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ABSTRACT

Fuzzy Cognitive Maps (FCM) represent not only a user-friendly knowledge representation
but also a convenient means for simulation of dynamic systems and decision-making sup-
port. Concerning the nature of robotic systems FCM seem to be convenient in using mainly
on upper decision levels. However, FCM strike on problems of their design. Beside manual
approach, which is limited by the number of nodes and their connections, various adapta-
tion methods have been proposed. This paper gives a short summary of these methods di-
viding them into Hebbian-based and evolutionary-based approaches. Further, it presents a
new adaptation of the so-called Self-Organizing Migration Algorithms (SOMA) for purposes
of FCM design, which is compared also to other methods like particle swarm optimization,
simulated annealing, active and nonlinear Hebbian learning on experiments with catching
targets for future purposes of robotic soccer. Obtained results are compared where ad-
vantages of the proposed method are apparent and in the conclusions their properties are
summarized. Besides, a new modification of FCM with active inputs is presented that is
able to receive data from sensors in each time step.
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1 Introduction

Automatic navigation of vehicles or robots represents a special kind of decision processes,
which can be basically divided into motion planning and reactive navigation (LaValle, 2006).
The first category is obviously connected also with strategy choice, e.g. in robotic soccer (Vaš-
čák and Hirota, 2011), where a convenient trajectory is constructed by defined limitations and
requirements. The second category is in the sense of its original purpose, whose task is to track
the prescribed trajectory and eventually to react to unpredictable situations like for instance
obstacles. In both cases decision making is performed and therefore the first objective is to
find proper means for description of decision processes as well as solving given tasks.



If we take into account that decision processes are typical with complex decision (implication)
chains, which also create closed loops then using conventional rule sets will be unsatisfactory
or at least their structure will be incomprehensible for any human. Therefore Fuzzy Cognitive
Maps (FCM) offer a very suitable means for clear knowledge description as well as its effi-
cient processing with the help of matrix operations. Experience from numerous applications
has shown they are able thanks their nonlinearity to capture more information than another
mapping methods. They are dynamic, flexible and able to extract hidden knowledge (Bertolini
and Bevilacqua, 2010). From this reason already in the 90-ties FCM found their use in admi-
nistrative sciences, game theory, information analysis, cooperation man–machine, distributed
group decision and technology management (Aguilar, 2005). Continuously they have penetra-
ted also into the area of control and robotics in the last decade, e.g. (Golmohammadi, Azadeh
and Gharehgozli, 2006; Vaščák and Madarász, 2010).

However, FCM have some drawbacks, too. Firstly, they tend to undesirable states. Secondly,
they need to be constructed by some experts from given area, which is a typical problem of
all conventional fuzzy systems: they are not able to self-learn. This is the main motivation for
development of learning mechanisms for FCM, especially in the last ten years, which can be
divided into two basic groups — Hebbian-Based Learning (HBL) and Evolutionary-Based Le-
arning (EBL). Obviously, as the design of adaptation approaches is much more difficult than in
the case of conventional rule bases due to complex structure and variability of FCM (Johanyák
and Kovács, 2006) at least the definition of nodes is done manually by experts and adaptation
is limited to adjusting relations, i.e. graph edges. As the structure of FCM resembles to neural
networks the first (historically older) group of HBL comes just from this area. FCM is an oriented
graph and the basic task of learning is to determine relations among nodes and subsequently
their strengths in such a way that the resulting FCM would reach rather a stable state than
a model describing a given system. For such purposes HBL and its numerous modifications
seem to be the most proper candidates for learning, e.g. active and nonlinear Hebbian learning
(HL) (Papageorgiou, Stylios and Groumpos, 2006) or its improved version (Li and Shen, 2004).
The advantage of this approach is that mostly they do not need any historical training data. Le-
arning can be done using only current data and in many cases because of relatively simple
learning algorithms it can be performed on-line. However, HBL exhibits also drawbacks. The
accuracy of obtained results is often unsatisfactory. Mostly we need to obtain not only a stable
state but also desired values, i.e. it is not a task of unsupervised but supervised learning, which
is not the case of HBL. In (Vaščák and Madarász, 2010) it is shown how under some limiting
conditions also supervised learning can be utilized for FCM as well as a comparison with other
HBL methods.

