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ABSTRACT

In recent year, the planning techniques provide a large variety of methods to construct plan
and reason about plan component and plan itself. However solving many planning prob-
lems are still difficult. In this paper, we propose a new pre-processing technique for hybrid
planning - a method that combines reasoning about procedural knowledge and causalities.
The proposed technique depends on two modules. Firstly, rule out the irrelevant knowledge
from the declarative hybrid planning domain and problem description. Secondly, constructs
a transformation technique to convert the hybrid planning domain that is produced from the
first step to a classical domain in STRIPS form. In addition, we proved that the plan exis-
tence problem is decidable. Furthermore, the experimental studies depend on four different
benchmark problems, and the experimental results show that the proposed technique im-
proves the performance of hybrid planning system.

Keywords: Classical Planning, Hierarchical Planning, Reachability Analysis.

Mathematics Subject Classification: 68T20.
Computing Classification System: I.2.8.

1 Introduction

Today, the field of Artificial Intelligence (AI) planning provides many techniques to construct
a plan for a given planning problem Πcp. Planning is the process of generating structured
actions (called solution plan) that satisfy the desired goal when executed (Nau, Ghallab and
Traverso, 2004). In general, the most popular paradigms in AI planning is so-called: classical
planning.
Definition 1: (Planning problem in Classical planning Πcp): A planning problem Πcp =

〈IS,A,GS〉 consists of an initial world state (IS), a number of actions (A), and a set of ground
literals so-called goal state (GS). A world state (S) is represented by a set of logical facts. The
initial world state IS is expressed as a set of literals.
In classical planning, actions are represented by STRIPS (Fikes and Nilsson, 1971).
Definition 2: (Action A): An action A is represented by 〈pre(a), add(a), del(a)〉. where, (1)
pre(a) represents the pre-conditions that must be achieved before the action can be executed.



(2) add(a), and del(a) represent a set of facts so-called post-conditions that change the state
of the world after action execution.
Note that add(a) and del(a) respectively represent positive and negative literals as well as
add(a) ∪ del(a) = φ

Definition 3: (State Change (App(S, a))): Applying the action a in the current state S produces
new state App(S, a) as follows:

App(S, a) =

{
(S ∪ add(a))/del(a) if pre(a) ⊂ S
S Otherwise

So, the result of applying a sequence of actions 〈a1, a2, · · · , an〉 to the current state s recur-
sively is defined as the following:

Result(s, 〈a1, a2, · · · , an〉) = App(Result(s, 〈a1, a2, · · · , an−1〉), an).

Therefore, a plan in classical planning is a sequence of actions A∗ ∈ A that transform the initial
world state IS stepwise into a state that has the literal goals of GS.
Hierarchical Task Network (HTN) planning (Seegebarth, Muller, Schattenberg and Biundo,
2012) is a widely used planning paradigm. An HTN planning relies on two concepts: tasks
and methods. Complex tasks represent compound activities like transporting certain products
from specific location to another location. Primitive tasks correspond to classical planning ac-
tions. Hierarchical domain models include some decomposition methods for each complex
task. Each method provides a task network (partial plan), which specifies a pre-defined (ab-
stract) solution of the corresponding complex task. Hierarchical planning problems are initial
task networks. They are refined by incrementally decomposing the complex tasks until the
network contains only consistent primitive tasks. The decomposition of a complex task by an
appropriate method replaces the complex task by the plan specified by the respective decom-
position method. In classical planning, the planning effort is reduced by doing pre-processing
for a planning domain model and/or problem description (Hoffmann and Nebel, 2001; Gregory,
Cresswell, Long and Porteous, 2001; Haslum, Bonet and Geffner, 2005).
In general, plan existence in the classical planning is known to be decidable, while in HTN
planning has been proved undecidable. Using decomposition method in hierarchical planning
speed up the process of finding solution plan, but at the same time it causes undecidabil-
ity. However, hierarchical planner overcome this problem by introducing a set of restrictions
on the decomposition methods that cause plan existence decidable (Kutluhan, Hendler and
Nau, 1994).
In this work, we introduce a novel technique that achieve decidability without introducing restric-
tion on decomposition methods by introducing a pre-processing technique and then transform
the resulted hierarchical domain model into the classical model in the STRIPS-style.
The pre-processing technique was inspired by (Elkawkagy, Schattenberg and Biundo, 2010).
They adapted the landmark concept from classical planning which introduced by (Hoffmann,
Porteous and Sebastia, 2004; Sebastia, Onaindia and Marzal, 2006; Helmert and Domsh-
lak, 2009; Keyder, Richter and Helmert, 2010) to work in hierarchical planning.
In classical planning, landmarks are defined as a set of facts that must be true at some point
in every solution plan for a given problem (Gregory, Cresswell, Long and Porteous, 2004). The



