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ABSTRACT

This article proposes a novel approach to stability analysis of neural networks switched at
an arbitrary time. First, a new condition for H∞ stability of switched neural networks is
proposed. Second, a new H∞ stability condition in the form of linear matrix inequality (LMI)
for these neural networks is proposed. These conditions ensure to reduce the H∞ norm
from the external input to the state vector within a disturbance attenuation level. Without
the external input, the proposed conditions also guarantee asymptotic stability.
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1 Introduction

As a special class of hybrid systems, switched systems are dynamical systems that include
several subsystems and logical rules that orchestrate switching between these subsystems
at each instant of time. Switched systems arise in many practical processes that cannot be
described by exclusively continuous or exclusively discrete models in manufacturing, communi-
cation networks, automotive engine control, and chemical processes. Switched systems have
been extensively investigated, and considerable efforts have been focused on the analysis and
control of switched systems (Lee, Kim and Lim, 2000; Daafouz, Riedinger and Iung, 2002).
Recently, by integrating the theory of switched systems with neural networks, switched neural
networks were introduced to describe several complex nonlinear systems efficiently (Huang,
Qu and Li, 2005; Yuan, Cao and Li, 2006; Li and Cao, 2007; Lou and Cui, 2007). Some
stability conditions for switched neural networks were proposed in (Huang et al., 2005; Yuan
et al., 2006; Li and Cao, 2007; Lou and Cui, 2007).
The H∞ approach is a powerful technique to analyze the robustness for dynamical systems
under conditions of uncertainty, parameter change, and disturbance (Stoorvogel, 1992). Anal-
ysis and synthesis in the H∞ framework have good advantages such as effective disturbance
attenuation, less sensitivity to uncertainties, and many practical applications. This paper gives
an answer to the question of whether an H∞ stability condition for switched neural networks



can be obtained. To the best of our knowledge, the H∞ analysis of switched neural networks
has not been reported in the literature thus far.
In this paper, we propose new H∞ stability conditions for neural networks switched at an
arbitrary time. The presented conditions are a new contribution to the stability analysis of
switched neural networks. First, a new matrix norm based H∞ stability condition is proposed
for switched neural networks. Second, a new H∞ stability condition in a linear matrix inequal-
ity (LMI) form is presented for these neural networks. Under these conditions, the H∞ norm
from the external input to the state vector is reduced within the H∞ norm bound. This paper
is organized as follows. In Section 2, new H∞ stability conditions are derived. In Section 3, a
numerical example is given, and finally, conclusions are presented in Section 4.

2 New Conditions

Consider the following model of switched neural networks (Huang et al., 2005):

ẋ(t) = Aαx(t) +Wαϕ(x(t)) + J(t), (2.1)

where x(t) = [x1(t) ... xn(t)]
T ∈ Rn is the state vector, A = diag{−a1, . . . ,−an} ∈ Rn×n

(ak > 0, k = 1, . . . , n) is the self-feedback matrix, W ∈ Rn×n is the connection weight ma-
trix, ϕ(x(t)) = [ϕ1(x(t)) ... ϕn(x(t))]

T : Rn → Rn is the nonlinear function vector satisfying
the global Lipschitz condition with Lipschitz constant Lϕ > 0, and J(t) ∈ Rn is an external
input vector, α is a switching signal which takes its values in the finite set I = {1, 2, . . . , N}.
The matrices (Aα,Wα) are allowed to take values in the finite set {(A1,W1), . . . , (AN ,WN )}
at an arbitrary time. In this paper, we assume that the switching rule α is not known a pri-
ori and its instantaneous value is available in real time. Define the indicator function ξ(t) =

(ξ1(t), ξ2(t), . . . , ξN (t))T , where

ξi(t) =

{
1, when the switched system is described by the i-th mode(Ai,Wi),

0, otherwise,

with i = 1, . . . , N . Therefore, the model of the switched neural networks (2.1) can also be
written as

ẋ(t) =

N∑
i=1

ξi(t) [Aix(t) +Wiϕ(x(t)) + J(t)] , (2.2)

where the relation
∑N

i=1 ξi(t) = 1 is satisfied under any switching rules.
Given a prescribed level of noise attenuation γ > 0, the purpose of this paper is to derive
conditions such that the switched neural network (2.2) with J(t) = 0 is asymptotically stable
(limt→∞ x(t) = 0) and ∫ ∞