On the contrary, EBL methods use historical data with the aim to find a model describing a gi-
ven system. Based on the axiom of evolutionary optimization many times repeated computation
should lead to results near the optimum and thus it should reach a stable state, too. However,
the tax is high computational complexity and hereby any on-line is excluded. In last ten years
especially this group of learning algorithms has been researched and various approaches have
been tested starting from conventional genetic algorithms (Koulouriotis, Diakoulakis and Emi-



ris, 2001), through real-coded genetic algorithms (Stach, Kurgan, Pedrycz and Reformat, 2005)
using real values of genes instead of binary coding to such parts of evolutionary computation
like Particle Swarm Optimization (PSO) (Papageorgiou, Parsopoulos, Stylios, Groumpos and
Vrahatis, 2005). In a broader sense of EBL as a part of metaheuristic optimization for our pur-
poses we could count into this group Simulated Annealing (SA) (Ghazanfari, Alizadeh, Fathian
and Koulouriotis, 2007), too. Just PSO and SA exhibit very promising experimental results and
will be further subjects of comparison.

Another optimization approach, which can be classified to swarm intelligence, is Self-Organizing
Migration Algorithm (SOMA), based on intelligent cooperation as for instance wolf packs,
whose basic ideas were firstly formulated in (Zelinka, 2002). It has been used in various areas
like diagnostics, tuning or scheduling (Vaščák, 2005). In (Nolle, Zelinka, Hopgooda and Goody-
ear, 2005) several means like differential evolution, SA and SOMA were compared on a task of
sensor tuning. SOMA brought the best results. Based on repeatedly excellent experience with
using SOMA the idea arose to adapt this approach for constructing FCM being able to navigate
vehicles. This supposition has been strengthened by a fact that scheduling is incorporated into
navigation, too.

After a short introduction related to advantages of FCM in navigation tasks and their adapta-
tion possibilities the section 2 describes basic notions, definition and processing of FCM. The
following section 3 describes the basic ideas and function of SOMA in detail because it is quite
newel in this area. The previous sections are necessary for description of a new FCM modifi-
cation as well as application of SOMA for navigation, which is contented in the section 4. In the
section 5 two experimental scenarios are realized and obtained results from several adaptation
methods are compared and evaluated. Finally, some concluding remarks close this topic in the
last section.

2 Fuzzy Cognitive Maps

The notion Cognitive Map (CM) was introduced by a political scientist Robert Axelrod primarily
to model social processes (Axelrod, 1976). It is an oriented graph where its nodes represent
notions and edges are causal relations. Mostly, notions are states or conditions and edges are
actions or transfer functions, which transform a state in a node to another one in another node.
CM is able to describe complex dynamic systems. It is possible to investigate cycles, collisions,
etc. and to define strengths (weights) of relations, too. Originally, they were represented by
three values −1, 0 and 1. Another advantage is its human-friendly knowledge representation
and ability to describe various types of relations (in a more detail see e.g. (Groumpos, 2010)).

FCM represents an extension of CM and was proposed by Kosko in 1986 (Kosko, 1986). The
extension is based on strength values that are from an interval [−1; 1] as well as the nodes can
be represented by activation values from an interval [0; 1] or by membership functions as well.
Strengths after their combining correspond to rule weights in rule based systems, too.



Figure 1: An example of FCM.

There are two basic formal definitions of FCM (Chen, 1995) and (Stach et al., 2005). Further,
the definition by Chen will be used where FCM is defined as a 4-tuple:

FCM = (C,E, α, β), (2.1)

where:
C - finite set of cognitive units (nodes) described by their states C = {C1, C2, . . . , Cn};
E - finite set of oriented connections (edges) between nodes E = {e11, e12, . . . , enn};
α - mapping α : C → [0; 1] (originally proposed as [−1; 1]);
β - mapping β : E → [−1; 1].