knowledge that gained from extracting landmarks is used in forward search planner to compute
heuristic functions (Karpas and Domshlak, 2009; Richter, Helmert and Westphal, 2008). It is
also used to investigate their relations to the critical path, and abstraction-heuristics (Bonet and
M., 2010; Domshlak, Katz and Lefler, 2010; Keyder et al., 2010; Helmert and Domshlak, 2009).
On the other side, landmarks in hierarchical planning are defined as a set of complex or primi-
tive tasks that must exist in any path to a solution plan. In contrast landmarks are also used to
generate part of hierarchy (Shivashankar, Alford, Kuter and Nau, 2013) and landmark knowl-
edge is used to generate heuristic search techniques for HTN planning (Elkawkagy, Bercher,
Schattenberg and Biundo, 2012). In summary, the performance of classical planners as well
as hierarchical planning can significantly improve using landmark information.
In this paper, we introduce a new pre-processing technique and exploit it in the hybrid planning.
The hybrid planning paradigm is an integration technique that combine partial-order causal-link
planning and hierarchical planning. It is the most applicable paradigm for solving complex real-
world planning problems. The benefits of hybrid planning over hierarchical planning paradigm
is in a lot of complex real worlds can be encoded in the hierarchical planning, but a lot of
parts of the domain might be non-hierarchical and need to be modeled by classical planning
paradigm. Fortunately, hybrid planning considers both, in that it allows for the specification of
an initial plan and complex tasks as in the HTN planning. In addition, it allows to insert new task
to close open pre-conditions as in classical planning. Furthermore, the complex tasks in hybrid
planning have pre- and post-conditions. Therefore, they can be inserted into intermediate plans
thereby improving the search efficiency (Geier and Bercher, 2011). So, the efficiency of hybrid
planning is increased due to the decomposition method (abstract solution) achieving the post-
conditions of the relatively complex task. In the hybrid planning Goal description is identified in
the hybrid planning problem like in the classical planning. Note that the resulting hybrid plan-
ning (Kambhampati, Dattatraya and Srivastava, 1998) integrates HTN planning in a general
framework for refinement planning, thereby making use of operator-based techniques. In this
view, the algorithm uses reduction schemes where available, and primitive actions otherwise.
Causal interaction is also analyzed at the abstract level and refined by mapping conditions
and effects of abstract tasks on conditions and effects in their sub-tasks. Abstract conditions
are solved by phantom establishers that are identified at a later stage while the hybrid frame-
work proposed here postpones such steps if no suitable task is less abstract enough. Conflict
detection and resolution can only be done at the primitive level, as in contrast to our method-
ology, there is no link between causalities in the different levels of abstraction. Kambhampati
addresses user intent by defining a subset of abstract effects explicitly for condition establish-
ment, and by explicitly representing the incompleteness of scheme definitions. For the latter,
a specific predicate prevents insertion of new steps. Generally, AI-planning is applied in a lot
of domains such as control systems (Precup, David, Petriu, S. and Radac, 2013), removing bi-
nary artifacts(Ramı́rez-Ortegón, Märgner, Cuevas and Rojas, 2013) and power management
system (El Sehiemy, Abou El-Ela and Shaheen, 2013), (Tomin, Zhukov, Sidorov, Kurbatsky,
Panasetsky and Spiryaev, 2015)
Before introducing the pre-processing hybrid planning technique in section 3 and 4, we will
introduce hybrid planning in general and our framework in section. 2. Before concluding this



paper with some remarks in section 6, we will show some experimental results on some bench-
mark problems in section 5.

2 The Hybrid Planning Framework

Our pre-processing technique is applied on a hybrid planning framework that integrates the
features of Partial-Order-Causal-Link (POCL) and HTN techniques (Bercher, Keen and Bi-
undo, 2014; Bercher, Hller, Behnke and Biundo, 2015). POCL planning is a technique used to
solve classical planning problems. Plan in POCL consists of a set of partially ordered actions
and the dependencies between actions are represented explicitly via causal links. This allows
the user to understand the causal structure of the plan.
As opposed to the classical planning, HTN planning represents task by two different kinds:
primitive tasks with pre-conditions and post-conditions such as action in classical planning. As
well as complex tasks that represent complex activities (abstract task) such as transporting
goods, and predefined standard solutions (decomposition methods) of these abstract tasks.
Our framework relies on the ADL language (Pednault, 1989). Therefore, a task schema
t(τ) = 〈prec(t(τ)), add(t(τ)), del(t(τ))〉 identifies the pre-conditions and post-conditions of a
task through a combination between a set of positive and negative literals over the task param-
eters τ = τ1, ...., τn. Note that in the hybrid planning framework, both primitive and complex
tasks show pre-conditions and post-conditions, which give us the opportunity to encode POCL
planning operations even on complex levels. Note that there may be more than one instance
of a task in the same partial plan. To keep these instances apart, we introduce unique identi-
fiers for tasks. The resulting tuple ps(τ) = 〈id, t(τ)〉 is called a plan step, with id ∈ N (natural
number).
In our framework, a partial plan is a tuple P = 〈PS,CS〉, which consists of a set of plan steps
PS and a set of constraints CS = 〈≺, V C,CL〉. In the partial plan, the set of constraints CS
consists of three types of constraints. The symbol ≺ represents a partial order on the plan
steps. The symbol V C implements the equations of codesignating and non-codesignating pa-
rameters that occur in PS with each other and with constants (i.e., {v1 = v2}). Finally a set
of causal links is represented by the symbol CL that establish causal relationships among the
plan steps PS in a partial plan P . Each causal link has the form 〈psi,Æ, psj〉 , indicating that
Æ is implied by pre-condition and post-condition of plan step psj and psi respectively. Methods
m(τ) = 〈ps(τ), P 〉 relate an abstract task ps(τ) to its implementing partial plan P . In general,
each complex task is implemented by multiple methods.
In order to find a solution plan Psol for a given hybrid planning problem, the hybrid plan-
ner recursively refines the the initial plan Pinit into a partial plan Psol = 〈PSsol, CSsol〉 st.,
CSsol = 〈≺sol, V Csol, CLsol〉.
Definition 4:(Hybrid planning problem): A hybrid planning problem Πhyb = 〈D,Pinit, IS,GS〉
consists of a domain model D, an initial state IS, a goal state GS like classical planning, and
an initial partial plan Pinit. A domain modelD = 〈Tp, TC ,M〉 formed from a finite set of primitive
task schemata Tp, a finite set of complex task TC and a set of decomposition methods M .
Definition 5:(Solution plan Psol): A solution plan Psol = 〈PSsol, CSsol〉 consists of a set of



