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ABSTRACT 

Compartment models are commonly used tools for nonlinear modeling in pharmacokinetic 
studies. Parameter estimation of compartment models play a crucial role in drug 
development. In order to estimate the model parameters, a derivative-based method, 
called stripping, has been commonly used in drug studies until now. In this study, a 
derivative free simple local search algorithm, Nelder-Mead Simplex (NMS), is hybridized 
with two artificial intelligence optimization algorithms, Genetic Algorithm (GA) and Particle 
Swarm Optimization (PSO). The hybridized algorithms are called GANMS and PSONMS 
which are used for parameter estimation. These hybrid algorithms are all population based 
and do not need any assumptions which make the calculations become easier. Two data 
sets with two compartment models are preferred as application from the literature. It is 
seen from the results that the suggested PSONMS is more preferable among the GA, 
PSO and GANMS with consistence parameter estimates and small error function values. 
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1. INTRODUCTION 
 

Modeling of dynamical systems plays a crucial role in applied science. In order to analyse the 

dynamical systems in many field of science and engineering, compartment models are preferred as 

common modeling tools. One of the well-known field, in which the compartment models are widely 

used, is pharmacokinetic. A pharmacokinetic model explains how the concentration of a drug in blood 

plasma declines over time. In other words, what the body does to the drug is called pharmacokinetic. 

Since the development of drugs is time consuming and costly (Koch, 2012), mathematical modeling of 

pharmacokinetic is thought to be an important field in drug development.  



 

Most pharmacokinetic models are deterministic in nature. Deviations and fluctuations attributed to 

experimental error. Parameters, such as volumes and rate constants, are assumed to be constant 

and wanted to be estimated. There are some studies about the estimation of pharmacokinetic 

parameters in the literature, e.g. Frome and Yakatan (1980); Booth (1991); Ozbek and Efe (2004). 

Besides, a derivative-based operation, called “back projection” or “stripping” method, is used to obtain 

the estimates of parameters in the literature (Wagner, 1975; Ağabeyoğlu, 2009). However, it has 

some drawbacks during the calculations. The major problem with performing the method is that each 

person who applies the method to the same set of data will usually obtain a different answer than the 

next person because of the preference knowledge during the linearization (Wagner, 1975). The 

stripping method, a kind of gradient based method, may cause loss of information. In order to make 

the calculations easier without any assumptions on the objective function, derivative-free optimization 

algorithms can be preferred. Rios and Sahinidis (2013) explained derivative-free optimization 

algorithms in detail and gave the comparison about them.  

In this study, it is aimed to estimate the compartment model parameters by minimizing the error 

function, assumed as objective function, through derivative-free based hybridized algorithms. The 

hybrid algorithms are composed with a derivative-free simple local search algorithm (Nelder-Mead 

Simplex - NMS) and population based artificial intelligence algorithms (Genetic Algorithm – GA and 

Particle Swarm Optimization - PSO).  

The GA is a population based heuristic algorithm, firstly introduced by John Holland (1975). It 

represents an intelligent global random search used to solve optimization problems. The GA is used 

for pharmacokinetic parameter estimation in compartment models in some previous studies, e.g. 

Murase et al. (1999), Zandkarimi et al. (2014), Holmes et al. (2000). The other population based 

heuristic algorithm, used in this study, is PSO. The PSO is firstly described by Eberhart and Kennedy 

(1995). In pharmacokinetic studies, Luo et al. (2013) used glow worm swarm optimization algorithm 

for solving parameters of pharmacokinetics. Both GA and PSO perform exploratory searches over 

their search spaces. However, it is important to balance this exploration with better exploitation by 

taking the solution towards the closest maximum fitness. This can be achieved by hybridizing a local 

search method. In this study, NMS, introduced by Nelder-Mead (1965), is preferred to improve the 

search process through hybridization. In pharmacokinetic studies, the PSO hybridization with NMS is 

done in the studies of Ouyang et al. (2011) and the hybrid algorithm is called AHPSO (adaptive hybrid 

particle swarm optimization). The other hybrid study is presented in the studies of Türkşen and Tez 

(2015). The GA is hybridized with NMS and called GAHNMS. The obtained estimates of compartment 

model parameters are compared with GA and PSO. It is seen that the GAHNMS has better 

performance.  