0
xT (t)x(t)dt < γ2

∫ ∞

0
JT (t)J(t)dt, (2.3)

under zero-initial conditions for all nonzero J(t) ∈ L2[0,∞), where L2[0,∞) is the space of
square integrable vector functions over [0,∞).
Now a new H∞ stability condition for the switched neural network (2.2) is proposed in the
following theorem:



Theorem 2.1. For a given level γ > 0, the switched neural network (2.2) is H∞ stable if

∥Wi∥ <
1

Lϕ

√
ki − 1− 1

γ2 ∥P∥2 − ∥P∥
∥P∥

, (2.4)

∥P∥ <
−γ2 +

√
γ4 − 4γ2(1− ki)

2
, ki > 1, P = P T > 0, (2.5)

where P satisfies the Lyapunov inequality AT
i P + PAi < −kiI for i = 1, ..., N .

Proof. Consider the function V (t) = xT (t)Px(t). Then, the time derivative of V (t) satisfies

V̇ (t) <

N∑
i=1

ξi(t)

{
− kix

T (t)x(t) + 2xT (t)PWiϕ(x(t)) + 2xT (t)PJ(t)

}
. (2.6)

By Young’s inequality (Arnold, 1989), we have

2xT (t)PWiϕ(x(t)) ≤ xT (t)Px(t) + (PWiϕ(x(t)))
TP−1(PWiϕ(x(t)))

≤ ∥P∥∥x(t)∥2 + ∥P∥∥Wi∥2∥ϕ(x(t))∥2

≤ ∥P∥∥x(t)∥2 + L2
ϕ∥P∥∥Wi∥2∥x(t)∥2 (2.7)

and

2xT (t)PJ(t) ≤ 1

γ2
xT (t)PP Tx(t) + γ2JT (t)J(t)

≤ 1

γ2
∥P∥2∥x(t)∥2 + γ2∥J(t)∥2. (2.8)

If we substitute (2.7) and (2.8) into (2.6), we obtain

V̇ (t) <
N∑
i=1

ξi(t)

{
−

(
ki −

1

γ2
∥P∥2 − ∥P∥ − L2

ϕ∥P∥∥Wi∥2
)
∥x(t)∥2 + γ2∥J(t)∥2

}

= −
N∑
i=1

ξi(t)

(
ki − 1− 1

γ2
∥P∥2 − ∥P∥ − L2

ϕ∥P∥∥Wi∥2
)
∥x(t)∥2

+

N∑
i=1

ξi(t)

{
− ∥x(t)∥2 + γ2∥J(t)∥2

}
. (2.9)

For i = 1, ..., N , if the following condition is satisfied:

ki − 1− 1

γ2
∥P∥2 − ∥P∥ − L2

ϕ∥P∥∥Wi∥2 > 0, (2.10)

we have

V̇ (t) < −∥x(t)∥2 + γ2∥J(t)∥2. (2.11)

Integrating both sides of (2.11) from 0 to ∞ gives

V (∞)− V (0) < −
∫ ∞

0
xT (t)x(t)dt+ γ2

∫ ∞

0
JT (t)J(t)dt. (2.12)

Since V (∞) ≥ 0 and V (0) = 0, we have the relation (2.3). The condition (2.10) is rewritten as

∥Wi∥2 <
1

L2
ϕ∥P∥

(
ki − 1− 1

γ2
∥P∥2 − ∥P∥

)
,

0 > ∥P∥2 + γ2∥P∥+ γ2(1− ki). (2.13)

The inequality (2.13) implies the inequality (2.5). This completes the proof.



Corollary 2.2. When J(t) = 0, the condition (2.4)-(2.5) ensures that the switched neural net-
work (2.2) is asymptotically stable.

Proof. When J(t) = 0, from (2.11), we have

V̇ (t) < −∥x(t)∥2

< 0, ∀x(t) ̸= 0. (2.14)

This relation ensures that the switched neural network (2.2) is asymptotically stable from Lya-
punov stability theory (Precup, Tomescu, Petriu and Dragomir, 2011). This completes the proof.

In the next theorem, a new LMI based H∞ stability condition for the switched neural network
(2.2) is proposed. The condition in the form of LMI can be facilitated readily via standard
numerical algorithms (Boyd, Ghaoui, Feron and Balakrishinan, 1994; Gahinet, Nemirovski,
Laub and Chilali, 1995). Hence, this condition is computationally attractive.