plan steps PSsol and a set of constraints CSsol = 〈≺sol, V Csol, CLsol〉 such that ordering con-
straints ≺sol, variable constraints V Csol and causal link constraints CLsol.
The solution plan have to achieve the following solution criteria:
1) Psol is a refinement of Pinit and PSsol contains only ground instances of primitive task
schemata. 2) All precondition of a plan step in PSsol is supported by a causal link in CLsol,
3) The ordering constraints in ≺sol does not include a cycle on the plan steps PSsol 4) None
of the causal links in CLsol is threatened. A causal threat is the situation in which the partial
order of a plan would allow a plan step psk with a post-condition that implies ¬Æ to be ordered
between two plan steps psi and psj for which there is a causal link 〈psi,Æ, psj〉.
To find a solution plan, the planner explore a plan space of plan refinements. Refinement
process includes recursively decompose the abstract tasks by their decomposition methods;
Causal links can be solved by adding open pre-conditions of plan steps or by adding ordering
and variable constraints. We call such a refinement process a plan modification.
Our planning algorithm (Algorithm 1) takes the planning problem Πhyb as an input and updates
it step by step until a solution plan is found.

Algorithm 1: Hybrid planning Algorithm
Input : Planning Problem Πhyb,

Fringe F ←− Pinit
Output: Solution plan or Failure
while (F not empty) do1

P←− PlanSel(F)2

F←− (F) \ P3

if (Flaws(P) is empty) then4

return P5

f←− FlawSel(Flaws (P))6

F←− F
⋃
{apply(m(f), p)}7

return Failure8

For a given hybrid planning problem Πhyb, our planner performs a search in a plan space. The
fringe of the algorithm is a data structure used to maintain a sequence of plans P1 . . . Pn that
are ordered for further consideration. This means it contains all non-visited plans that are di-
rect successors of visited non-solution plans (intermediate plan). The used search strategy
decides which plan can lead to a solution such as Pi leads to a solution plan more quickly than
a plan Pj where j>i. Therefore, after selecting a partial plan P from a fringe using the module
planSel the plan P is removed from the fringe set.
The planning algorithm works recursively as long as no solution is found, and there are still
plans in the fringe needed to refine (line 1). The selected plan via plan selection module
PlanSel is removed from the fringe F (line 3). Hence, all flaws in the selected plan are deter-
mined via flaw selection module FlawSel (line 6). A flaw is defined as a set of plan component
that causes violation in a solution criterion such as (1) complex task flaw: the presence of an
abstract task raises a flaw that includes that task, and (2) Threat flaw: a causal threat consists
of the causal link and the threatening plan step. In case of there is no flaws in the current plan,



and all solution criteria are satisfied then the algorithm is terminated and return the current
plan as a solution (line 4 to 5).
Note that a plan selection planSel orders the generated plans in the fringe. During this step
plans that have unresolvable flaws such as inconsistent ordering of tasks are removed from
the fringe. The planner is terminated successfully with the solution plan or returns with failure
in case of the fringe becomes empty, and no solution exist.
For a single flaw f , there may be a lot of possibilities to solve it such as for an open pre-
condition, there might be several actions that can be used as a producer for the respective
causal link. Each possibility called a modification m to the current plan P. Those modifications
are computed and applied to the current plan P that lead to a set of successor plans (line 7).
The proposed framework defines the control search strategy in an explicit manner. In this
framework, there are two control strategies modification and plan search strategy. The modifi-
cation selection strategy FlawSel() decides, which branches to visit first. In this way, the plan
selection strategy PlanSel() is used to prioritize the plans; several strategies can be concate-
nated into cascades. This means that our framework can be used to construct a rich variety of
planning strategies.

3 Our Approach

The proposed approach depends on two phases:
1. Using hybrid domain model and problem description we will build a Decomposition Graph
(DG), and hence perform the pruning technique on it to rule out domain parts that might be
irrelevant to the given planning problem. (Pruning phase)
2. The new domain model that is produced from the previous phase will be translated into a
classical planning domain by translating each occurrence of a task either complex or primitive
into operators of classical planning. (Transformation phase)
Now we will start by identifying some terminology based on DGs that is used in our pre-
processing technique. For a given planning problem Πhyb = 〈D,Pinit, IS,GS〉, a DG is defined
as an AND/OR graph. A DG represents all possible decompositions methods that break down
the complex tasks in the initial plan Pinit. So, a DG is represented by DG = 〈VT , VM , E〉. The
symbol VT represents task vertices (AND node) that includes all ground tasks either complex
or primitive which are produced from decomposing tasks in the initial plan Pinit. VM represents
vertices of decomposition method (OR node) that solve the complex tasks in the VT and finally
E represents the connection edges between different vertices from VT to VM or from VM to VT .
In general, task node in the DG contains a number of ground tasks instead of the concrete task
in the Task Decomposition Tree (TDT) (Elkawkagy et al., 2010), and it is used as a basis for a
set of search strategies. Therefore, DG has an enormous number of ground tasks and method
instances that can be used to decompose the complex tasks. Therefore, to build a finite DG
we will neglect the tasks that are already encountered in the DG. Therefore, tasks in the DG
are mandatory tasks or optional tasks. Mandatory tasks are the tasks that must occur in all
decomposition methods of a certain abstract task. These tasks are used as an intermediate
step to extract another set of tasks called optional tasks. The optional tasks are used to decide