In other words, α is a computational method for evaluating numerical values of the set of nodes
C. On behalf of correctness, it is necessary to mention that a cognitive unit is represented by
two values: (a) its symbolic (linguistic) meaning denoted as Ci and (b) its numerical activation
value Ai ∈ [0; 1]. Ci represents the qualitative aspect and Ai the quantitative one of a node.
However, from simplicity reasons we can omit this distinction and we will use the symbol Ci

although further we will handle only with activation values. On the other hand, β represents the
way how the weights of edges eij ∈ [−1; 1] are determined. The signs in this case define the
character of relationship between nodes — either strengthening (+) or weakening (−).

The set of connections E forms the so-called connection (adjacency) matrix, which can be
used for computing of new activation values of nodes C. For the example in the fig. 1 it will look
as:

E =


0 −1 0 −0, 5 1

−0, 9 0 0, 3 0 0

0 0 0 0 1

0 0 −0, 4 0 −1

0 0 0 0, 7 0

 . (2.2)

Cognitive units are in each time step k in a certain state. Using E we can compute their states
for next time step k+1 and thus repeatedly for further steps. Similarly as for differential equati-
ons we can draw phase portraits. To preserve values in prescribed limits a limiting (threshold or



transform) function L is used, too. So we can compute the states Ci for k+1 as follows (Stach
et al., 2005):

Ci(k + 1) = L

 n∑
j=1

eij .Cj(k)

 . (2.3)

The formula (2.3) can be generalized for computation of the whole state vector C using a matrix
product, i.e. C(k+1) = L(E.C(k)). There exists still an incremental modification of (2.3) where
C(k) is incremented by computed values, e.g. (Papageorgiou et al., 2005):

Ci(k + 1) = L

Ci(k) +

n∑
j=1

eij .Cj(k)

 . (2.4)

The primary role of the function L is to keep activation values in the interval [0; 1]. A number of
functions fulfill this condition. However, as the most advantageous the sigmoid function seems
to be (Bueno and Salmeron, 2009). For a special kind of FCM with active inputs, which will be
described in the section 4, any kind of typical membership functions can be used as L.

3 Self-Organizing Migration Algorithm

SOMA is based on cooperative searching (migrating) the area of all possible solutions, i.e.
search area. Individuals are mutually influenced during the search process, which leads to
forming or canceling groups of individuals. Such groups organize themselves the movement
of individuals. From this reason the adjective ’self-organizing’ is contained in its title. SOMA
parameters can be roughly divided into two groups:

• managing parameters — they influence the quality of search;

• finishing parameters — they determine the stopping moment of the algorithm.

Their definition is following:

Mass — coefficient for the migration vector m⃗ (3.3), which defines final position of an individual
after one migration cycle. If e.g. Mass = 1 the individual will stop directly on the leader’s
position. If Mass = 2 the individual will stop on the position 2.m⃗, i.e. the leader will be in
the middle between the initial and final position of the individual. It is recommended the
Mass value to adjust > 1 to cover the search area by individuals on a larger surface to
prevent their skidding into a local extreme;

Step — size of a migration step or mapping. The total number of migration steps is nms =

Mass.∥m⃗∥/Step where ∥m⃗∥ is the magnitude of m⃗. The smaller Step the greater the
chance to find a significant extreme but also higher computational complexity and vice
versa;

PRT — perturbation, a parameter, which modifies the movement vector m⃗ of an individual to
the leader;

D — number of optimised variables or arguments of the fitness function. This parameter is
directly depended on the solved problem and defined fitness function;



NI — number of individuals (population size). This value depends usually on D and it directly
influences the search quality. The greater NI is then the higher possibility will be to find a
significant (maybe global) extreme;

M — number of migration cycles, which is analogous to the number of populations in genetic
algorithms;

AE — the maximum allowed difference between the best and the worst individual in the
population. To find really a significant extreme and to prevent divergence from the optimal
solution it is necessary to achieve good solution also for other individuals not only for the
best one. It means if the real error is smaller than the accepted error then the algorithm
will be stopped.

The parameters from Mass to NI belong to the first group and the last two parameters are
finishing ones.

