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The standard PID controller is known to have performance limitations as it must trade off 
the transient response performance and the disturbance attenuation level. The paper 
proposes a hybrid reference control (HRC) with adaptive neuro-fuzzy inference system 
(ANFIS) to improve transient response performance of PID controller. The ANFIS is used 
to manipulate the set-point of the PID controller in a specific manner such that the 
transient response is improved by learning from experimental data. In this structure, the 
ANFIS-HRC deals with the achieving good transient response performance, whereas the 
PID controller stabilizes the closed loop system and defines the disturbance attenuation 
level.  As a result, the transient response performances and the disturbance attenuation 
can be designed independently. 
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1. INTRODUCTION 
 

PID (proportional integral derivative) controller is known to have inherent limitations in resulting 

simultaneously conflicting control design objectives. A PID controller cannot be tuned optimally to 

satisfy both requirements, i.e. faster transient response to set-point changes and good disturbance 

rejection. Many methods have been developed to deal with the limitations, such as fuzzy PID self-

tuning, fuzzy PID switching, fuzzy precompensator PID, etc. Each method claims improvement over 

the conventional PID controller and superiority over other methods. Many published papers mainly 

focused on the selection of the three parameters of the PID controller as the application of fuzzy 

system in mimicking the knowledge of the operators (Misir and Malki, 2006), (Mohan and Sinha 2008). 

However, there has been little attention to implement fuzzy logic to perform a similar way to an expert 

operator who suppresses overshoot by either increasing or decreasing the input of the controlled 

process. Other successful examples of the application of fuzzy logic in control system design as can 

be found in (Chiu, 1998), (Devasenapati and Ramachandran, 2011), (Precup et al., 2012), (David et 

al., 2012). 

A combination of PID controller using a fuzzy expert control technique to produce the response stays 

at a predefined curve with minimal overshoot was considered in (Yasuda et al., 1990). A different 

method by using fuzzy logic was investigated in (Kim et al., 1994). The method is called as a fuzzy 

precompensator that compensates the set-point of the conventional closed loop feedback control 

using PID controller. The method uses the error, the change of error, and a correction term to 

compensate the set-point by simply taking the sum of the nonlinear mapping of the the error and the 

change of error with the correction term. The fuzzy logic rule is obtained by trial and error to 

compensate the overshoots and undershoots present in the output response when the plant has 

unknown nonlinearities that can yield significant overshoots and undershoots in a conventional PID 

controller. Further extension of the method was developed in (Pratumsuwan and Thongchaisuratkrul, 

2011) that combined the advantages of both fuzzy pre-compensated PID controller (Kim et al., 1994) 

and fuzzy precompensated fuzzy controller (Pratumsuwan and Thongchai, 2009) to form a pre-

compensation of a hybrid fuzzy PID controller. The method was aimed to result in a fast rise time, to 

produce a small overshoot, and to correct the position with respect to the set point. 

Motivated by the method for improving transient response performances called hybrid reference 

control (HRC) developed in (Joelianto and Williamson, 1997),  a fuzzy logic based hybrid reference 

control (FHRC) to improve transient responses of PID controller was considered in (Joelianto and 

Tansri, 2007). The main advantage of the HRC method is the capability to yield deadbeat response at 

any predefined time as the optimal solution. The FHRC method is aimed to control the reference 

signal (set-point)  into a particular temporary reference signal for transient response performances 

improvement during disturbances or simply the error with respect to the default reference signal is 

considered very big. In this method, the FHRC manipulates the set-point of the PID controller in a pre-

learning manner that will improve the transient response performance when the disturbance rejection 



 

properties have been established by PID parameters tuning.  