set of tasks called optional tasks. To rule out the irrelevant part of the hierarchical domain. The
optional tasks are used to decide which parts are irrelevant respect to the given planning problem.

To eliminate the irrelevant parts from the DG, we will use the estimation algorithm (Algorithm 2)
which rely on the concept of mandatory and optional tasks. Mandatory tasks help us to identify
decomposition methods that solve the specified complex tasks. To identify mandatory tasks, we firstly
define the set of subtasks (plan steps) PS(t(')) of a ground abstract task t(') where ' represents task
parameters.

Figure 2: DG before applying pruning algorithm

For simplicity suppose we have the DG in the Figure 2. For each decomposition method m, for a
complex task t('), PS(t(')) = { t'('') | ((m, t'('')E)|( t('), m)E)} includes a set of all tasks in the set
of subtasks in the task network referenced by a decomposition method m. Therefore according to the
DG in Figure 2, PS(T0) = {{T011, t012}, {T021, t012, T023}, {T031, t012, T032, t033}}, PS(T011) = {{t01111, t01112

}}, and PS(T023) = {{ t02211, T02212}, {t02221, t02222}}.
The set of mandatory tasks µ (t(')) of a ground complex task t(') is then calculated by:

The set µ(t(')) includes tasks either primitive or complex which exist in the decomposition method
m that is solve the complex task t('). Therefore, µ(t(')) represents the lower bound for estimating the
decomposition effort of solving abstract task t('). In our example, µ (T0) = {t012}, µ (T021) = {t02112}, µ
(T023) =, µ (T011) = {t01111, t01112).

The set of remaining tasks  (t(')) identify the set of tasks that is still exist in the set of subtasks
PS(t(')) and not exist in the mandatory set. In our example,  (T0) = {{T011}, {T021, T023}, {T031, T032,
t033}}.

Root (Complex task)T0

M01 M03M02

T011 t012 T021 t012 T023 T031 T032 t033

M0111 M0212M0211 M0222M0221
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Figure 1: DG before applying pruning algorithm: DG is formed from decomposing the initial plan recur-
sively until reach to primitive nodes. Gray color: primitive tasks; Green color: Unreachable
task

which parts are irrelevant respect to the given planning problem.
To eliminate the irrelevant parts from the DG, we will use the Pruning algorithm (Algorithm
2) which rely on the concept of mandatory and optional tasks. Mandatory tasks help us to
identify decomposition methods that solve the specified complex tasks. To identify mandatory
tasks, we firstly define the set of subtasks PS(t(τ ′)) of a ground abstract task t(τ ′) where τ ′

represents task parameters. For simplicity suppose the DG in the Figure 1. For each decompo-
sition method m, for a complex task t(τ ′), PS(t(τ ′)) = {t′(τ ′′), ∃m|t′(τ ′′) ∈ E)&(t(τ ′),m) ∈ E}
includes a set of all tasks in the set of subtasks in the task network referenced by a decompo-
sition method m. Therefore according to the DG in Figure 1,

PS(T0) = {{T011, t012} , {T021, t012, T023} , {T031, t012, T032, t033}},
PS(T011) = {{t01111, t01112}}, and PS(T023) = {{t02211, T02212} , {t02221, t02222}}.

The set of mandatory tasks µ(t(τ ′)) of a ground complex task t(τ ′) is then calculated by:

µ(t(τ ′)) =
⋂
ps∈PS(t(τ ′)) ps

The set µ(t(τ ′)) includes tasks either primitive or complex which exist in all decomposition
methods that solve the complex task t(τ ′). Therefore, µ(t(τ ′)) represents the lower bound for
estimating the decomposition effort of solving abstract task t(τ ′). In our example, µ(T0) =

{t012}, µ(T021) = {t02112}, µ(T023) = φ, µ(T011) = {t01111, t01112}.
The set of remaining tasks γ(t(τ ′)) identify the set of all tasks that still exist in the set of
subtasks PS(t(τ ′)) and not exist in the mandatory set .