One important advantage of this algorithm is based on its ability to process diverse data types
of parameters like integers, real or discrete values. They can be mixed mutually, too. SOMA
parameters define the structure and universes of discourse for individuals. To generate an
initial population the so-called specimen S is defined at first:

S =
(
sType
1 (sLL1 , sUL

1 ), . . . , sType
D (sLLD , sUL

D )
)
, (3.1)

where Type denotes the data type of a parameter, LL and UL are the low and upper limits of
the universe of discourse, respectively. These intervals of values represent permitted parame-
ter values or from other point of view physical limitations of a given application. The population
(real individuals) will be generated by:

P 0 =
{
x01,1, . . . , x

0
i,j , . . . , x

0
NI,D

}
=

{
rnd(xUL

i,j − xLLi,j ) + xLLi,j
}
, (3.2)

where P 0 is the initial population and xi,j represents j-th dimension of the i-th individual (i =
1, . . . , NI and j = 1, . . . , D).

In addition, SOMA uses also operators of perturbation and migration. The perturbation is ana-
logous to the mutation process in genetic algorithms. However, the result of such an operation
is not a property change of an individual but its movement vector m⃗ to the leader is perturbed
(interfered), i.e. it is not directed to the leader (as seen in fig. 2). The movement vector m⃗ re-
presents the distance between starting point I0 of a given individual I and the leader L, i.e. in
the vector description:

m⃗ = r⃗L − r⃗0, (3.3)

where r⃗L and r⃗0 are vectors of the leader and the starting point of a given individual, respecti-
vely.

Hence, the perturbation has following influence on the real position of such an individual in
next step r⃗:

r⃗ = r⃗0 + p.m̂ ∗ v⃗PRT , (3.4)



Figure 2: Relations between vectors r⃗0 , r⃗L and r⃗ in a 3-dimensional space (D = 3); I0, If –
starting and final positions of an individual I, L – leader.

where m̂ is the unit vector of m⃗ and p relates to the order of steps k on a path of a given
individual I from the starting point I0 (r⃗0) to the final one If (r⃗), i.e. p = k.Step, k = 0, 1, . . . , nms

(individual steps in the fig. 2 depicted as bullets •). The elements of the perturbation vector
v⃗PRT are created in each migration cycle by a condition: if rndj < PRT then v⃗PRT,j =

1, else j = 0, where rndj is a randomly generated number and j is the index for a given property
(j = 1, . . . , D). The vector v⃗PRT is in reality a mask and the operation ∗ performs pairwise
products among individual elements of m̂ and v⃗PRT . If PRT has a small value then v⃗PRT will
have mostly zeros and the perturbation will affect direct movement of a given individual to
the leader, i.e. the movement vector m⃗ will be modified. Only the dimensions where values of
v⃗PRT,j are adjusted to 1 will not be perturbed and the movement will be similar to the original
form of m⃗ (see fig. 3).

Similarly, migration is analogous to crossover in genetic algorithms. During one migration cycle
(3.4) is processed in steps, which corresponds to mapping the state space. Although there
does not exist any generating new populations but this representation is equivalent to a se-
quence of descendants depicted in the fig. 3 as bullets (one step – one descendant or one
element of given population). Also the best solution will be chosen and after the migration
cycle the individual will come back to the best position, which corresponds to the selection in
genetic algorithms. Generating new populations is substituted by migrating individuals in the
state space.

Processing in SOMA depends on the strategy used. There are several possible strategies but
the strategy All-To-One is the primary one and the following process will be explained using
this kind of strategy. First, after some initializing steps like defining managing and finishing
parameters as well as creating the initial population from the specimen each individual will be
evaluated by a fitness function. The best individual will be chosen for a leader in next migration
cycle. After that individuals start to move to the leader in jumps calculated by (3.4) then they will
pass it and finish at distances given by parameters Step and Mass (see fig. 4). After each jump



Figure 3: Influence of the perturbation vector v⃗PRT on the movement vector m⃗ in a 2-
dimensional space; I – individual, L – leader, dashed arrow – perturbed, solid arrow – not
perturbed.

