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ABSTRACT 

In this paper a population-based metaheuristic algorithm named fractal-based algorithm is 
developed to solve continuous optimization problems. In this algorithm, the density of high 
quality and promising points in an area is considered as a heuristic which estimates the 
degree of promise of that area for finding the optimal solution. Afterward, the promising 
areas of state space are iteratively detected and partitioned into self-similar and fractal-
shaped subspaces for being searched more precisely and more extensively. The 
proposed algorithm is compared with some metaheuristic algorithms. The results 
demonstrate that the algorithm is able to find high quality solutions within appropriate time. 
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1. INTRODUCTION 
 

Metaheuristic algorithms have been highly popular in recent years, because many of today’s 

optimization problems are large, complex and dynamic. Solution of such problems requires methods 

which can find acceptable solutions within a reasonable period of time rather than assure the finding 

of the optimal solution (Chiong, 2009; Yang, 2010).  

Metaheuristic algorithms can be classified into different categories. One criterion for the classification 

of such methods is the number of candidate solutions evaluated in each iteration. Based on this 

criterion, they are divided into two general categories (Nicoară, 2012): single-solution-based 

metaheuristics and population-based metaheuristics.  

Single-solution-based metaheuristics focus on a single solution during the search process, and 

attempt to improve that solution by introducing minor changes to it in an iterative process (Talbi, 2009; 

Spall, 2003; Zäpfel and Braune, 2010). Such searches can be thought of as walking in the problem 

state space (Talbi, 2009). 

Population-based metaheuristics, on the other hand, work on a set of solutions known as population, 

and improve the population in an iterative process (Talbi, 2009; Spall, 2003). Many population-based 

metaheuristic algorithms have been developed, including genetic algorithms (Holland, 1975; Back, et 

al., 1997), estimation of distribution algorithms (Larranaga and Lozano, 2002; Pelikan, et al., 2006), 



 

scatter search (Glover, 1999; Glover, et al.,2000), ant colony optimization (Dorigo, 1999), particle 

swarm optimization (Kennedy and Eberhart, 1995; Kennedy and Eberhart, 2001), differential evolution 

(Storn and Price, 1997), honey bee algorithm (Nakrani and Tovey, 2004; Pham, et al., 2005; 

Karaboga, 2005), firefly algorithm (Yang, 2010), and cuckoo search algorithm (Yang and Deb, 2009). 

Such algorithms have proved to be highly efficient in solving many optimization problems (Ali, et. al., 

2016; Ayan, et al., 2015; Azar, et. al., 2016; Castillo, et al., 2015; Chávez-Conde, et al., 2015; Chul, et 

al., 2015; Ghosn, et. al., 2016; Glotić and Zamuda, 2015; Gotmare, et al., 2015; Manikandan, 2014; 

Martí, et al., 2015; Qi, et al., 2015; Precup, et al., 2014; Raja, et al., 2015; Ramírez-Ortegón, et. al., 

2013; Wang, et al, 2015). Some of the population-based metaheuristic algorithms have been adopted 

for solving the dynamic optimization problems (Kaedi, et al., 2013; Kaedi, et al., 2016), robust 

optimization problems (Moraes, et al., 2015), and multi objective optimization problems (Martin, et al., 

2009).  

This paper develops a new population-based metaheuristic algorithm to solve continuous optimization 

problems. The proposed algorithm, which we call ‘fractal-based algorithm’, partitions the promising 

areas of the state space of the continuous optimization problems in an iterative process and on the 

basis of self-similar and fractal-shaped structures, and in this way it attempts to seek the optimal 

solution.  

Later on, in Section 2, the heuristic used in this paper is introduced. Afterwards, in Section 3, the 

proposed metaheuristic algorithm named fractal-based algorithm is introduced. In Section 4, the 

proposed algorithm is used to solve some continuous benchmark optimization problems and is 

compared with other population-based algorithms. Finally, in Section 5, some conclusions are drawn. 

 
2. THE PROPOSED HEURISTIC 

 
If we consider the state space of the continuous optimization problems, the quality of adjacent points 

in this space is changing and oscillating in a continuous and gradual way and in the neighbourhood of 

an optimal point (local or global optima), as we move toward the optimal point, the quality of the points 

in the state space is gradually improved (Figure 1). Therefore, the quality of neighbouring points is not 

independent of one another, and usually the presence of a number of high quality points close to one 

another can be a sign of presence of other high quality points in that neighbourhood and the strong 

probability of the presence of optimal points in that area. Hence, the density of high quality and 

promising points in an area in the state space can be considered as a heuristic which can predict the 

degree of promise of that area of the state space for finding the optimal solution. 