Further extension of a combination of PID controller with fuzzy hybrid reference control (FHRC) was 

carried out in (Joelianto and Sitanggang, 2009) by adapting substractive clustering in order to 

determine the number of membership functions and membership functions in a short time. The fuzzy 

membership functions and the rule base were obtained by using the substractive clustering method 

(Chiu, 1994), (Chiu, 1997), (Hammouda and Karray, 2000). The combination of PID controller with 

fuzzy hybrid reference control (FHRC) offers significant improvement as the set-point performance 

can be independently achieved without affecting the disturbance rejection capabilities. The stability 

analysis of FHRC was also derived in (Joelianto and Sitanggang, 2009) based on the state space 

representation of the PID controller, detail description can be found in (Joelianto, 2011) and the hybrid 

reference control analysis (Joelianto and Williamson, 1997), (Joelianto and Williamson, 2009) with the 

help of the internal model principle (Francis and Wonham, 1976). 

On the other hand, adaptive neuro-fuzzy inference system (ANFIS) has been known to have good 

features from the fuzzy logic and neural networks. ANFIS as developed by (Jang et al., 1997) is a 

class of adaptive networks that is functionally equivalent to fuzzy inference systems, where the 

parameters of fuzzy inference systems are updated by neural networks from a set of training data. 

ANFIS has the advantages claimed by neural networks (NNs) and the linguistic interpretability of 

Fuzzy Inference Systems (FIS), wherein both NNs and FIS play active roles in an effort to reach 

specific goals. ANFIS has been successfully implemented in rainfall-runoff prediction of intermittent 

river (Keskin et al., 2006), (Aqil et al., 2007), (Jothiprakash et al., 2009), evapotranspiration from 

weather forecast (Cai and Mu, 2005), stock market and financial decision (Patel and Marwala, 2006), 

(Cheng et al., 2007), time series prediction of earthquake events (Joelianto et al, 2009), complex large 

scale systems (Buragohain and Mahanta, 2008), etc. 

The adaptive capability of ANFIS makes it almost directly applicable to adaptive control and learning 

control. The nonlinearity and structural knowledge representation of ANFIS are the primary 

advantages over classical linear approaches such as in control systems. The paper considers 

development of ANFIS-HRC to the PID controller in order to improve transient response 

performances and its application to speed control of AC-motor. The previous version of the paper has 

appeared in (Joelianto and Anura, 2011). Closed loop stability properties are also briefly discussed. 

 

2.   ANFIS – HRC 

 

The structure is referred as ANFIS Hybrid Reference Control abbreviated as ANFIS-HRC.  

 



 

 

 

Figure 1.  Block Diagram of ANFIS-HRC-PID Controller. 

 

Figure 1 shows the diagram block of ANFIS-HRC-PID controller which has the same structure as 

FHRC in (Joelianto and Transri, 2007), (Joelianto and Sitanggang, 2009).  In Figure 1, the signal 

)(td  is the output of Fuzzy system that changes temporary the default set-point )(tr during transient 

response. The action of the Fuzzy system is defined by an enable event kt   is detected by the 

performance observer embedded in the fuzzy system. This event informs the performance observer 

that the deviation of the closed loop system output ( )(ty ) to the default reference signal ( )(tr ) is 

bigger than the prescribed tolerance δ  such that 

δ≥−= |)()(||)(| trtyte                    (1a) 

The fuzzy system sends the reference signal ( )(td ) either continuously or in a predefined time 

interval (τ ) until the performance observer detects another disable event where the error of the 

closed loop system is now entering the allowable tolerance defined by 

δ<−= |)()(||)(| trtyte                                  (1b) 

When this event is detected, the fuzzy system then stops sending reference signals ( )(td ) and return 

to the default reference signal ( )(tr ) by sending the signal 0)( =td .  

The closed loop stability properties of the control system with FHRC have been derived in (Joelianto 

and Sitanggang, 2009) based on the analytical results on hybrid reference control (HRC) developed in 

(Joelianto and Williamson, 2009). The stability conditions for ANFIS-HRC follow directly by employing 

the same arguments as in (Joelianto and Sitanggang, 2009) by replacing fuzzy logic with ANFIS and 

by considering sampling time as an event. The asymptotic stability of ANFIS-HRC-PID controller is 

guaranteed if the reference signals generated by the ANFIS are admissible reference signals then the 

closed loop system is asymptotically stable. The admissible reference signals refers to a condition 

that the reference signal eventually becomes zero such that the output of the controlled system will 

track the original reference signal. Hence, the asymtotic stability follows from the asymtotic stability of 

the closed loop system controlled by the PID controller. 