γ(t(τ ′)) =
⋃
ps∈{PS(t(τ ′))\µ(t(τ ′))} ps

In our example, γ(T0) = {{T011} , {T021, T023} , {T031, T032, t033}}.
Now we are ready to demonstrate the algorithm (Algorithm 2) that shows how to analyze the
given planning problem and domain model to identify unreachable tasks and then to remove



the respective tasks from the created DG. It takes a DG, as input and runs recursively to iden-
tify the irrelevant parts that will be pruned from the DG.
The pruning algorithm (Algorithm 2) computes the mandatory set and optional sets γ for each
complex task in the DG. The algorithm takes a DG, which is computed previously before call-
ing the algorithm, as input and returns a DG after removing irrelevant parts. It is depend on
the type structure of the domain model of the planning problem and identifies whether some
preconditions of a primitive task can never be satisfied such as in (Fox and Long, 1998). The
proposed reachability analysis starts with the root of the DG (tasks in the initial plan) and go
further until the frontier becomes empty. So, the pruning algorithm uses a relaxed reachability
analysis to test the reachability of all primitive tasks either in the mandatory set or optional sets.
If a task is unreachable, the decomposition method introducing this task is pruned from the DG
and all its sub-nodes (and so forth). After all infeasible methods of a complex task t have been
pruned from the DG, this task, its intersection, and the remaining complex tasks are stored into
the frontier for the next examination.
Now, we will show how to achieve this task by our algorithm (Algorithm 2): First, the frontier
queue F , visited V , and unreachable set gets initialized (line 1 to 3). Afterward, each complex
task, which is not yet examined (not stored into the visited set) is considered (line 4 to 6). To
avoid examining a task twice, the current task is removed from the frontier and add it to the
visited set(line 7 to 8). Moreover, hence, for the current complex task at hand, line 9 calculates
the mandatory tasks µ(t) and the optional tasks sets γ(t) in the unpruned DG.
The pruning algorithm is interested by the tasks that are remaining. Therefore, to compute the
optional set γ, the empty sets are neglected. After that, the reachability analysis is performed
for each primitive task. First, for each primitive task exist in the mandatory task µ(t) (line 10).
If such a task is infeasible, then all methods including t become irrelevant and can hence be
pruned from the DG (line 11 to 14). After this test, each optional task set is tested for reacha-
bility.
If a task is found infeasible, only this specified method gets pruned from the DG (line 16 to 23).
After that, add each new complex task either in mandatory (line 17 to 18) or optional sets (line
25 to 27) to frontier F for further examination. Finally, when storing an entry in unreachable set
(line 28 to 29) recursively remove again all methods containing this task as well as removing
its parents and so on.



Algorithm 2: Pruning Algorithm
Input : A decomposition graph DG
Output: The pruning decomposition graph DG
Unreachable←− φ1

V isted V ←− φ2

Fringe F = newQueue(root)3

while (F is not empty) do4

for each complex task t ∈ F do5

if V contains t then continue6

V = V ∪ t7

F.pop(t)8

Compute the mandatory µ and Optional sets γ9

µ(t(τ ′)) =
⋂
ps∈PS(t(τ ′)) ps

γ(t(τ ′)) =
⋃
ps∈{PS(t(τ ′))\µ(t(τ ′))} ps

for each primitive task t′ ∈ µ do10

if (infeasible (t’) = = true) then11

Remove all methods m ∈ M from the DG including all sub-nodes12

Unreachable = Unreachable ∪ t′13

break14

15

for each complex task ct ∈ µ do16

F.push(ct)17

for each optional task set ots ∈ γ do18

for each primitive task pt ∈ ots do19

if (infeasible (pt) = = true ) then20

Remove the method m = 〈pt, P 〉, with Tasks(P ) = µ(pt) ∪ γ from the DG,21

including all sub-nodes
Unreachable = Unreachable ∪ pt22

continue23

24

for each complex task oct ∈ ots do25

F.push(oct)26

for each task t ∈ Unreachable set do27

recursively find all parents of task t28

remove these parents from DG29

return DG30



4 Transforming Hybrid Domain

A hybrid planning domain will be translated into a classical planning domain by considering the
DG that is produced from execution of the Algorithm 2 on the initial hybrid planning domain.
This will be done by translating each ground complex task as well as translating each ground
primitive task as described below.
Translating ground of complex tasks: Each ground complex task t(τ ′) will be translated into
A new operator tnew(τ ′) with STRIP-style as follows:
(1) The execution of a complex task t(τ ′) is completed if it is solved by one of its decom-
position methods. The decomposition method is accomplished if and only if all its sub-tasks
(i.e, t1, t2, ..., tk) are achieved. Therefore, to ensure the execution of the respective method, a
new task is built, for each decomposition method, instead of a decomposition method. The
new task is so-called TaskRef −new−MethodName. The pre-conditions of this task are con-
sidered as artificial literals. Each literal represent task in the method sub-tasks. These artificial
literals are so-called t1 − solved, t2 − solved, ...., tk − solved.
(2) Sometimes, sub-tasks are ordered such as t1 < t2 and t2 < t3. Therefore, to achieve these
ordered constraints the effect and artificial literal (i.e., post-condition(t3) and t3 − solved) of the
last task are considered the precondition of a new task.
(3) A single artificial post-condition TaskRef−achieved is added to each new task. This means
that the complete execution of a task is achieving the respective decomposition method.
(4) In general, each complex task can be solved by some decomposition methods, and then a
number of new tasks are created according to the number of decomposition methods. All of
these new tasks have the same post-condition (i.e., TaskRef − achieved).
(5) Finally, the pre-condition of a tnew(τ ′) is also the artificial post-condition for all tasks TaskRef−
new −MethodName and its post-condition is TaskName− solved.
Translating ground of primitive tasks: Each ground primitive task t(τ ′) is transformed as
follows: (1) A new task tnew(τ ′) is build without any updating in its pre-conditions.
(2) In addition to the original post-condition of the respective ground primitive task, an artificial
literal tnew − solved is added to this post-condition.
(3) The ordering constraints between ground sub-tasks are translated by adding pre-conditions
between sub-tasks. Such as the ordering constraints between sub-tasks (ti < tj) is repre-
sented in the transformed domain by adding the artificial literal t1 − new − solved to the pre-
conditions of predecessor task t2. If sub-task t2 is a complex task, the literal t1 − new− solved
will be added to every sub-task existing in the decomposition method that solve the complex
task t2.
To ensure that the new task either primitive or complex is used at most once in any solution
plan, we add a literal 6= tnew − achieved to the pre-condition of the respective task.
Translating a hybrid planning problem: A hybrid planning problem Πhyb = 〈D,Pinit, IS,GS〉,
is transformed into a new STRIPS-style planning problem Π′hyb = 〈D′, φ, IS′, GS′〉 as follows:
(1) The proposed transformation technique is used to convert the original planning domain to
the STRIPS-style domain model. So, the original domain D = 〈T,M〉 is translated to a new
form D′ = 〈T ′, φ〉. The symbol T ′ represents all tasks as well as decomposition methods M in
the original domain model.