It should be noted that this heuristic, like any other heuristic, does not assure the finding of the optimal 

solution; rather, it is merely a method based on conjecture to predict promising areas, and, like other 

heuristics, can have exceptions and in some cases may mislead the algorithm in the course of search. 

For instance, in cases where there is a flat area in the fitness landscape (Figure 1), the density of 

relatively high quality points in a neighbourhood is high, while there is no optimal point (neither local 

nor global) in that neighbourhood. 



 

Figure 1. The optima and a flat area in a 2-dimnsional fitness landscape 
 

This paper develops a metaheuristic algorithm for continuous optimization where the heuristic of 

density of high quality points in a neighbourhood is used to find the promising areas of the state space. 

This algorithm is introduced in Section 3. 

 

3. THE PROPOSED ALGORITHM: FRACTAL-BASED ALGORITHM 
 

Without loss of generality, we assume that the aim of the optimization is to find the minimum of a 

continuous function . Certainly, by applying minor changes to the algorithm, one can generalize the 

proposed algorithm to find the maximum of a continuous function. As mentioned in Section 2, in this 

study, the subspaces of the state space containing larger numbers of random promising points are 

regarded as promising areas to find the optimal point. In the proposed algorithm, the following stages 

are executed iteratively:  

First, the state space is divided into some subspaces with equal sizes. Next, some random points are 

generated in the state space uniformly, the value of the target function is calculated for the randomly 

generated points, and the promising points (i.e., points with lower values of f ) are chosen. 

Afterwards, the number of promising points which have fallen into each subspace of the state space is 

determined. Based on the heuristic introduced in Section 2, the subspaces containing more promising 

points are considered as the promising subspaces, where the chance of finding the optimal solution is 

higher. Later on, these subspaces are in turn divided into smaller subspaces and the entire process of 

the algorithm is repeated on those subspaces so that they are searched more precisely and more 

extensively. The details of the proposed algorithm are as follows: 
 

1. It is assumed that the goal is to find the minimum of a continuous function in an n-dimensional 

space where. The problem is defined as follows: 

niforUxLwherexxxfMinimize iiin ≤≤≤≤ 1)...,,,( 21  (1)

Therefore, the points for which the value of function  is smaller are regarded as the more promising 

points. At first the entire state space is considered as the promising area. 
 

2. The entire state space is divided into a number of subspaces. For this purpose, the thd  dimension 

of the state space ( nd ≤≤1 ) is divided into as many as dm  equal subintervals until finally a grid 

containing nmmm ××× ...21  subsections is built. Thus, we have: 
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3. A uniformly distributed initial population is generated randomly all over the promising area (i.e., all 

over the state space). This population is considered as the current population. 
 

4. The value of function f for each point of the current population is calculated.  
 

5.  1P  percent of the points of the current population with the lowest values of function f are regarded 

as the promising points. 
 

6. The number of promising points in each of the subspaces is determined. This number is an 

indication of the degree of promise of that subspace (i.e., the subspace promising rank). 

PromisingRanks= Number of promising points in s (3)
 

7.  2P  percent of the most promising subspaces are selected to be searched more precisely and 

more extensively.  
 

7.1. More precise search in the promising subspaces: The promising subspaces are in turn divided 

into smaller subspaces. For this purpose, the thd dimension ( nd ≤≤1 ) of each subspace is divided 

into as many as dm equal intervals so that a grid containing nmmm ××× ...21  subsections is built 

within that subspace. In this way, these promising subspaces will be searched more precisely 

because the algorithm will focus on the finer parts of them. 
 

7.2. More extensive search in the promising subspaces: A number of random points are generated all 

over the state space. They are called the new population. In generating these random points, the 

points are not uniformly distributed all over the state space. Rather, more points are generated in the 

more promising subspaces so that those subspaces are searched more extensively. For this purpose, 

the number of points generated in each subspace is a linear function of the degree of promise of that 

subspace. Thus, for subspace s  we have: 

Number of points generated in s = (PromisingRanks / ∑
∈ subspacesallk

PromisingRankk) × PopulationSize (4)

8. The value of function f  is calculated for each point in the new population.  
 

9. The fittest points in the new population and the current population are integrated based on the 

truncation selection method (Holland, 1975; Back, et al., 1997) and a population equal in size to the 

current population is built to replace the current population.  
 