 

The PID controller in Figure 1 is described by the following equation 
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where )(tu  denotes the manipulated variable of the plant or represents the control signal. The three 

parameters of the PID controller are denoted by cK  (the controller gain), iT  (the integral time) and 

dT  (the derivative time). The implementation of the PID algorithm (2) in Labview makes modifications, 

especially in the integral part by using trapeziodal integration to avoid sharp changes and in the 

derivative part by taking the derivatif to the process variable to prevent derivative kick (National 

Instrument, 2001).   

2.1. ANFIS 

The block diagram of the ANFIS that was first proposed by (Jang et al.,1997) is shown in Figure 2. 

Each layer consists of several nodes denoted by square and circle. Nodes in the same layer l  have 

the same output function at node i  is denoted by l
iO . In principle, ANFIS is an adaptive network 

consists of nodes and directional links which form nodes connections. Based on the type of network, 

all or some of the nodes are adaptive and it is the task of the learning rules to tune the nodes 

according to an error measure.  

 
Figure 2.  Block Diagram of ANFIS. 

 



 

For simplicity, it is assumed that the considered fuzzy inference system has two inputs x  and y  and 

one output f . A common rule set for a first-order Sugeno fuzzy with two fuzzy if-then rules is given by 

Rule 1: If x  is 1A and y  is 1B , then 

  1111 ryqxpf ++=                    (3) 

Rule 2: If x  is 2A and y  is 2B , then 

 2222 ryqxpf ++= .                                                         (4) 
The mechanism in the forward pass can then be explained as follow: 

 
Layer 1 

Nodes in this layer are adaptive nodes which represent the membership grade of inputs x and y of 

fuzzy sets A  and B respectively. The output of the node i  is denoted by a node function 
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The variables A  and B  are the linguistic labels such as small, medium, large, etc. The membership 

functions of  A  and B  are Gaussian membership functions defined by 
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The premise parameters },{ σc  are adaptive and determine the shape of the membership function. 

They represent the various types of the membership function of fuzzy sets A  and B . 

Layer 2 

Each node in this layer is not an adaptive node which is denoted by Π . The output of the product 

layer at node i is given by the following equation 

2,1),()(2 =•== iyxwO BiAiii μμ        (7) 

The output of this layer performs as the weight of each fuzzy rule using the t-norm fuzzy operator. 

Layer 3 

Each node in this layer is a non adaptive node and is denoted byΝ . Each node normalizes the 

weight functions ( iw ) obtained from the product layer. The normalization is carried out using the 

following equation  
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Layer 4 

Each node i  has defuzzified output which is computed using the following equation  

2,1),(4 =++== iryqxpwfwO iiiiiii       (9) 

 
where iw  denotes normalized activation function from the layer 3. Parameters },,{ iii rqp  are 

consequent parameters in fuzzy rules of the corresponding node i . Nodes in this layer are adaptive in 

nature.  

Layer 5 

The layer denoted by Σ  is non adaptive and produces output function by adding all inputs from the 

previous layers. The outputs are calculated using the equation  
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Although the Mackey-Glass is often used to develop model (Jang et al., 1997), there are no 

established rules to build an ANFIS model. Trial error method is the most and popular way in the 

model development. The objective of an ANFIS is to obtain a relationship of the form: 

)( nm XfY =            (11) 

where nX denotes an n-dimensional input vector consisting of variables },,,{ 21 nxxx L  and mY is an 

m-dimensional output vector of interest },,,{ 21 myyy L .  

