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ABSTRACT

This article describes a comparative study of Evolutionary Algorithm with Guided muta-
tion (EA/G) against Population-Based Incremental Learning (PBIL) and Compact Genetic
Algorithm (CGA). Both PBIL and CGA are representatives of Estimation of Distribution
Algorithms (EDAs), a class of algorithms which uses the global statistical information effec-
tively to sample offspring disregarding the location information of the local optimal solutions
found so far. On the other hand, EA/G uses global statistical information as well as location
information to sample offspring. We implemented the algorithms to build an experimental
setup upon which simulations were run. The performance of the algorithms was analyzed
on numerical function optimization problems and standard genetic algorithm test problems
in terms of solution quality and computational cost. We found that EA/G outperformed PBIL
and CGA in attaining a good-quality solution, but both PBIL and CGA performed better than
EA/G in terms of computational cost.

Keywords: Evolutionary Algorithms, Estimation of Distribution Algorithms, Guided Muta-
tion, Optimization Functions
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1 Introduction

Finding the global optimum solution for hard optimization problems (i.e., the problems which
involve combinatorial explosion in the solution space, e.g., a traveling salesman problem) has
always been a challenge. A variety of search and optimization techniques have been de-
veloped for solving such problems, and a promising approach has been the development of
evolutionary algorithms (EAs) (Rechenberg 1973, Holland 1992, Koza & Poli 1992). EAs are
stochastic and iterative search methods, which take their inspiration from natural selection and
evolution. Unlike traditional optimization techniques (e.g., gradient descent) that operate on a
single solution at a time, EAs are population-based heuristics, meaning that they operate on a
set of solutions in the search space. In this search space, each solution is assigned a fitness
value which quantifies how the solution is. The search process, which is guided by the fitness
of the solutions, proceeds as follows. EAs start by creating a number of (candidate) solutions
to form an initial population. Then, a competitive selection is made to choose parents, from
which new solutions (offspring) are produced using reproduction/variation operators. Finally,



again, a competitive selection is made from the old population and the offspring to form the
new population of the next generation. This process is repeated until some predefined termina-
tion criteria are satisfied. At the heart of EAs, there are two variation operators: crossover and
mutation, which act directly on selected solutions and allow diversity in the search space. To
sample offspring, EAs directly use the location information of the local optimal solutions (i.e.,
the actual positions of these solutions) in the search space. However, they do not take the inter-
actions among the variables/genes (which characterize the distribution of promising solutions
in the search space) into account. Estimation of Distribution Algorithms (EDAs) (Mühlenbein
& Paaß 1996, Baluja & Davies 1998, Larrañaga & Lozano 2002) are also stochastic search
methods, but unlike traditional EAs, they represent search space by maintaining explicit prob-
abilistic models of promising candidate solutions. These probabilistic models are based on the
global statistical information, which is extracted from the current population. EDAs use this
information effectively to sample offspring. However, they do not use the information about the
locations of the local optimal solutions found so far to guide the search. Evolutionary Algorithm
with Guided Mutation (EA/G) (Zhang, Sun & Tsang 2005) combines global statistical informa-
tion (i.e., the EDA approach) and the location information (i.e., the traditional EA approach) to
sample offspring.
In this article, we empirically compared1 EA/G against Population-Based Incremental Learning
(PBIL) (Baluja 1994) and Compact Genetic Algorithm (CGA) (Harik, Lobo & Goldberg 1999);
the latter two algorithms are representatives of EDAs. The performance of these algorithms
was evaluated on numerical function optimization functions (Yang 2010, Suganthan, Hansen,
Liang, Deb, Chen, Auger & Tiwari 2005) and standard genetic algorithm test problems (Reinelt
1995, Scholl & Klein 2003).
The rest of this article is organized as follows. Section 2 gives a background overview of EDA
approaches and EA/G. The test problems are discussed in Section 3. The empirical study is
outlined in Section 4. Results are discussed in Section 5. The article concludes in Section 6.