(2) All sub-tasks in the initial plan Pinit are translated by adding a new task, the so-called
t − solve to the domain model D′. The pre-conditions of t − solve is the post-condition of all
root tasks in a DG and its post-condition is a new literal, so-called t − solve − achieved. Note
that, adding new task t − solve means that the execution of all tasks in the initial plan Pinit is
completed.
(3) In addition the set of literals in the original goal, a new literal t − solve − achieved. which
assure a complete execution of the complex task in the root, is added.

GS′ = GS
⋃
{t− solve− achieved}

(4) The new initial state IS′ is represented by the original initial state IS. It is extended by the
negative literals in the tasks in the new domain model D′ as well as literal ¬t−solve−achieved.

IS′ = {IS
⋃
{¬tnew − achieved|t ∈ T ′and tnew − achieved /∈ IS}

⋃
{¬t− solve− achieved}}

Finally, we ruled out the irrelevant parts, which cannot reach to the solution plan, from a DG.
After that, a hybrid domain model is translated into a domain model with the style-STRIPS
domain model.
As well as a hybrid planning problem is converted to a new planning problem with style-STRIPS
(classical) planning problem.
Correctness. To proof the correctness of the proposed transformation technique, we need
to define proof that there is a one to one and onto mapping function between the hybrid
planning problem Πhyb = 〈D,Pinit, IS,GS〉 and the translated classical planning problem
Π′hyb = 〈D′, IS′, GS′〉 in the form of STRIPS-style.
Theorem 1: Let Πhyb = 〈D,Pinit, IS,GS〉 be any hybrid planning problem. Let δ is the set of
all derivations of solutions for Πhyb. While the notation Ω represents all solutions for translated
planning problem Π′hyb = 〈D′, IS′, GS′〉. If the set of methods M and the set of tasks T is
complete (i.e., each complex task in the domain is identified by at least one decomposition
method), then there is a one to one correspondence that maps δ onto Ω.
Proof: We need to define a mapping function F : δ → Ω and show that F is one-to-one and
onto. Induction can do this.
Let Ω be a solution for a translated planning problem Π′hyb with σ that is a sequence of ac-
tions and method instances that constitute the solution plan Ω. In particular, σ is a con-
catenation of subsequences σ1; . . . ;σk corresponding to subtasks t1; . . . ; tk. Therefore, let
F (σ) = Concatenate (F (σ1), . . . , F (σk)), where each F (σi) for all (1 ≤ i ≤ k) is defined recur-
sively. In general, F (σi) is defined in two cases as follows:
Case 1: suppose σi = σi1; . . . ;σik and its derivation is identified by σ′i = σ′i2; . . . ;σ

′
ik, if σi1 is

primitive task then F (σi) is defined as a concatenation between the translation of task σi1 and
the mapping function of σ′i.
Case 2: if σi1 is a complex task. So, suppose the respective task is decomposed by de-
composition method m and substitution Θ then σ′i is identified by the concatenation of the
sequence of derivations σ′i1; . . . ;σ

′
ij that are produced from the method subtasks. Therefore,

F (σi) = Concatenate
(
m′0Θ,m

′
1Θ, F (σ′i1), . . . ,m

′
jΘ, F (σ′ij)

)
. Where m′1, . . . ,m

′
j are the trans-

lated tasks in the new domain that is corresponding to the sub-tasks in the decomposition
method.