 
ANFIS uses hybrid learning algorthm which is a combination of Error Backpropagation (EBP) learning 

algorithm to update the nonlinear premis parameters and Recursive Least Square Error (RLSE) to 

update linear consequent parameters. By using hybrid learning algorithm, ANFIS has been known to 

produce good model closed to the system of interest. Detail hybrid learning process in ANFIS can be 

found in (Jang et al., 1997).  

In the ANFIS-HRC structure, ANFIS represents the relation between the error, the increment of error 

and the reference signal as a function of the dynamics of the plant and the PID controller. To obtain 

the dynamics between the error, the delta error and the required set-point compensation, ANFIS uses 

system identification process by means of numerical learning consists of two stages, i.e. structure 

identification and parameter identification. Structure of the identification determines an optimal if-then 

rules of fuzzy inference system, while parameter identification is related to finding the system 

parameters such as membership functions, linear coefficients, etc.  



 

2.2. Subtractive Clustering 

Clustering is a method of grouping data in order to determine their structure where data with same 

characteristics will be in the same group (Chiu, 1994). Suppose there are n  data },,,{ 21 nxxx L  in 

M dimension that has been normalized. Let *
1x  and *

1P  be the location of the first cluster center and 

its corresponding potential value respectively. The potential of each data point *
1x  is then revised by 

using the potential equation  
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where 0>br  is a constant. Equation (12) shows an amount of potential from each data point as a 

function of its distance from the first cluster center. The data points near the first cluster center will 

have greatly reduced potential, and it will not be selected as the next cluster center. The constant br  

denotes the radius defining the neighborhood which will have measurable reductions in potential. To 

avoid obtaining closely spaced cluster centers, br  is set to be greater than ar , a good choice is 

ab rr 5.1=  (Chiu, 1994) or ab rr 25.1= (Chiu, 1997).  

Next, the potentials of all data points are revised by using equation (4), the data point with the highest 

remaining potential is chosen as the second cluster center. The process is then continued until the 
thk , ni ,,1L=  cluster center have been selected, the potential of each data point is revised by the 

following formula  

2*2 ||||)2(
*

1

ki
b

xx
r

ii ePPP
−−

−⇐             (13) 

where *
kx  is the location of the thk cluster center and *

kP  is its corresponding potential value. The 

process of acquiring new cluster center and revising potentials is repeated until the remaining 

potential of all data points falls below some fraction of the potential of the first cluster center *
1P .  

Although the number of clusters (or rules) is automatically determined by the method, it should be 

noted that the user specified parameter ar  (the radius of influence of a cluster center) strongly affects 

the number of clusters that will be generated. A large ar  generally results in fewer clusters with a 

coarser model, while a small ar  can produce excessive number of clusters and a model that does not 

generalize well (by over-fitting the training data). 

Therefore, the constant ar  acts as a tuning parameter of the desired resolution of the model, which 

can be chosen based on the resultant complexity and generalization ability of the model. It is clear 



 

that choosing ar  very small or very large will result in a poor accuracy because if ar  is chosen very 

small the density function will ignore the effect of neighboring data points; while if taken very large, the 

density function will take into account all the data points in the data space. Chiu (1997) suggests that 

the good value of ar  is between 0.2 and 0.5, while Hammouda and Karray (2000) show that a value 

of ar  between 0.4 and 0.7 is adequate. In this paper, the substractive clustering approach is used to 

find the initial membership functions of the ANFIS-HRC system with less number of rules and 

minimum amount of computational time. The design steps of ANFIS-HRC are shown in the flowchart 

presented in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  ANFIS-HRC Design Step. 
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3.   ANFIS – HRC DESIGN AND SIMULATION 

To develop ANFIS-HRC, the following steps are required: 

• Generate data training set consist of error, delta error and increment set-point. 

• Apply clustering method.  

• Train ANFIS using data training set and the obtained membership function from clustering 

method. 

 

Figure 4.  Architecture of ANFIS with 4 membership functions and 4 rules. 