(step) the individuals will be evaluated by the fitness function. If the evaluation is better than the
previous one it will be remembered. After the individuals reach the last jump they will return to
new positions where they found the best fitness, i.e. beside the leader individuals will be moved
to other positions (fig. 4). In other words, they did searching in the state space and migrated. In
such a manner one migration cycle has been finished and new one will immediately start after
a new leader (the best individual) is determined.

As seen from above the size of population remains the same, even the individuals are the
same. No new population will be generated and no selection in the sense of genetic algorithms
will be done. The acquired knowledge remains in each individual and we can observe certain
learning process during migration cycles. The only kind of selection can be observed in cho-
osing the leader, which depends on the quality of an individual (fitness value). The strategy
of information interchange in SOMA (similarly also PSO), i.e. cooperation and competition in
searching a leader can be withdrawn, in spite of genetic algorithms. However, in contrast to
PSO the exploration of leader’s surrounding is more systematic and spreading individuals less
stochastic. Therefore, a kind of intentional (deterministic) learning is in a greater measure than
in conventional genetic algorithms or PSO.

4 Problem Description and Implementation of FCM

The original aim for research was its application in robotic soccer where properties of operating
area are known and thus it is quite easy to process colour image segmentation. Such an area



(a) (b)

Figure 4: Migration process of individuals 1 - 4 to the leader L from the positions in (a) to (b)
during one migration cycle.

consists of several objects characteristic by their unique colours. The ball is orange or red,
playground is green and lines are white. All other colours represent obstacles. Further, we will
focus our attention on the ball as the main target, which should be chased and catched. In
other words, red or similar colour is the target, white and green are free areas and remainder
is an obstacle. Thus we get three classes — target, free area and obstacle(s).

As the image is processed as a set of colour pixels we can transform them into elements of a
visual matrix M ×N where M is the number of pixels along the hight and N number along the
breadth of the sensed picture by a camera, which is mounted on the top of our vehicle (robot).
The elements will be assigned values by the colours of pixels, i.e. target as 2, obstacles as
1 and free area as 0. As the camera senses images in vertical position it is apparent that
higher positioned pixels correspond to more distant objects (far ) than lower ones (near ). From
this reason several lowest rows (tagged by a red-lined rectangle) represent the area of critical
nearness. If there are some obstacles or the target then the vehicle will stop immediately —
either because of obstacles or the target has been reached. Further, the matrix is divided into
two vertical (far, near ) and three horizontal (left, straight, right) sectors, i.e. in total six (1 – 6).
Thus a real image can be transformed into a visual matrix as seen on the fig. 5 with a set of
skittles as a target. This depiction is for illustration only because fig. 5 a is not taken from the
camera on the vehicle, which is visible on the picture and therefore it is slightly different from
that one transformed into the visual matrix.

Target and obstacles create clusters, which can be described in a simpler way than using a
huge visual matrix. It can be represented just by sectors 1 – 6 (clusters) in satisfactory quality
of accuracy. They could be also linguistically expressed like far left for the sector 1 and near
right for the sector 6. For each sector i the presence measure of obstacles pmoi as well as
target pmti is defined. It is a weighted average where weights wij are indirectly proportional to
distances dij between the vehicle and a given pixel, i.e. wij = 1/dij . If a pixel is occupied by



(a) (b)

Figure 5: Transform of a real image (a) sensed by the vehicle’s camera to a visual matrix (b)
with sectors 1 – 6; obstacles – O, target – T.

the target or obstacle then its presence value pij will be set to 1 else to 0. Thus for ni pixels of
individual sectors (

∑
ni = M ×N ) we get in total 12 pm values, which represent a part of the

state vector C for proposed navigation FCM:

pmoi/ti =

ni∑
j=1

wij .pij

ni∑
j=1

wij

. (4.1)

(4.1) secures the pm values will stay in the interval [0; 1] as well as they will be influenced by
the distance between individual areas and the vehicle. Thus more distant areas will be less
important than nearer areas. Near objects force the vehicle to undertake more drastic actions
than the more distant ones. This approach is typical for a human, too.