Theorem 2.3. For a given level γ > 0, the switched neural network (2.2) is H∞ stable if there
exist a positive symmetric matrix P and a positive scalar ϵ such that AT

i P + PAi + (ϵL2
ϕ + 1)I PWi P

W T
i P −ϵI 0

P 0 −γ2I

 < 0, (2.15)

for i = 1, ..., N .

Proof. Consider the function V (t) = xT (t)Px(t). By Young’s inequality (Arnold, 1989), for any
positive scalar ϵ, the following relation is satisfied:

ϵ[L2
ϕx

T (t)x(t)− ϕT (x(t))ϕ(x(t))] ≥ 0. (2.16)

By using (2.16), the time derivative of V (t) is

V̇ (t) ≤
N∑
i=1

ξi(t)

{
xT (t)[AT

i P + PAi]x(t) + 2xT (t)PWiϕ(x(t)) + 2xT (t)PJ(t)

+ ϵ[L2
ϕx

T (t)x(t)− ϕT (x(t))ϕ(x(t))]

}

=

N∑
i=1

ξi(t)

 x(t)

ϕ(x(t))

J(t)


T  AT

i P + PAi + (ϵL2
ϕ + 1)I PWi P

W T
i P −ϵI 0

P 0 −γ2I


 x(t)

ϕ(x(t))

J(t)


− xT (t)x(t) + γ2JT (t)J(t). (2.17)

If the LMI (2.15) is satisfied, we have

V̇ (t) < −xT (t)x(t) + γ2JT (t)J(t). (2.18)

Integrating both sides of (2.18) from 0 to ∞ gives

V (∞)− V (0) < −
∫ ∞

0
xT (t)x(t)dt+ γ2

∫ ∞

0
JT (t)J(t)dt. (2.19)

Since V (∞) ≥ 0 and V (0) = 0, we have the relation (2.3). This completes the proof.



Corollary 2.4. When J(t) = 0, the LMI condition (2.15) ensures that the switched neural
network (2.2) is asymptotically stable.

Proof. When J(t) = 0, from (2.18), we have

V̇ (t) < −xT (t)x(t)

< 0, ∀x(t) ̸= 0. (2.20)

This inequality ensures that the switched neural network (2.2) is asymptotically stable from
Lyapunov stability theory (Precup et al., 2011). This completes the proof.

Remark 2.1. Some stability conditions for switched neural networks were proposed in (Huang
et al., 2005; Yuan et al., 2006; Li and Cao, 2007; Lou and Cui, 2007). Despite these ad-
vances in stability analysis for switched neural networks, most research results were restricted
to switched neural networks without external disturbance. However, in this paper, we apply
the H∞ approach to derive new stability conditions for switched neural networks with external
disturbance

3 Numerical Example

Consider the following switched neural network:

ẋ(t) =

2∑
i=1

ξi(t) [Aix(t) +Wiϕ(x(t)) + J(t)] , (3.1)

where

x(t) =

[
x1(t)

x2(t)

]
, J(t) =

[
J1(t)

J2(t)

]
, ϕ(x(t)) =

[
tanh(x1(t))

tanh(x2(t))

]
,

A1 =

[
−3.1 0

0 −3.5

]
, A2 =

[
−3.9 0

0 −2.8

]
,

W1 =

[
−1 0.4

0 −0.1

]
, W2 =

[
0.2 −0.8

0.4 0.5

]
.

(3.2)

By applying Theorem 2.3 via the Matlab LMI Control Toolbox (Gahinet et al., 1995), we have
the following feasible solution:

P =

[
0.5286 0.0240

0.0240 0.6075

]
, ϵ = 0.5668,

with the H∞ performance index γ = 0.5. The switching signal α ∈ {1, 2} is given by

α =

{
1, 0 ≤ t ≤ 2,

2, otherwise.

When the initial condition is given by x(0) = [−3.2 1.5]T and the external disturbance Ji(t)

(i = 1, 2) is given by a Gaussian noise with mean 0 and variance 1, Figure 1 shows the
trajectories of state vector x(t). This simulation result confirms the effectiveness of Theorem
2.3 for the H∞ stability of the switched Hopfield neural network (3.1).
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Figure 1: Responses of the state vector x(t)

4 Conclusion

In this paper, we propose new matrix norm and LMI based H∞ stability conditions for neural
networks switched at an arbitrary time. These conditions achieve the H∞ performance, with
a prespecified attenuation for external input. For external input identically equal to zero, these
conditions also guarantee asymptotic stability.
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