For simulation, let consider a seond order system with delay time given by the following transfer 

function. 
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The parameters of the PID controller are selected as 05.0=cK , 6.0=iT  seconds, dan 15=dT  

seconds and the range of data are as follow: ]1,1[)( −∈ke , ]1,1[)( −∈Δ ke , and ]3.3[)( −∈ko . First, 

it is necessary to generate data by simulating the closed loop system controlled by the PID controller 
with manipulate the set-point. Next, the membership functions and the number of the membership 

functions are found using the following parameters:  2.0=ar  (
oee aaa rrr ==

Δ
); 5.1=fs (squash 

factor); 5.0=
−

ε  (accept ratio); 3.0=
−
ε (reject ratio). Figure 5 shows the data used to training ANFIS 

and the respective cluster centers obtained from substractive clustering. In (Matlab 2012), the squash 
factor is to specify that the cluster will be far from each other given by the following equation 

afb rsr ×= .  



 

 

 

 

Figure 5.  Signal data from error, increment error and set-point. 

 



 

 

 

Figure 6.   Membership functions error signal and delta error signal. 

Initial and final rule base of the fuzzy inference system (FIS) obtained from substractive clustering and 

from ANFIS error backpropagation (EBP) learning are given in the following.  

Initial FIS Final FIS 

If  error is E1 and increment error is DE1 then reference1 is ‐
1.648(E1)‐0.2724(DE1)‐1.359. 

If  error is E2 and increment error is DE2 then reference2 is ‐
1.012(E2)‐0.2866(DE2)+0.7317. 

If  error is E3 and increment error is DE3 then reference3 is 
1.054(E3)+1.269(DE3)‐0.02124. 

If  error is E4 and increment error is DE4 then reference4 is 
1.1496(E4)‐1.235(DE4)+0.3027. 

If  error is E1 and increment error is DE1 then reference1 is ‐
1.521(E1)‐0.2815(DE1)‐1.236. 

If  error is E2 and increment error is DE2 then reference2 is 
1.083(E2)‐0.4311(DE2)‐1.428. 

If  error is E3 and increment error is DE3 then reference3 is 
1.428(E3)+2.927(DE3)+0.05941. 

If  error is E4 and increment error is DE4 then reference4 is 
0.4221(E4)‐0.948(DE4)‐0.0228. 

 

Figure 7 depicts the 3D plot of the fuzzy inference system of the ANFIS-HRC after EBP learning. 



 

 

Figure 7.  3-D plot of FIS after EBP learning. 

Figure 8 shows the transient response performances of the closed loop system with the PID controller, 

Fuzzy HRC-PID and the ANFIS-HRC-PID controller. It can be seen that the ANFIS-HRC-PID results 

in faster transient response with smaller overshoot and control signal magnitude compare with the 

PID controller. Table 1 shows the value of transient response criteria (rise time rT , settling time 

sT and maximum overshoot pM% ) and integral error criteria (integral squared error (ISE), integral 

absolute error (IAE)). Either transient response or integral error criteria of the ANFIS-HRC-PID is 

better than the PID controller. Figure 9 shows the comparison of the response when the original set-

point is increased and decreased over a period of time. In this case, the ANFIS-HRC-PID is still 

outperform the PID controller.  

 



 

 

Figure 8.  Transient response performance and the control input. 

Table 1.  Transient Response and Integral Criteria. 

 Tr(s) Ts(s) %Mp up dtu∫ 2  ISE IAE 

PID 85.42 181.01 13.60 4.54 20.398 0.040 0.067 

ANFIS-
PID 

75.44 171.90 1.60 4.07 19.731 0.038 0.061 

 

 

 



 

 

Figure 9.  Transient response performance and the control input with changing the original set-point 

 

4. IMPLEMENTATION ON SPEED CONTROL OF AC-MOTOR 

 
This part presents an implementation of ANFIS-hybrid reference control (HRC) for speed control of 

AC-motor. Figure 10 shows the block diagram of the implementation of ANFIS-HRC to control AC-

motor, the analog to digital and digital analog converter and an inverter. The hardware and the wiring 

are shown in Figure 11. The activation condition δ  (in the equation (1a) and the equation (1b)) to 

initiate the reference signal changes in HRC is set as δ = 2 % of the steady state error. 