The main idea behind the hybrid algorithms are obtaining an effective search mecanism by combining 

the advantages of each algorithm. It should be noted that various heuristic approaches e.g. Simulated 

Annealing (Kirkpatrick et al., 1983), Ant Colony Search Algorithm (Dorigo et al., 1996), Gravitational 

Search Algorithm (Rashedi et al., 2009) and also different hybridized combinations (Valdez et al., 



 

2011; David et al., 2013; Zavoianu et al., 2013; Khmelev and Kochetov, 2015) can be used for 

parameter estimation process. 

This paper proposes a new hybrid algorithm by using PSO and NMS, called PSONMS, for obtaining 

the estimates of compartment model parameters. And also, it suggests that the proposed hybrid 

algorithm has the better consistent convergence to the best fitness value than the GA, PSO and 

GANMS. The rest of the paper is organized as follows. The detailed information about compartment 

models is given in Section 2. In Section 3, intelligence optimization algorithms and hybrid algorithms 

are presented. Two data sets from the literature are used for application purposes in Section 4. In 

Section 5, conclusion and future work are given. 

 
2. COMPARTMENT MODELS 

 

The compartment approach is the standard method in pharmacokinetic modeling because it allows 

the idendification of parts of the body with compartments in the model. A one-compartment model is 

shown in Figure 1 in which the body is depicted as a kinetically homogenous unit. In Figure 1, 

absorption and elimination rate constants, in h-1 unit, are represented as ak  and k , respectively. 

 

 
Figure 1. One-compartment model 

 

In two-compartment model, the compartments are connected among each other in both directions and 

therefore, a distribution between the central and the peripheral compartment takes place (Koch, 2012). 

A schematic overview of the two-compartment model is presented in Figure 2. 

 

 
Figure 2. Two-compartment model 

 
Here, the rate constants, which are rate of transfer from central to peripheral compartment, rate of 

transfer from peripheral to central compartment, and rate of elimination from central compartment are 

denoted as 12k , 21k  and elk , respectively. 

It should be noted that the two-compartment model is called multi-compartment model in which the 

drug distributes into more than one-compartment. The compartment model is actually equation, or 

sets of equations, which describe the proposed system. One can easily define the changes in the 

concentration in the plasma by creating differential equations. The basic differential equation of a 

typical compartmental model with k  components are 
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where ijc  are nonnegative constants and ( )i ix x t=  is the amount of material in compartment i  at 

time t  (Lai, 1985). Under certain assumptions, integration of differential equation turns out to be 

polyexponential in form as 
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where 1 2, ,..., kλ λ λ  are positive constants depending only on the ijc . Here, the iβ  and ijα  are 

constants. The above equation expresses the observed response as a polyexponential function of 

time t . Therefore, the problem can be considered as parameter estimation for polyexponential 

regression model given as 
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where  iε , 1,2,...,i n=  represent random errors. The errors are usually assumed to be independent 

random variables with zero means. The set of parameters can be denoted as 

[ ]1 2 1 2... ; ... ;k kλ λ λ α α α β=θ . In this study, β  is chosen equal to zero ( 0β = ). In order to obtain 

the estimates of pharmacokinetic parameters root mean-squared error (RMSE) criteria is used as 

below: 
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where îY , 1,2,...,i n=  are the predicted response values. Error function, given in Equation (2.4), is 

considered as objective function, which is wanted to be minimized during the calculations. It is clear 

that the objective function is nonlinear in parameters. Because of this reason, gradient based methods 

may fail to obtain estimates of parameters. In this case, derivative-free methods are preferred to 

obtain the estimates of pharmacokinetic parameters. 
 
 

3. DERIVATIVE-FREE OPTIMIZATION ALGORITHMS 
 

It is well-known that the algorithms are called derivative-free optimization algorithms which use 

objective function values instead of derivative information during calculations. The development of 

these algorithms has long been studied (Rios and Sahinidis, 2013). The algorithms can be clasified as 

local or global with the latter having the ability to refine the search domain arbitrarily. And also 

clasified stochastic or deterministic, depending upon whether they require random search steps or not. 

In this study, local and global stochastic derivative-free algorithms and hybridized algorithms of them 

are used to estimate the pharmacokinetic parameters. 



 

 
 
 
 

3.1. Local Search Algorithm: Nelder-Mead Simplex (NMS) 
 
Nelder-Mead Simplex (NMS) algorithm, introduced by Nelder and Mead (1965), is one of the local 

search method. It is based upon the work of Spendley et al. (1962). It has been applied in physics, 

crystallography, biology, chemistry, and health care with various modifications (Rahami et al., 2011). 