The information about positions of obstacles and the target is satisfactory to determine the
control action for the vehicle. In our case there are two actions — for the left (node 13) and
right (node 14) wheel of our two-wheeled car that are in form of the angular changes, which
will be then transformed to powers of connected motors. In such a manner we get the basic
structure of FCM for navigation as depicted in the fig. 6. Nodes 1 – 6 are for obstacles and 7 –
12 for the target. Concerning the sectors in the visual matrix (fig. 5 b) the nodes are labeled in
the following manner: 1, 7 – far left ; 2, 8 – far straight ; 3, 9 – far right ; 4, 10 – near left ; 5, 11 –
near straight ; 6, 12 - near right.

A more detailed consideration leads to a fact that can simplify the structure of connection and
ultimately the learning process, too. At wheeled vehicles there is a mirror symmetry. If e.g. an
obstacle on the left causes any action then an obstacle on the right will cause the same action
but with opposite direction. So for arbitrary design of the connection matrix E the following
parameters should be in E. Only their absolute values can vary depending on the design but



Figure 6: Structure of FCM for navigation with numbered nodes and lettered weights; solid
lines for the left and dashed lines for the right wheel.

not their mutual relations (see also fig. 6):

ET =



0 · · · 0 · · · 0
...

...
...

0 · · · 0 · · · 0

a c −a d f −d g i −g j l −j 0 0

b c −b e f −e h i −h k l −k 0 0



T

. (4.2)

The navigation task is performed in the following closed loop: image sensing & processing →
computation of a control action by FCM → performing the control action → sensing new image,
etc. However, only a small part of this loop is described by FCM. Conventional approaches
in describing a problem by FCM (see the section 2) are only once initialized by the initial
node vector C(0) and then we will be able to observe temporal evolution of all processes and
variables in FCM. Such a system is practically closed in the face of outer impulses and it is
deterministic. However, in our case the system is initialized by new sensor values in each time
step and FCM needs to be open for new sensor values because we cannot precisely estimate
movement of the target. In this case we speak about FCM with active inputs (FCM-AI) (nodes
1 – 12, see fig. 6), which are steadily fed by new values. Of course, there is usually a strong
relation between individual images but because of the target’s behaviour (at least) we can
speak only in terms of probabilities or uncertainties and ’closed’ FCM are unusable. However,
beside the nodes of active inputs the evaluation process is the same, i.e. formula (2.3) or
(2.4). Active inputs are evaluated by functions defined in their nodes — see the mapping α

in the definition of FCM (2.1). This is a problem of the task definition and it depends on the
application. In our case we used for nodes 1 – 12 the formula (4.1) and for outputs 13 and 14
the formula (2.3).



Concerning the implementation of SOMA for learning FCM the first two questions are what
is represented by individuals and how they are constructed. The i-th individual is a vector
{xi,1, . . . , xi,j , . . . , xi,D}, which is an element of the population P , see (3.2). D as the number
of optimised arguments can correspond to the number of adapted connections. Thus one indi-
vidual will represent the whole design of one FCM in form of nonzero connections of the matrix
E. The population will be then a set of NP concurrent and mutually competitive FCM, which in
particular migration cycles exchange information about their fitness (i.e. cooperation) with the
aim continuously to find the optimum solution, i.e. the best combination of connection weights.
Due to the parameter AE there is a chance of obtaining a robust solution because SOMA does
not prefer elitism but it tries to find proper solutions for all individuals and thereby to prevent
finding although an excellent but very sensitive solution. As in the matrix E (4.2) there are only
12 nonzero connections the parameter D will be set to 12, too. Besides, still one modifica-
tion was proposed. The perturbation vector v⃗PRT using only ones and zeros can cause too
strong changes. From this reason it is constructed as v⃗PRT,j = rndj where the function rnd is
normalized to [0; 1].