Theorem 2: The time and space complexity of computing the translation planning problem
Π′hyb are both O(α + β). Where α and β respectively are the size of tasks and the recursive
decomposition of methods M in the domain model D.
Proof:The translation of each task t ∈ T (either TA or TC), is a single task. The computation
of this task is a linear-time scan of task T , and it can be seen by examining the size of that
task is α = O(|T |). In case of there is no recursive decomposition for methods M . This means
that β = O(|M |) in this case. For each m ∈ M , the translation of methods M is produced by
a linear-time scan of m, and it can be seen by examining the set of methods O(|m|). On the
other hand, if there is recursive decomposition for methods M , then β is given as input and it
is a fixed number. Thus, the theorem follows.
Example: To illustrate our pre-processing and transformation approaches, assume the follow-
ing artificial example in Figure 1. Note that the complex and primitive tasks are represented
by capital and small letters respectively. The oval shape represents decomposition methods
and symbol ≺ represents ordering constraints between sub-tasks. Assume that the root of
a DG has only one complex task T0 can be decomposed by three decomposition methods
M01,M02, andM03. By applying the proposed pruning algorithm (Algorithm 2), suppose we
found that the primitive tasks t033, t02121, and t02211 are unreachable. Therefore, the branches
that contain these tasks will be pruned. Then a new DG is produced as shown in Figure 2.
After that, the tasks and decomposition methods in the new DG are translated according our
approach as follows: Table 1 shows segment from the domain translation according to our ap-
proach. The decomposition methods will be converted to new tasks so-called T0 − new −M01

and T0−new−M02. They have the same effect T0−achieved but with different pre-conditions.
These preconditions confirm the execution of the sub-tasks in the respective decomposition
method. Therefore, the pre-condition of the first new task T0 − new −M0 is post-condition of
the primitive sub-task t012 − new and the artificial effect T011 − solved of abstract task T011.
On the other hand, the decomposition methodM0111 will be converted to task T011−new−M0111

with pre-condition eff(t1112), and its post-condition is T011 − achieved. This is because task
t01111 is ordered before t01112 then in our transformation approach the post-condition of task
t01111 is added to the pre-condition of task t01112. This means that the task t01112 cannot be
performed before task t01111 is completed firstly.

5 Implementation and Experiments

To measure the performance gained by our approach practically, we run our planning frame-
work with a series of problems over different domains. The experimental runs on a machine
with a 3 GHz CPU and 256 MB Heap memory for the Java VM. Note that this machine has
only one single processor unit.
The evaluation of our approach depends on two directions. Firstly, we compared the time
needed to find a solution plan using the proposed technique (Translation-DG) with conven-
tional hierarchical planning (HP), pruning hierarchical (PHP)(Elkawkagy et al., 2010), SHOP
(Nau, Tsz-Chiu, Ilghami, Kuter, Murdock and Yaman, 2003), which prefers task expansion



Table 1: Transforming the hierarchical domain model into STRIPS operators

Original tasks And Methods Translated Tasks in the STRIPS-style form
Name: T0new

T0 Pre: T0 − achieved
post: T0solved

Name: T0 − newM01

Pre: post(t012 − new)

M01 T011 − solved
post: T0achieved

Name: T011 − new
T011 Pre: T011 − achieved

post: T011solved
Name : t012new

t012 Pre: pre(t012)

post: post(t012) ∪ t012solved
Name : T011 − newM0111

M0111 Pre : post(t01112 − new)

post: T011 − achieved
Name : t01111 − new

t01111 Pre: pre(t01111)

Eff: post(t01111) ∪ t01111 − solved
Name : t01112new

t01112 Pre : pre(t01112) ∪ post(t01111 − new)

Eff: post(t01112) ∪ t01112 − solved
etc. etc.



applying the proposed pruning algorithm (Algorithm 2), suppose we found that the primitive tasks t033,
t02121, and t02211 are unreachable. Therefore, the branches that contain these tasks will be pruned.
Then a new DG is produced as shown in Figure 3. After that, the tasks and decomposition methods in
the new DG are translated according our approach as follows: As depicted in Table 1, the
decomposition methods will be converted to new tasks so-called

T0-new -M0 1 and T0-new -M02. They have the same effect T 0-achieved but with different pre-
conditions. These preconditions confirm the execution of the sub-tasks in the respective
decomposition method. Therefore, the pre-condition of the first new task T0-new-M0 is post-condition
of the primitive sub-task t012 and the artificial effect T011-solved of abstract task T011. On the other
hand, the decomposition method M0111 will be converted to task T011-new-M0111 with pre-condition
ef f( t 1 1 1 2) , and its post-condition is T011-achieved. This is because task t0 1 1 1 1 is ordered before
t0 1 1 1 2 then in our transformation approach the post-condition of task t0 1 1 1 1 is added to the pre-
condition of task t0 1 1 1 2 . This means that the task t0 1 1 1 2 cannot be performed before task t0 1 1 1 1 is
completed firstly.

Figure 3: DG after applying pruning algorithm

4. Implementation and Experiments

To measure the performance gained by our approach practically, we run our planning framework
with a series of problems over different domains. The experimental runs on a machine with a 3 GHz
CPU and 256 MB Heap memory for the Java VM. Please note that this machine has only one single
processor unit.

To evaluate the performance of our approach, we compared the time needed to find a solution plan
using the proposed technique (Translat ion-DG) with conventional hierarchical planning (HP)
[Schattenberg et al., 2007] pruning hierarchical (PHP) [McDermott 2000], SHOP [Nau et al., 2003],
which prefers task expansion for the abstract tasks in the order in which they are to be executed, and
UMCP [Erol et al., 1994], which plans are primary developed into primitive plans that mean all tasks
are primitive and after that the causal interactions between these tasks are handled.

T032

T0

M01 M02

T011 t012 T021 t012 T023

M0111 M0211 M0222

t01111 t01112 t02111 t02112 t02221 t02222< <

Root (Complex task)

Primitive task

Figure 2: DG after applying pruning algorithm: New DG after ruling out the irrelevant nodes that never
lead to a solution plan.