In order to minimize the objective function, given in Equation (2.4), the NMS uses a simplex of ( )1n +  

points for n - dimensional θ , [ ]1 1 2 2 1 1 2 2, ,..., , , ,k k k k n nθ λ θ λ θ λ θ α θ α θ α+ += = = = = = =θ . It is 

well-known that a simplex in n - dimensional space is characterized by ( )1n +  distinct vectors that 

are its vertices. e.g. in two space, a simplex is a triangle; in three space, it is a pyramid (Lagarias, 

1998). And also, it is needed to calculate the associated function values of vertices 

( ) , 1,2,..., 2 1i i kφ θ = + . 

At each step of the search, simplex move from vertex to vertex and can expand or contract. A new 

point in or near the current simplex is generated through a sequence of geometric operations: 

reflection, expansion, contraction and shrinkage. These operators are denoted with the parameters as 

ρ ,γ , λ  and η , respectively. The reflection operator is basic operator. By using this operator, it is 

wanted to find better solution. If reflection is resulted in best function value, then expansion is tried. If 

reflection resulted in worst, then contraction is tried. If all points are failed then the simplex shrinked 

around the best. The function value at the new point is compared with the function values at the 

vertices of the simplex and, usually, one of the vertices is replaced by the new point, giving a new 

simplex. The algorithm stops when the condition given as  
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is satisfied. Here, k  indicates the iteration number ( 1,2,...,k s= ) and ε  is a small real positive 

number which is used as stopping criteria. The algorithmic steps of the NMS is given below: 

Step 2.1. Start with an initial solution vector of θ  in n -dimensions, [ ]1 2 ... nθ θ θ=θ . 

Step 2.2. Let iθ , 1, 2,..., 1i n= +  denote the vertices in the current simplex and calculate the 

associated function values  ( )iφ θ . 

Step 2.3. Order the vertices in the simplex from lowest function value ( )1φ θ  to highest ( )1nφ θ + . 

Step 2.4. Calculate average of all the vertices except the worst, 
1

n

ii
nθ θ

=
=∑ . 

Step 2.5. (Reflection) 

•  Compute the reflected point 

                                               ( )1r nθ θ ρ θ θ += + +                                                     (3.2) 



 

            and evaluate the function value, ( )rφ θ .   

• If 1 r nφ φ φ≤ ≤ , accept rφ and terminate this iteration. 

Step 2.6. (Expansion) 

• If 1rφ φ≤  then calculate the expansion point  

                                                   ( )e rθ θ γ θ θ= + −                                                    (3.3) 

and evaluate the function value, ( )eφ θ . 

•  If e rφ φ≤ , accept eθ  and terminate iteration.  

• Otherwise, accept rθ  and terminate iteration.  

   Step 2.7. (Shrink) 

    Calculate n  points 

                                                   ( )1 , 1, 2,..., 1i i i i nξ θ η θ θ= + − = +                                     (3.4) 

and evaluate the  ( )iφ ξ . The vertices of the simplex at the next iteration are 

1 2 3 1, , ,..., nθ ξ ξ ξ + . 

  Step 2.8. Check the stopping condition, 
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− <∑ . If it satisfies, set the final solution 

as an optimal solution. Otherwise, go to Step 2.2. 

 

3.2. Global Search Algorithms 
 
3.2.1. Genetic Algorithm 
 
Genetic Algorithm (GA), introduced by Holland (1975), is one of the stochastic global search method. 

It has been successfully applied to a wide range of real-world problems of significant complexity 

(McCall, 2005). It starts with an initial population of artificial chromosomes ( popn ), which represent 

solutions to a problem, and let them evolve toward optimal solution according to basic principle of the 

survival of the fittest approach. In each generation, the fitness of every individual in the population is 

evaluated then stochastically selected from the current population and modified by using genetic 

operators, e.g. crossover, mutation, with simple GA parameters like crossover probability ( crPr ), 

mutation probability ( mutPr ), number of population to form a new population. Then, the new 

population is considered as the current population in the next iteration of the algorithm (Rahami et al., 

2011). The algorithm continues until the stopping condition is satisfied. The stopping conditions can 

be considered as a maximum number of generations ( maxgen ). 