10.  3P  percent of the points in the new population are randomly selected and modified slightly by 

adding a Gaussian noise to them (like as mutation operation in genetic algorithm).  
 

11. The termination condition is evaluated and in case the termination condition is not reached, the 

process is repeated from stage 5.  
 



 

12. The best solution generated so far is returned as the output of algorithm.  
 

Therefore, by iterating the algorithm, the promising areas of the state space are divided into smaller 

subspaces, and, the more promising subspaces of them are in turn divided into still smaller 

subspaces and so on. As a result, some grids similar to what divided the entire state space into 

subspaces are formed in the primary promising subspaces and then in the secondary promising 

subspaces, etc., so that the promising areas are identified more accurately and are focused upon 

during the search process. Consequently, some self-similar and fractal-shaped structures are formed 

in the state space, which are expected to direct the algorithm toward the optimal solution (Figure 2). 

The flowchart and pseudocode of the proposed algorithm are presented in Figures 3 and 4, 

respectively. It should be noted that the values of parameters 1P , 2P , and 3P  control the tradeoff 

between exploration and exploitation during the search and affect the algorithm convergence. 

  
(b) The search space after the first round of partitioning (a) The search space before the start of algorithm 

  
(d) The search space after the third round of partitioning (c) The search space after the second round of 

partitioning 
Figure 2. Forming the self-similar and fractal-shaped structures in the state space during the run 

of the fractal-based algorithm (promising subspaces are gradually divided into smaller subspaces 

so as to be searched more precisely and more extensively). 

 



 

 
Figure 3. Flowchart of the fractal-based algorithm.  

 

 



 

Algorithm Fractal-based-optimization( eSearchSpac , f ) 
{Inputs:   

StateSpace : the n-dimensional space with boundaries ),,...,,,,( 2211 nn ULULUL  
f : target function; 

 Output: 
Solution  : the best solution found by the algorithm; 
 

 
Initialize the control parameters: PopSize , 1P  , 2P , 3P , dm  for  nd ≤≤1  

0Pop = the initial population; // the points generated with uniform distribution over the state space 

0=i  ; 
PromisingSubspaces= StateSpace ; // assigning whole the search space as the promising area at the beginning 

For any dimension ndd ≤≤1:  
Partition the dimension  d  of StateSpace  to dm  parts; 

 
while (NOT termination condition) 

{ 
=]..1[ PopSizeQuality the quality of all the points in iPop ;// the values of function f for points 

=]..1[int PopSizesGoodPo the 1P  percent of the points with the highest quality; 
=]..1[ bspacesNumberOfSuCount the number of good points in each subspace; 

PromisingRank
PopSize

bspacesNumberOfSuCountbspacesNumberOfSu ]..1[]..1[ =  

PromisingSubspaces= the 2P  percent of the subspaces with highest promising rank; 
For any promising subspaces s  

For any dimension ndd ≤≤1:  
Partition the dimension d  of the promising subspace s  to dm  parts; 
 
=]..1[' PopSizePopi newly generated points in the subspaces, so that the number of points generated 

in each subspace s  is linearly proportional to its promising rank, i.e.,  PromisingRank [s]; 
=+ ]..1[1 PopSizePopi  the best points of iPop  and '

iPop  selected using truncation selection method; 
Add Gaussian noise to 3P  percent of the points randomly selected from 1+iPop ;// mutation  

1+= ii ; 
} 
 

Solution =the best solution found so far; 
 

Return Solution  
} 

Figure 4. Pseudocode of the fractal-based algorithm. 

 

4. EVALUATION AND COMPARISON 
 

To evaluate the algorithm developed in this study, the algorithm is applied to find the optima of a 

number of continuous benchmark functions. These functions are introduced in Table 1 and depicted in 

Figure 5.  To find the optimum of any of the continuous functions, at first, the function and the ranges 

of function variables are given to the fractal-based algorithm as inputs (the ranges of function 

variables indicate the state space boundaries). Then a population of random points is generated 

within the state space and afterwards, the entire state space is divided into a number of subspaces. 



 

The algorithm continues with iteratively evaluating the points, partitioning the promising subspaces, 

and generating new points within the subspaces. After evaluating 5000 points, the algorithm 

terminates and the best point found so far is returned. 