Table 2: Domain Model Hierarchy

Domain Name Complex Task Decomposition Method Primitive Task
UM-Translog Domain 21 51 48

Satellite Domain 3 8 6
WoodWorking Domain 6 14 13
SmartPhone domain 50 94 87

for the abstract tasks in the order in which they are to be executed, and UMCP (Kutluhan
et al., 1994), which plans are primarily developed into primitive plans that mean all tasks are
primitive and after that the causal interactions between these tasks, are handled. Secondly,
the search space size, which means that the number of intermediate plans that are visited to
obtain the first solution, is measured.

5.1 Benchmark Problem Set

Our experiment depends on four domains model. Two of them from the IPC (McDermott, 2000)
and well known in classical planning, and we adapted them to work in the hierarchical environ-
ment. The other domains are adapted from an ongoing research project.
Firstly, From IPC, we adopted a non-hierarchical planning domain so-called Satellite domain
to work in hierarchical planning. As depicted in Table 2, the adapted Satellite domain model
includes three complex tasks and six primitive tasks, as well as eight decomposition methods.
The second domain that adapted from IPC is so-called WoodWorking.It consists of thirteen
primitive tasks, six complex tasks, and fourteen methods the processing of raw wood into
smooth and varnished product parts. UM-Translog is a deep hierarchical planning domain
that supports transportation and logistics. In addition, we applied the so-called SmartPhone
domain, a new hierarchical planning domain that is concerned with the operation of a smart-
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(a) Satellite Domain.
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(b) SmartPhone Domain.
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(c) UM-Translog Domain.
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(d) WoodWorking Domain.

Figure 3: Evaluation results of the Different Domains: Processing Time.

Phone by a human user, e.g., sending messages and creating contacts or appointments. As
depicted in Table 2, SmartPhone is a rather large domain with a deep decomposition hierarchy.

Note that the Satellite planning problems become difficult when modeling some observations,
which means that a small number of decomposition methods is used many times in different
contexts of a plan. The evaluated scenarios are thus defined as observations on one, two
or three satellites. The complexity of planning problems of woodWorking domain come from
the variations of parts to be processed. In the smartPhone domain, the difficulty of planning
problem appears when managing different daily life tasks. On the other hand, the difficulties of
UM-Translog problems come from the decomposition structure, because specific packages are
transported in various ways, such as toxic liquids in trains require completely different decom-
position methods than transporting regular packages in trucks. Therefore, we conducted our
experiments on qualitatively various problems by specifying different locations and/or number
of packages.
Figure 3 shows the runtime needed to solve the specified planning problem of our benchmark
set using different planners. The time represents the total running time of the planning system
in seconds, including the pruning and transformation technique. Note that if the plan generation
process did not find a solution plan within the time constraint (maximum time 9,000 seconds)
and had therefore been canceled.
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(a) Satellite Domain.
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(b) SmartPhone Domain.
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(c) UM-Translog Domain.
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(d) WoodWorking Domain.

Figure 4: Evaluation results of the Different Domains: Plan space Size.

As depicted in Figure 3, the average performance improvement overall problems in the UM-
Translog domain is about 46% in comparison with hybrid pruning planning without transfor-
mation. The improvement performance reaches to 71% in case of comparing with the SHOP
planner. From our results, we observed that the highest gain is accomplished in the transporta-
tion tasks that include special goods such as frozen products and transportation means such
as automobiles.
In general, the shallow decomposition hierarchy such as Satellite domain (see Figure 3-a) does
not benefit significantly from the pruning technique, it achieves high improvement from apply-
ing our pruning and transformation approach.
The SmartPhone and WoodWorking domains (Figures 3-b and 3-d) are two examples of deep-
est hierarchy domains. Therefore, these domains contain a lot of information that help our
approach to achieve high performance. As well as our planner can solve planning problems
the other planners cannot find solution plan within the given resource bounds.

In general, our planner improves the planning time performance of hybrid planning system.
The average performance improvement of our hybrid planner is about 59% in comparison with
pruning hybrid planner while the improvement is about 77% comparing with the hierarchical
planner.
On the other direction, as depicted in Figures 4, the number of visited plans to reach a solution



plan is decreased in different evaluation domains. The Satellite domain (See Figure 4-a) gains
the biggest improvement. The average improvement of the number of intermediate plans is
68%.

6 CONCLUSION

In this paper, we presented an efficient hybrid planner. It analyzes the hybrid planning domain
according to the knowledge in the given hierarchical planning problem and then prunes the
irrelevant parts, which cannot reach to a solution. After that, a transformation technique is
applied to translate the reduced domain model to an STRIPS-style form. In addition, the de-
cidability of plan existence is approved. Furthermore, we ran experiments on a set of bench-
mark planning problems that are relevant to our approach and a number of hybrid planning
domains. We compared the performance of the proposed approach with the performance of
standard planners from the literature. The results show that the average performance that
gain from applying our approach is about 59%, especially in the deepest hybrid domains. In
case of comparing our approach with the traditional hierarchical planner, the performance im-
provement reaches 77%. In addition, the evaluation shows that our approach outperform the
traditional approaches on all problems with a deep decomposition hierarchy. The presented
approach is domain independent and can be applied on any hierarchical planner to improve its
performance.
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