 
3.2.2. Particle Swarm Optimization 
 



 

Particle Swarm Optimization (PSO), described by Eberhart and Kennedy (1995), Kennedy and 

Eberhart (1995), is a global optimization algorithm. The PSO belongs to the field of Swarm 

Intelligence and Collective Intelligence. And also, it is a subfield of Computational Intelligence. Its 

basic idea was originally inspired by simulation of the social behaviour of animals such as bird flocking, 

fish schooling and so on (Talukder, 2011). Similarly to GA, it is a population based method and it 

represents the state of the algorithm by a population. In the PSO system, each individual (agent) 

makes his decision according to his own experiences and other agent’s experiences. The system 

initially has a population of random solutions. Each potential solution, called a particle (agent), is given 

a random velocity and is flown through the problem space. The agents have memory and each agent 

keeps track of its previous best position (called the bestP ) and its corresponding fitness. There exists a 

number of bestP  for the respective agents in the swarm and the agent with greatest fitness is called 

the global best ( bestG ) of the swarm. Each particle is treated as a point in n -dimensional space (Abd-

El-Wahed, 2011). The i th particle is represented as [ ]1 2 ...i i i inθ θ θ=θ , 1,2,...,i N=  where N  

denotes the number of particles (size of population). The best previous position of the i th particle 

( bestiP ) that gives the best fitness value is represented as [ ]1 2 ...i i i inP P P=P . The best particle 

among all the particles in the population is represented by 1 2 ...g g g gnP P P⎡ ⎤= ⎣ ⎦P . The velocity, e.g., 

the rate of the position change for particle i  is represented as [ ]1 2 ...i i i inv v v=V . The particles are 

manipulated according to the following equations (the superscripts denote the iteration): 
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where 1,2,...,i N= ; w  is the inertia weight which controls the momentum of the particle by changing 

in each iteration with 0.5
2

randw = + ; 1c  and 2c  are two positive constants, called the cognitive and 

social parameters respectively; 1r  and 2r  are random numbers uniformly distributed with in the range 

[0, 1]. Equation (3.5) is used to determine the i th particle’s new velocity 1k
iv + , at each iteration, while 

Equation (3.6) provides the new position of the i th particle 1k
iθ
+ , adding its new velocity 1k

iv + , to its 

current position k
iθ .  

The algorithm is terminated after a given number of iterations ( maxiter ) or once the fitness value of 

the particles (or the particles themselves) are close enough in some sense. 

 
 
3.3. Hybrid Algorithm of Local and Global Searches 
 



 

Hybridizing is a combination of two algorithms. The main idea of composing the hybrid algorithm is to 

combine the advantages of each algorithm in a way to avoid their disadvantages. In this study, the 

proposed hybrid algorithm is based on exploration power of global search methods (GA and PSO) 

and exploitation feature of the local search method (NMS). The GA and PSO explore a promising 

area likely to contain global minima, and the NMS algorithm exploits the area to find the desired point 

would be promising if properly performed. The hybrid algorithms are called GANMS and PSONMS. In 

both the hybrid algorithms, firstly the global search method is runned and parameter values are 

obtained. Then the obtained parameter estimates are considered as the initial parameter values of 

local search method. Therefore, it would be promising to find global minima without trapping any local 

minima (Türkşen, 2014). The proposed algorithmic steps of the GANMS and PSONMS are given in 

below. 

 

3.3.1. The Algorithmic Steps of the GANMS 

Step 0: Initialize the tunable parameters. 

Population size of artificial chromosomes, ( popn ); crossover probability, ( crPr ); mutation probability, 

( mutPr ); maximum number of generation, ( maxgen ); selection operator; crossover operator; mutation 

operator; reflection operator, ( ρ ); expansion operator, ( γ ); contraction operator, ( λ ); shrinkage 

operator, (η ); stopping criteria, (ε ); GA iteration counter, (s). 

Step 1: Exploration for an initial guess by using GA. 

  Step 1.1. Determine the fitness value of each individual chromosome, [ ]1 2 ...i i i inθ θ θ=θ , 

1, 2,..., popi n=  and compose current population. Set, 1s = . 

  Step 1.2. Select next generation by using selection operator from current population. 

  Step 1.3. Perform reproduction by using crossover operator and crPr . 

  Step 1.4. Perform mutation by using mutation operator and mutPr . 

  Step 1.5. Replace the current population with the new population. 