 

Figure 10.   Block Diagram of Blok ANFIS-HRC-PID controller for Speed Control of AC-motor 

 



 

 
Figure 11.  Hardware Configuration of Experimental Setup. 

 
Device specifications in the hardware configuration are as follow: 

• AC-motor: 3-phases induction motor, with poles:4, Output : 0.25 HP/0.18 KW, Volt: 220/330 

V, AMP: 1.1/0.64, RPM: 1345 rpm 

• Inverter: Altivar 31, ATV31HU11M2 type, Input power: 0,5 HP or 0,37 KW 

• Analog tp Digital/Digital to Analog: National Instrument (DAQ NI-USB 6008), Input: 0-10 V DC, 

Output: 0-5 V DC 

• LabView Software  

 

Next, the membership functions and the number membership functions are found using the following 

parameters: 075.0=ar  (
oee aaa rrr ==

Δ
); 25.1=fs  (quash factor); 4.0=

−

ε  (accept ratio); 

05.0=
−
ε  (reject ratio). These parameters imply that a center can be a new cluster center if has 

density value compared to the highest density value is greater than 0.4. A new candidate of cluster 

center will be rejected if it has density ratio compared to the highest density is less than 0.05.  Figure 

12 and Figure 13 show the data used to training in substractive clustering which are obtained by 

making various paterns of reference signal changes that yield good speed control  transient response 

performances of the AC-motor. This substractive clustering produces 18 cluster points either in the 

error or in the delta error to initiate the Fuzzy Inference System (FIS). The subtractive clustering 



 

method yields RMSE 0.058. It gives Gaussian parameters σ  (the variance) and c  (the mean) as 

follow: 

• The parameter σ  : [ ]0325,00921.00913.0=L  

• The cluster center matrix (C ): 
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Figure 12.   Cluster Centers of Error and Reference Signal Changes 



 

 
 

Figure 13.   Cluster Centers of Delta Error and Reference Signal Changes. 

 

After working on the substractive clustering to estimate the number of clusters and the cluster centers 

in a set of data, it is carried out ANFIS learning by using the same data in order to improve the initial 

FIS formed in the substractive clustering step. The improvement is done by correcting the premise 

parameters and the consequent parameters. The ANFIS learning uses 3175 input/output pair data, 

0.1 learning rate and 100 training epochs. This ANFIS training reduces the RMSE from 0.058 to 0.047.  

Both error variables and delta error variables have 18 membership functions. The value range of the 

error variables and the delta error variables are selected as ]739.1,703.1[−  and ]741.1,731.1[−  

respectively. The FIS obtained from the ANFIS training has 18 rules. The resulted membership 

functions of the error variables and the delta error variables are shown in Figure 14 and Figure 15 

respectively. Table 2 and Table 3 describe the consequent parameters and the rule of ANFIS found 

after the training process. 

 
 

Figure 14.    Membership Functions of Error. 



 

 
Figure 15.    Membership Functions of Delta Error. 

 
 

Table 2.  Consequent Parameters of ANFIS. 

   p  q  r 
out1cluster1  ‐0,1279  ‐0,393  0,151 
out1cluster2  3,189  ‐0,1076  ‐0,1662 
out1cluster3  ‐0,4487  2,069  ‐0,3167 
out1cluster4  0,04239  ‐0,0319  0,5301 
out1cluster5  15,24  1,587  ‐4,865 
out1cluster6  ‐0,01251  0,0134  ‐0,6219 
out1cluster7  0  0  0 
out1cluster8  10,62  0,1674  4,884 
out1cluster9  ‐0,01052  0,08589  0,6231 
out1cluster10 0  0  0 
out1cluster11 ‐0,02461  ‐0,02843  ‐0,6342 
out1cluster12 ‐13,2  ‐1,79  3,543 
out1cluster13 ‐0,02884  ‐0,07089  0,5969 
out1cluster14 0,1294  ‐0,06217  0,4896 
out1cluster15 ‐0,04987  0,007409 ‐0,652 
out1cluster16 0,01097  ‐0,0213  ‐0,619 
out1cluster17 ‐30,35  0,2178  ‐13,82 
out1cluster18 ‐9,229  2,134  3,972 

 
 
 
 
 
 
 
 
 
 



 

Table 3.   ANFIS Rules. 

