

qkkk
C wwwW k ],...,,[ 21=  will be removed 

and while removing they merge with similar vectors. By similar vectors it means that the vectors with 

the same orientation. So that, when two vectors iRV  and kRV  are similar, if  

                                                          1, =
k

k

i

i

R

R

R

R

V

V

V

V                                                               (10) 

 

Thus, if neuron k in layer h  is identified as the removable neuron, and iRV  and jCW  are the similar 

vectors to kRV  and kCW  respectively then kRV    merge with iRV  and kCW  merge with jCW . 
 

 

5. EXPERIMENTS AND RESULTS 
 

To test the performance of the proposed pruning method, several data sets with different input/output 

sizes were tested (Table 1). All the data sets are chosen from UCI Machinery repository (“UCI 

machine learning repository - Google Search,” n.d.). Each data set divided into two classes namely 

testing and training. Initially, for each problem fully connected network created with  number of 

hidden layers and  hidden neuron and then trained with backpropagation algorithm. The log-sigmoid 

and linear function were used as activation functions for hidden layers and output layer respectively. 

The learning rate fixed as  for all the instances.  

 

Table 1: The data sets 

Initial Network 
Training set Input/output pattern 

No. of Hidden Layers No. of Hidden Neurons 
Contraceptive 1473  12 1106 

Iris 150  10 100 

Gene  3175 12 2382 

Cardio  2126 20 1590 

Breast tissue 106 20 70 

Knowledge 403 20 258 

 



 

The number of hidden neurons in each layer is considered to be as [ ]H
N  . For example, the data set 

of ‘Contraceptive’ has 1106 total number of hidden neurons. When there are hidden layers, each 

layer contains [ ] 9212
1106 =  numbers of hidden neurons. When the number of hidden layers is , there 

are 221 hidden neurons in each layer. The algorithm presented in Section 4.1 was used to determine 

the number of hidden layers in the most appropriate network. Table 2 shows the number of hidden 

layers that shows the best performance in each problem and generalization (accuracy) as a 

percentage for that particular number of layers. The experimental results show that most probably the 

best performance can achieve with 82 −  hidden layers. Moreover, it is clear that single hidden layer 

architecture is not a solution, especially there are large numbers of hidden neurons. Nevertheless, Iris 

problem shows 100% accuracy for single hidden layer network, 3 layer network can train faster than it 

by maintaining the same performance. 

 

Table 2 : Number of the hidden layers in the most appropriate network 

Training set No. of hidden layers in the 
most appropriate network Accuracy % 

Contraceptive 9 41.30 
Iris 3 100.00 
Gene  4 86.76 
Cardio  4 80.23 
Breast tissue 6 100.00 
Knowledge 2 92.41 

 

After determining the number of hidden layers of the best architecture, network trained by using the  

algorithm in Section 4.2 to eliminate insignificant hidden neurons. Table 3 describes the performance 

of the new model. It is clear that the new algorithm reduces the size of network by improving the 

generalization power and limiting the number of training cycles. For example, in Contraceptive 

problem the number of hidden layers reduced from 1106 to 853 by improving accuracy of the training 

set by 23.25%.  It can be observed that almost half of the neurons  (49.11%) have been removed in 

the Gene problem. 

Table 3 : Performance of the new model 

New Model 
Training set No. of Hidden 

Layers 
 No. of Hidden 

Neurons 

Accuracy 
% 

Contraceptive 9 853 64.25 
Iris 3 67 100.00 
Gene  4 1212 88.13 
Cardio  4 1356 91.03 
Breast tissue 6 66 100.00 
knowledge 2 108 100.00 

 

In Section 3 we discussed that over pruning and under pruning of synapses cause some mental 

disorders. Similar happens in artificially designed networks. It shows poor  measures in generalization 

and training cycles when over-pruning and under-pruning. For instance, in Iris problem 3 hidden 



 

layers with 67 hidden neurons shows 100% accuracy. The hidden neurons are distributed as 27 – 22 

– 18.  Although the initial network shows same accuracy, the network is larger than the pruned 

network. However, if the pruning process continues, next step architecture becomes   22 – 19 – 12 

with 98.13% accuracy. Thus, it shows that over pruning the topology causes the poor performance of 

the network. 
 

 

6. CONCLUSIONS 
 

This paper presents a pruning algorithm to obtain the optimal solution of hidden layer architecture in 

multilayered artificial neural networks. It hypothesized that any given large sized network can be 

reduced to a smaller sized network by reducing hidden layers and removing hidden neurons and the 

resultant network shows same or better performance.  The most attractive features are, the method is 

simple and effective. There are no complex computations. 

 

The backpropagation algorithm and modified version of it has been used in pruning. The experimental 

results show that any given network can be reduced to smaller network and the resultant network all 

most all the cases show better performance than the initial network. However, there are some 

limitations arise, especially when we consider networks with very large numbers of input/output 

training patterns. 
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