5 Experiments and Evaluation

For experiments our own construction of a vehicle based on Lego Mindstorms together with
an IP camera was used. Because of technical limitations of both equipments it was necessary
to modify experiments, too. For quality evaluation of the proposed FCM-AI two basic scenarios
of experiments were proposed, see fig. 7: (a) catching static skittles and (b) catching a moving
target. First, the simpler experiments with skittles were done, which are easier to be analysed
and after some modifications we tried to solve catching a moving target, which was in form
of another vehicle operated by a human using a joystick. Experiments with a moving target
should approve the ability of the proposed method to track a ball, too.

(a) (b)

Figure 7: Experimental scenarios for static (a) and moving targets (b); solid line – optimum,
dash-dot line – target trajectory and dashed line – real vehicle trajectory.

For comparison of quality of used methods first of all the time necessary to reach the target tT



was measured. During the movement of the vehicle we can observe often oscillations around
the straight line from the starting point S to the target (see fig. 7), which should be minimised.
These oscillations can be represented as distance deviations d(t) from the straight line (mea-
sured perpendicularly) in the time t. In the case of a moving target it is complicated to measure
oscillations because the trajectory of the target is changing in time, which should be taken into
account and thus the construction of the optimum trajectory would be very complicated. In the
first scenario these two criteria were merged into one numerical value expressing the error in-
tegral ε of the surface between the straight (optimum) and the real trajectory for the time extent
t ∈ [0; tT ]:

ε =

tT∫
0

|d(t)| dt. (5.1)

Experiments performed in the first scenario are evaluated by ε and tT whereas in the second
scenario only by tT . The aim is to minimise these values.

At first the matrix E is proposed manually by an expert in a common form for both scenarios
with the following connection weights, see (4.2):

EM = {a, . . . , l} = {−0.5, 0.5, 0.3, −1.0, 0.9, 0.7, 0.3, −0.3, 0.1, 0.5, −0.5, 0.5}. (5.2)

In this paper experiments beside our approach also for active HL (AHL), nonlinear HL (NHL)
(Papageorgiou et al., 2006), SA (Ghazanfari et al., 2007) and PSO (Papageorgiou et al., 2005)
were performed and mutually compared, i.e. including the manual design there are in total six
approaches for constructing FCM. Experiments were repeated for all six approaches under
various starting positions and configurations of objects but always with the constant initial dis-
tance to the target. Although the adaptation methods beside NHL are able basically to adapt
also an initially empty matrix E (zero connections) it will be better if we can start with the initial
design of E, which will be improved in next steps. For this purpose the manual design EM is
used and the task of all adaptation methods is to improve it. All weight changes were restricted
only for parameters in (4.2) and no new connections were created.

Figure 8 offers a detailed overview about behaviour of individual FCM designs in the case of
static targets during a typical experiment. In the sense of comparing methods by values of ε
and tT we obtained similar results in other experiments, too. There are depicted deviations
of real trajectories from the optimum ones. We can observe initial oscillations for each method
that are damping continuously. However, there are differences for individual methods according
to deviations and time necessary to get to the target.

Although the manually designed FCM reached its target but its movement was affected stron-
gly by oscillations. Considerable deviations caused slowing and both evaluation values were
the worst. Other methods proved more or less to improve the initial FCM. AHL and NHL show
similar behaviour where AHL can a little quicker reach the steady state. However, these met-
hods exhibit a steady deviation from the optimum trajectory and therefore strictly said they
missed the target (in the table 1 the quality criteria are not measurable and therefore they are
indicated by –) although very closely and in the reality it is negligible. This only confirms their



Figure 8: Position deviations of an autonomous vehicle for used FCM designs.

principal application difficulty in control. However, their convergence speed is anyway of inte-
rest. PSO and SA show unambiguously better results. They have similar behaviour but SA is
slightly better. As the best solution, mainly about the error integral, is that provided by SOMA,
which was obtained for: Mass = 3, Step = 0, 11, PRT = 0, 2, D = 12 (because in (4.2) there
are 12 parameters), NI = 40, M = 20 and AE = 3, 5. The final parameters of the best SOMA
solution are:

ESOMA = {a, . . . , l} = {0.97, −0.74, −0.3, 0.81, 0.45, 0.74, 0.15, −0.99, 0.68, 0.93, 0.2, 0.47}.
(5.3)