The results of the application of the proposed algorithm to the four functions are compared to the 

results of particle swarm optimization, differential evolution, and genetic algorithms. The parameters 

of the fractal-based algorithm are set according to Table 2 and the parameters of particle swarm 

optimization, differential evolution, and genetic algorithms have been configured according to 

configurations of former studies (Karaboga and Akay, 2009; Civicioglu and Besdok, 2013). They are 

presented in Table 3. In all the algorithms, the population size is equal to 50 and the termination 

condition is defined as “reaching the 5000 number of function evaluations”. 

Each algorithm has been executed 20 times for each benchmark function and a different initial 

population is used at every run. The algorithms are evaluated based on the two criteria: the mean of 

the best solutions obtained over 20 runs and the standard deviation of the best solutions obtained 

over 20 runs. The results are presented in Tables 4 and 5. As mentioned before, these results have 

been obtained by the algorithms after the same number of function evaluations; thus, the obtained 

results reflect the speed of algorithms. As it is shown in Table 4, the solutions obtained by fractal-

based algorithm are equal to or better than those of other algorithms after doing the same number of 

function evaluations. 

In addition, the convergence diagrams of the fractal-based algorithm for the benchmark functions 

which obtained by averaging over 20 runs of the algorithm are represents in Figure 6. The distribution 

of the candidate solutions during the run of the fractal-based algorithm for the four benchmark 

functions is presented in Figures 7, 8, 9, and 10.  

To investigate the effect of parameter im (the number of intervals for dividing a subspace dimensions) 

on the algorithm performance, the algorithm runs for several values of im  ( 2,1=i ). The results 

averaged over 50 runs for the four benchmark functions are presented in Table 6. For very large 

values of im , in every iteration of algorithm the promising subspaces are divided into a large number 

of subspaces; thus, the algorithm extremely focuses on the small subspaces that have a large number 

of promising points. Therefore, it is not able to explore the entire state space sufficiently to find the 

optimum. On the other hand, for very small values of im , the algorithm is not able to focus on the fine 

parts of state space; thus it may merely be able to reach the neighbourhood around the optimum and 

only return the best point among the points generated in that neighbourhood. Therefore, it is probable 

that the algorithm does not find the global optimum before reaching the termination condition or 

convergence. As it is shown in Table 6, the mean of the best solutions obtained over 20 runs are far 

from the functions global optima, for very large and very small values of im . 

To study the effect of parameter 3P  (the rate of random modification of solutions) on the convergence 

of the fractal-based algorithm, several values of 3P  have been examined. The number of iterations 

required for algorithm convergence averaged over 20 runs for the four benchmark functions are 



 

presented in Table 7. As it is concluded from these results, assigning low values to parameter 3P  

accelerates the algorithm convergence. On the other hand, the high value of parameter 3P  leads to 

finding better solutions because it prolongs the exploration phase of algorithm before the algorithm 

convergence.  

 

Table 1: Benchmark functions used to evaluate the proposed algorithm and their specifications 

(Karaboga and Akay, 2009; Maeda and Tsuda, 2015). 
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Table 2: Parameters values of  fractal-based algorithm. 

Parameter  Value  Description  

Population size 50 -------- 

1P  60 % The percentage of solutions which are selected as 

promising points 

2P  30 % The percentage of subspaces which are selected as 

promising subspaces 

3P  5 % The percentage of solutions which are selected randomly 

to be modified 

1m , 2m  10 The number of intervals for dividing the first and second 

dimensions of a subspace 

Maximum number of 

function evaluations 

5000 
 -------- 

 

 

 



 

 
 

  
(a) Goldstein-Price function 

  
(b) Easom function 

  
(c) Langermann  function 

  
(d) Shubert function 

Figure 5. Graphical representation of four benchmark functions. 

 

 

 



 

 

Table 3: Parameters valuse of particle swarm optimization, differential evolution, and genetic 

algorithms, being inspired by former studies (Karaboga and Akay, 2009; Civicioglu and Besdok, 

2013). 

Algorithm Parameters Values  
Cognitive component 1.8 
Social component 1.8 
Inertia weight 0.6 
Population size  50 

Particle swarm optimization 

Termination condition  Reaching the 5000 number of function evaluations 

Differential weight 0.5 
Crossover rate 0.9 
Population size  50 

Differential evolution algorithm 

Termination condition  Reaching the 5000 number of function evaluations 

Crossover method Single point crossover  
Crossover rate 0.8 
Mutation rate  0.01 
Selection method  Stochastic uniform sampling 
Replacement rate 0.1 
Population size  50 

Genetic algorithm 

Termination condition  Reaching the 5000 number of function evaluations 
 

Table 4: The mean of the best solutions obtained over 20 runs of the fractal-based algorithm and 

the four algorithms compared. 