  Step 1.6. Set 1s s= + . If s maxgen<  then go to Step 1.1. Otherwise, go to Step 2.  

Step 2: Exploitation for optimal solution by using NMS. 

             Use the solution vector of GA, denoted with θ  in n -dimensions, as an initial guess for NMS. 

Make the evaluations from Step 2.2 to Step 2.8 given in Section 3.1. 

   

3.3.2. The Algorithmic Steps of the PSONMS 

Step 0: Initialize the tunable parameters. 

Number of particles, ( N ); cognitive parameter, ( 1c ); social parameter, ( 2c ); maximum velocity of 

particles, ( maxv ); inertia weight, ( w ); maximum number of iteration, ( maxiter ); reflection operator, 

( ρ ); expansion operator, (γ ); contraction operator, (λ ); shrinkage operator, (η ); stopping criteria, 

(ε ); PSO iteration counter, (s). 



 

Step 1: Exploration for an initial guess by using PSO. 

  Step 1.1. Determine the fitness value of each individual particle, [ ]1 2 ...i i i inθ θ θ=θ , 1, 2,...,i N=  

and compose current swarm. Set, 1s = . 

  Step 1.2. Select the bestP  and bestG . 

  Step 1.3. Calculate the particle velocity according to Equation (3.2). 

  Step 1.4. Update particle position according to Equation (3.3). 

  Step 1.5. Evaluate the objective function value φ . 

  Step 1.6. Set 1s s= + . If s maxiter<  then go to Step 1.1. Otherwise, go to Step 2.  

Step 2: Exploitation for optimal solution by using NMS. 

             Use the solution vector of PSO, denoted with θ  in n -dimensions, as an initial guess for NMS. 

Make the evaluations from Step 2.2 to Step 2.8 given in Section 3.1. 

 

4. APPLICATION 
 

In this section, two numerical examples are given to illustrate the pharmacokinetic parameters 

estimation procedure. The examples are about the two-compartment models. In order to evaluate the 

relative performances of the GA, PSO, GANMS and PSONMS for pharmacokinetic parameter 

estimation, the RMSE criteria is used.  

 

Example 1. Two-compartment model 
A drug, 75 mg amount, is enjected to plasma by the IV method. The concentration amounts in the 

plasma are obtained as in Table 1 (Ağabeyoğlu, 2009).  

 

Table 1. Observed plasma concentrations for two-compartment model 

t ( hr ): 0 0.25 0.50 0.75 1 2 3 4 6 8 12 16 24 

pC ( /mg ml ): 16.4 14.2 12.53 11.17 10.09 7.56 6.44 5.85 5.16 4.65 3.18 3.12 2.09 

 

 

 

The plasma concentration-time profile is illustrated in Figure 3. 

 



 

 
Figure 3. Drug plasma concentration-time profile for two-compartment model 

 

 

The two-compartment model can be written as follows: 

                                             1 2
1 2

i it t
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in which 1α  and 2α  are constants and 1λ  and 2λ  are absorbtion and elimination rate parameters. By 

using these constants and rate parameters, the pharmacokinetic parameter vector can be denoted as 

[ ]1 1 2 2α λ α λ=θ . The interval of pharmacokinetic parameters are given in Table 2. 

 

                      Table 2. Interval of pharmacokinetic parameters for one-compartment model 

Parameters Lower bounds Upper bounds 

1α  9.2 9.8 

1λ  0.9 1.2 

2α  6.9 7.2 

2λ  0 0.1 

 
 

In order to analyse the two-compartment model, the transfer and elimination parameters, presented in 

Figure 2, are described with reparameterization by the following equations: 
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The objective functions can be written as according to the RMSE and MAPE criteria by following  



 

The estimated values of parameters 1 1 2 2
ˆ ˆ ˆˆ ˆα λ α λ⎡ ⎤= ⎣ ⎦θ  are obtained as [ ]9.59 1.06 7.05 0.0509  

through stripping method (Ağabeyoğlu, 2009). Table 3 shows the tunable parameter values of the 

optimization algorithms. 