If we look at fig. 8 we can see that the behaviours of all used methods resemble more or less
to damped harmonic oscillations, whose behaviour d(t) is similar to a curve

d(t) ≈ exp(i.ω0.
√

1− ζ), (5.4)

where ω0 = 2Π.f is the angular frequency, f is the ordinary frequency and ζ is the so-called
damping ratio, which can be also determined from the graph if we detect two successive peak
positions of amplitudes x0 and x1, respectively

ζ =
1√

1 + ( 2Π
ln(x0/x1)

)
. (5.5)

This approximation enables us in advance to estimate the real time, which is necessary to
reach the target. As the mentioned parameters ω0 and ζ depend on mechanical characteristics
of the robot like its mass or reaction time and hence they are constant for a robot, i.e. we can



parameterize (5.4) and process it until it will be damped, which means that the target was
achieved.

In the case of the moving target the times for reaching it were of course worse but beside AHL
and NHL all other methods were able to fulfill the task. Just dynamic environment goes off re-
asonable use of methods based on Hebbian learning. Besides, we can observe the efficiency
of the manual design is not so bad comparing to other designs than in the case of a static
target. It means the manual design is more general and basically robust as well as it contains
probably some kind of prediction knowledge about the target behaviour and its decision ma-
king (Gavalec and Mls, 2008). Table 1 shows average values of ε and tT for the scenarios (a)
and (b), respectively. The total quality of results is indirectly proportional to ε and tT .

Table 1: Quality comparison of used methods for the criteria ε and tT ; – stands for unmeasu-
rable.

Method
Scenario (a) Scenario (b)
ε tT tT

Manual 30,55 14 24
AHL – – –
NHL – – –
SA 7 11,5 21
PSO 8,2 12 20,5
SOMA 4,1 9 14,5

If we compare obtained results contained in table 1 as well as depicted in fig. 8 then we can
divide the used adaptation methods into three groups from the worst up to the best one: (a)
AHL and NHL, (b) PSO and SA and finally (c) SOMA. For the first group the explanation for
a lower quality is easy. These two methods are based on unsupervised learning, which is
convenient e.g. for clustering but not for control. They are able to secure a steady state but
it is not definite equivalent to the optimum or required one. The approaches from the second
group are indeed efficient in general but PSO is very sensitive on adjusting the parameters,
which is not easy and so its strength based on a large number of particles can be eliminated.
On the other hand side SA is very powerful in escaping from local minima but any parallelism
is missing. In other words comparing to PSO it is a one-particle algorithm because it works
only with one candidate solution. It can be supposed that especially PSO and SOMA could be
comparable but PSO requires complicated adjusting the parameters, which is in the case of
SOMA much easier.

6 Conclusions

In this paper a new FCM design method based on SOMA was presented and on an naviga-
tion example it was compared to other known adaptation methods where it proved its quality
according defined criteria as well as robustness, which can be attested by a number of vari-
ous experiments. Navigation is a task, which is in principal deterministic and based on certain



rules. This fact could explain why SOMA-based adaptation shows better results than PSO, i.e.
because of its more intentional (deterministic) learning. In other words, too much stochasti-
city in learning does not guarantee the best results in too little stochastic tasks. Therefore, it
could be also very useful to focus interest on various interpolation and nonlinear methods alre-
ady used in conventional rule-based fuzzy systems (Oblak, Škrjanc and Blažič, 2006; Pozna,
Troester, Precup, Tar and Preitl, 2009). There is still one more aspect which should be taken
into consideration. Using learning methods we can get indeed two functionally identical FCM
systems but their structure is quite different. This is especially remarkable if there are no pre-
scriptions about the structure of the FCM matrix E, which is not this case, see (4.2). Because
especially FCM should reflect just human representation of knowledge. Finally, from the vie-
wpoint of practical robotic applications we can meet with problems of lacking training data, the
so-called sparse data and solving this problem is a great challenge for future research (Lijuan
and Zhangming, 2009).
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