Fractal-based
algorithm

Genetic algorithmDifferential evolution
algorithm

Particle swarm
optimization

 

2.9962.9652.9962.988Goldstein-Price
-1-1-1-1Easom
−1.08091−1.08087−1.08091−1.08084Langermann
−186.7297-186.7288-186.7295-186.7283Shubert

 
Table 5: The standard deviation of best solutions obtained over 20 runs of the fractal-based 

algorithm and the four algorithms compared. 
Fractal-based
algorithm

Genetic algorithmDifferential evolution
algorithm

Particle swarm 
optimization

0.0050.0520.0070.017Goldstein-Price
0000Easom
0.000040.000150.000030.00021Langermann
0.00040.00110.00030.0013Shubert

 
Table 6: The mean of the best solutions obtained over 20 runs of the fractal-based algorithm for 

several values of parameters 1m  and 2m . Other parameters were adjusted according to Tables 2 

and 3.  

20, 21 =mm15, 21 =mm10, 21 =mm5, 21 =mm2, 21 =mm
2.9842.9922.9962.996 2.981 Goldstein-Price
-1-1-1-1 -0.989 Easom
−1.08087−1.08091−1.08091−1.08092−1.08086Langermann
−186.7295−186.7297−186.7297−186.7294 −186.7283 Shubert

 



 

Table 7: The mean of the best solutions obtained over 20 runs of the fractal-based algorithm for 

several values of parameter 3P . Other parameters were adjusted according to Tables 2 and 3.  

73 =P  53 =P  33 =P  23 =P   

Number of 
iterations 

Best 
solution 

Number of 
iterations 

Best 
solution 

Number of 
iterations 

Best 
solution 

Number of 
iterations 

Best 
solution 

 

67.5 2.996 65.3 2.996 63.1 2.988 49.8 2.986 Goldstein-
Price 

77.4 −1 75.7 −1 68.5 −1 65.4 -0.993 Easom 
39.6 −1.08092 37.3 −1.08091 35.2 −1.08085 31.6 −1.08083 Langermann 
68.1 186.7297 67.9 −186.729764.6 186.7295 63.4 −186.7293 Shubert 

 

 

 
(a) Convergence diagram for Goldstein-Price function (b) Convergence diagram for Easom function  

 
 

(c) Convergence diagram for Langermann function (d) Convergence diagram for Shubert function 

Figure 6. Algorithm convergence diagrams for the four benchmark functions. 



 

 
Figure 7. Distribution of candidate solutions during the run of the fractal-based algorithm for the 

Goldstein-Price function. 

 
Figure 8. Distribution of candidate solutions during the run of the fractal-based algorithm for the 

Easom function. 



 

 
Figure 9. Distribution of candidate solutions during the run of the fractal-based algorithm for the 

Langermann function. 

 

 
Figure 10. Distribution of candidate solutions during the run of the fractal-based algorithm for the 

Shubert function. 



 

5. CONCLUSION 
 

This paper developed a population-based metaheuristic algorithm for the continuous optimization 

problem, where, by iterative partitioning of the state space based on fractal-shaped structures, the 

promising areas of the state space are estimated so that those areas are more precisely and more 

extensively searched. The proposed algorithm was compared to particle swarm optimization, 

differential evolution, and genetic algorithms and the results of the evaluations demonstrated that the 

proposed algorithm can find the solution to the benchmark problems with higher precision within 

appropriate time. The main advantage of the fractal-based algorithm is that during the search process 

it hierarchically partitions the state space into small blocks and it pays less attention to the less 

promising blocks and focuses on the promising blocks. It this way, the algorithm conducts a fast and 

targeted search towards the problem solution.  

It is recommended that future studies further improve the heuristic proposed in this paper to detect the 

promising areas. For this purpose, it is suggested that besides the number of good points in an area, 

the future studies pay attention to criteria such as the mean and standard deviation of the high quality 

points existing in each area so that the promising areas are estimated more precisely. In addition, in 

the future studies the proposed algorithm can be extended to be applied in dynamic optimization 

problems and its performance can be compared to former population-based algorithms proposed for 

dynamic optimization (Kaedi, et al., 2013; Kaedi, et al., 2016). Furthermore, more research should be 

conducted on choosing suitable values for the control parameters of the proposed algorithm. 
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