 
                             Table 3. Tunable parameter values of the optimization algorithms 

Methods Parameters - Values 
 
 

NMS 

Reflection ( ρ ) - 1 
Expansion (γ ) - 2 
Contraction (λ ) – 0.5 
Shrinkage (η ) – 0.5 
Stopping Criteria (ε ) – 10-5 

 
 
 
 

GA 

Population size ( popn ) - 50 
Maximum number of generation ( maxgen ) - 100 

Probability of crossover ( Prcr ) – 0.90 

Probability of mutation ( Prmut ) – 0.01 
Selection operator – Roulette wheel selection 
Crossover operator – Single point crossover 
Mutation operator – Bit flip mutation 

 
 
 

PSO 

Number of particles ( N ) - 50 
Maximum iteration number ( maxiter ) – 100 
Cognitive parameter ( 1c ) - 2 

Social parameter ( 2c ) - 2 

Maximum velocity of particles ( maxv ) - 1 
Inertia weight ( w ) – 0.5+rand/2 

 
 

The algorithms are coded in Matlab 7.9. By using the tunable parameter values given in Table 3, 

global solutions are obtained for GA and PSO. It is well known that the GA and PSO are much similar 

in their searching principle for global optimal. It is clear from Figure 4a-4b that the GA performs similar 

with PSO in terms of convergence rate for optimizing the fitness function given in Equation (2.4).  
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Figure 4 (a)-(b). Fitness values versus number of generation (number of iteration) for GA and PSO  
 



 

 

And also, the experimental results for the fitness function value are presented in Table 4.  

 

       Table 4. Median (Med), Average (Ave) and Best fitness values with 
        standart errors (SE) for GA and PSO 

Methods Med Ave Best SE 

GA 0.1590 0.1657 0.1547 0.0223 

PSO 0.1553 0.1565 0.1542 0.0032 

 

The results are averaged over 50 runs. The median of fitness values (Med), the average of fitness 

values (Ave), the best fitness values (Best) and standart errors of fitness values (SE) are reported in 

Table 4. According to the Table 4, GA and PSO have similar performances for obtaining the best 

fitness values. However, the SE value of PSO (0.0032) is lower than SE value of GA (0.0223) for over 

50 runs. Figure 5 also shows that the PSO performs better than GA in terms of the consistency. 
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                Figure 5. Fitness values versus number of runs for GA and PSO  

 

Table 5 represents fitness values for hybrid algorithms, GANMS ans PSONMS, over 50 runs. 

According to the Table 5, GANMS and PSONMS are more consistent than the GA and PSO with the 

value of zero SE.  

 

                   Table 5. Median (Med), Average (Ave) and Best fitness values with  
                                 standart errors (SE) for GANMS and PSONMS 

Methods Med Ave Best SE 

GANMS 0.154206 0.15420571 0.15420570 7.44e-010 

PSONMS 0.1542 0.1542 0.1542 0 

 

How the hybridization effects on GA and PSO in terms of convergence rate is much more clear in 

Figure 6 and Figure 7. From Figure 6-7, it is easy to say that the hybrid algorithms have better 

consistence convergence to the best fitness value.  
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Figure 6. Fitness value versus number of runs for GA and GANMS 
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Figure 7. Fitness value versus number of runs for PSO and  PSONMS      

 

The estimates of the compartment model parameters, given in Equation (4.1), and SE values of 

estimated parameters, given in paranthesis, are summarized in Table 6. 

 

    Table 6. Parameter estimation results GA, GANMS, PSO and PSONMS 

GA GANMS PSO PSONMS  

θ̂  Value SE Value SE Value SE Value SE 

1α̂  9.4045 0.0818 9.3994 3.421e-005 9.3875 0.0811 9.3994 0 

1̂λ  0.989 0.0110 0.9937 0.889e-005 0.9956 0.0204 0.9937 0 

2α̂  6.9654 0.0687 6.9853 3.26e-005 6.9962 0.0884 6.9853 0 

2̂λ  0.053 0.0027 0.0536 0.053e-005 0.0538 0.0013 0.0536 0 

 



 

 

By comparing these results, it can be easily seen that the GANMS and PSONMS are more consistent 

on parameter estimates with the lowest SE values. And is it fair to say that the PSONMS is the most 

preferable one with better consistency.  