   Error     Delta Error     Output  
in1cluster1  in2cluster1  out1cluster1 
in1cluster2  in2cluster2  out1cluster2 
in1cluster3  in2cluster3  out1cluster3 
in1cluster4  in2cluster4  out1cluster4 
in1cluster5  in2cluster5  out1cluster5 
in1cluster6  in2cluster6  out1cluster6 
in1cluster7  in2cluster7  out1cluster7 
in1cluster8  in2cluster8  out1cluster8 
in1cluster9  in2cluster9  out1cluster9 
in1cluster10  in2cluster10  out1cluster10 
in1cluster11  in2cluster11  out1cluster11 
in1cluster12  in2cluster12  out1cluster12 
in1cluster13  in2cluster13  out1cluster13 
in1cluster14  in2cluster14  out1cluster14 
in1cluster15  in2cluster15  out1cluster15 
in1cluster16  in2cluster16  out1cluster16 
in1cluster17  in2cluster17  out1cluster17 

If 

in1cluster18 

And 

in2cluster18 

then 

out1cluster18 
 

Next, the identified ANFIS-HRC is then implemented as in Figure 10 by testing on a range value of 

the reference signal (set-point). The parameters of the PID controller are chosen as 4.0=cK , 

009.0=iT  minutes and 001.0=dT  minutes that results in good transient response. Figure 16 

shows the transient response of the PID controller and the ANFIS-HRC-PID controller at set-point 

1,64 V – 1,70 V or 10 Hz.. It can be seen that the ANFIS-HRC-PID controller is outperform the 

transient response of the PID controller by producing less overshoot and faster settling time. It is also 

shown the reference signal produced by means of ANFIS-HRC. At the start, the reference signal 

leads to large error in order to speed up the response and then it is followed by reducing the error in 

order to suppress the overshoot.  

The control signal is shown in Figure 17. The maximum control signal of the ANFIS-HRC-PID 

controller is a bit higher compare to the PID controller but the integral squared control signal is smaller 

than the PID controller. Table 4 shows that the performances of the ANFIS-HRC-PID controller are 

better than the PID controller except for maximum control signal. Figure 18 shows the transient 

response performances of the ANFIS-HRC-PID controller for changes set-point in the value range of 

the set-point used to train the ANFIS-HRC. It can be observed that the performances of th ANFIS-

HRC-PID controller are still outperform the PID controller. 



 

 

Figure 16.  Comparison of Transient Response. 

 
 

 
 
 

Figure 17.  Comparison of Control Signal. 
 

Table 4.   Performances. 

Controller  ∫u2 dt  Ts  Tr  % Mp  RMSE  IAE  Up (V) 
PID  0,8456  390 ms  140 ms  16,83%  0,46  0,1914  1,39 

ANFIS‐HRC‐PID  0,8042  230 ms  100 ms  5,00%  0,35  0,0993  1,47 



 

 
 
 

Figure 18. Comparison of Transient Response at Different Set-points. 

 

5. CONCLUSIONS 

 

The paper proposed an ANFIS based hybrid reference control to improve the transient response 

performance of the closed loop system controlled by PID controller. The design steps consist of 

generating training data set, obtaining membership functions and number of membership functions 

using subtractive clustering technique and then training ANFIS. Simulation showed that the proposed 

method resulted in improved transient response performances and other integral classifications. The 

proposed ANFIS-HRC was then implemented as a speed controller of AC-motor. The implementation 

confirmed the transient response performances improvement by means of ANFIS-HRC with the PID 

controller.  
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