 

In order to validate the results, by substituting the parameter estimates of PSONMS, a comparison 

between observed and predicted plasma concentration was accomplished. The results are presented 

in Figure 8. This comparison shows that good agreement was obtained with determination coefficient, 
2 0.9988R = , and 0.028RMSE = . In addition, the comparison of the estimation results between 

the Stripping method and PSONMS is presented in Figure 9. As a result from Figure 8.b, the 

predicted performance of the compartment model with PSONMS estimates has better accuracy than 

the Stripping method estimates which has larger error value, 0.033.RMSE =  
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Figure 8. Comparison between observed and predicted  plasma concentration for PSONMS 
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Figure 9. Comparison of predicted plasma concentration between PSONMS and Stripping method 



 

 

 

Example 2. Two-compartment model (with three-exponential terms) 
This is the example of three exponential terms from plasma level data and the two compartment open 

model with first order absorption. Table 7 shows the data following intramsular administration of a 

dose of 2 mg/kg of body weight (Wagner, 1975).  

 

Table 7. Observed plasma concentrations for two-compartment model 

t : 0 0.1 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 6 8 12 14 

pC : 0 1.47 2.82 4.02 4.63 4.93 5.02 4.77 4.38 3.98 3.20 2.55 2.03 1.28 0.509 0.321 

 

 

 

The predicted two-compartment model, with three exponential terms, can be written as 

                                          
ˆˆˆ

1 2 3
ˆ ˆ ˆˆ i i a it t k t

iY A e A e A eα β− − −= + + , 1,2,...,16i =                                  (4.5) 

in which A1, A2, A3  are coefficients and α , β , ka are rate parameters. The parameters k12, k21 and 

kel, used for two-compartment model as presented in Figure 2, are described with reparameterization 

by following equations: 

 

                                            
( ) ( )

* * *
1 2 3

21 * *
1 2

a a

a a

A k A k Ak
A k A k

β α αβ
α β
+ +

=
− + −

,                                                      (4.6) 

                                                              
21

elk
k
αβ

= ,                                                                       (4.7) 

                                                   12 21 elk k kα β= + − − .                                                               (4.8) 

 

Table 8 represents the interval of lower and upper bound of model parameters.  

 
 

          Table 8. Interval of pharmacokinetic parameters for two  
                        compartment model with three exponential terms 

Parameters Lower bounds Upper bounds 
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The estimated values of parameter vector  is obtained as [ ]ˆ 1.02 13.5 8.06 0.23 7.03 1.56= − −θ  

by stripping method for 1 2 3
ˆˆ ˆ ˆ ˆ ˆˆ aA A A kα β⎡ ⎤= ⎣ ⎦θ  (Wagner, 1975).  

 

By using the tunable parameter values given in Table 3, the obtained parameter estimates of GA, 

GANMS, PSO and PSONMS are presented in Table 9. It is clear from Table 9 that the PSONMS is 

the most preferable parameter estimation method with the highest consistency among the others.  

 

 

 

 

 

Table 9. Parameter estimation results GA, GANMS, PSO and PSONMS 

GA GANMS PSO PSONMS  

θ̂  Value SE Value SE Value SE Value SE 

1Â  -0.7180 0.3251 -0.869 0.00046 -0.9254 0.1420 -0.8643 0.5285e-003 

α̂  13.1183 0.333 13 0 13.0849 0.7819 13.1 0 

2Â  7.7321 0.3353 7.8985 0.00044 7.9748 0.3784 7.8969 0.4443e-003 

β̂  0.2210 0.0239 0.2263 0 0.2288 0.0109 0.2262 0.0134e-003 

3Â  -7.0240 0.2809 -7.0410 0.00043 7.0541 0.3158 -7.044 0.4292e-003 

ˆ
ak  1.7659 0.1567 1.6607 0.00022 1.6243 0.1334 1.6623 0.2296e-003 

 

 

 

5. CONCLUSION 
 

In this study, compartment models are considered as nonlinear response problems and these are 

represented as polyexponential regression models in the statistical context. Population based 

heuristic algorithms, GA and PSO, are hybridized with NMS and called GANMS and PSONMS, 

respectively. These algorithms are used to estimate the pharmacokinetic parameters for two-

compartment models. Through these algorithms, pharmacokinetic parameter estimation is achieved 

without using any assumptions in compartment models. The flexibility of the heuristic based hybrid 



 

algorithms makes them preferable with respect to the derivative based algorithm. The main difficulty is 

defining the tunable parameters of intelligence  methods during the estimation process. It is seen from 

the results that the PSONMS gives the best estimation values of parameters with the smallest RMSE 

value. And also, the standard deviation values of the estimates show that the PSONMS can be 

considered as a consistent optimization tool for compartment model studies. 
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