2 Background

2.1 EDA Approaches

A large body of work has been published on EDAs (Baluja 1994, Mühlenbein & Paaß 1996,
Harik, Goldberg & Miller 1997, Baluja & Davies 1998, Larrañaga & Lozano 2002, Peña, Robles,
Larrañaga, Herves, Rosales & Pérez 2004, Zhang & Mühlenbein 2004, Chen, Chang & Zhang
2009). Here we review two EDAs: Population-Based Incremental Learning algorithm (PBIL)
(Baluja 1994) and Compact Genetic Algorithm (CGA) (Harik et al. 1999). PBIL is a statistical
approach to evolutionary computation in which solutions are represented as fixed length binary
strings b = (b1, b2, b3, ..., bn). A probability vector p = (p1, p2, p3, ..., pn), where pi measures the
distribution of 1s (and consequently 0s) in the ith position of the simulated population in a given
search space, is used to sample offspring. Initially, these probabilities are set to 0.5 at each
position to give a uniform distribution over the search space. Solutions are generated using p as
follows. For each solution b, a 1 is generated at position bi with probability pi.The probabilities

1To the best of our knowledge, these algorithms have not been compared before.



in p are then moved gradually towards 1 or 0 as the search progresses. Because PBIL uses
the best-fit individuals of the population to update the probability vector, it is expected that
after a number of generations the probability vector will be shifted towards good solutions. It is
important to mention here that, unlike evolutionary algorithms, in PBIL, mutation is applied on
the probability vector rather than the solution itself.
Compact Genetic Algorithm (CGA), inspired by random-walk model (Harik et al. 1997), is also
an EDA approach. The algorithm manages its population as a probability distribution over a
set of solutions. Like PBIL, CGA also uses a probability vector, whose length is equal to the
length of the chromosome. The value at a particular index in this probability vector measures
the proportion of alleles (0 or 1) in the respective locus of the simulated population. In each
generation, two candidate solutions are generated and then evaluated to determine the best
of the two solutions (winner). If at any particular position the winner’s bit is different from the
loser’s bit, the corresponding probability vector entry is shifted by 1/N (where N represents the
theoretical population size) towards the winner bit.
Some researchers have proposed hybrid approaches to evolutionary algorithms (Zhang et al.
2005, Handa 2005, Ochoa & Soto 2006, Santana, Larrañaga & Lozano 2008, Niño, Ardila,
Donoso & Jabba 2010, Niño 2012). Handa (2005) incorporated mutation operators into EDAs
to maintain diversities in population. The author has shown that mutation improves the search
ability of EDAs, even with a small population size. In another study, Santana et al. (2008)
combined EDAs with the Variable Neighborhood Search (VNS) heuristic and found that this
hybrid approach performed reasonably well as compared to simple EDA or VNS approaches.
In yet another study, Niño (2012) proposed a hybrid approach based on automata theory,
simulated annealing and evolutionary algorithms. The author has shown that the proposed
approach not only avoids the local minima/maxima problem, it can also avoid finding infeasible
solutions. The results of these studies suggest that hybrid approaches to EDAs improve the
search performance. In what follows, we discuss Evolutionary Algorithm with Guided Mutation
(EA/G) (Zhang et al. 2005), which is a hybrid approach.

2.2 Evolutionary Algorithm with Guided Mutation

Evolutionary Algorithm with Guided Mutation (EA/G) (Zhang et al. 2005) is a hybrid of EAs
and EDAs. Variation operators in EAs directly use the location information of the local optimal
solutions found so far, disregarding the distribution of promising solutions in the search space.
The offspring thus produced may be very close to their parents, but there is no guarantee
that they are also close to the other best solutions in the current population. This is because
EAs do not benefit from the global statistical information. On the other hand, EDAs use the
global statistical information effectively to sample offspring, but they disregard the location
information of the local optimal solutions found so far. This is an important limitation in EDAs
because there is no mechanism to directly control the similarity between the new solutions
and the current ‘good’ solutions. EA/G combines the global statistical information as well as
the location information to sample offspring, aiming that this hybridization would improve the
solution quality. A new variation operator “guided mutation” is proposed in EA/G. The pseudo-
code of EA/G is similar to PBIL except that the solutions for the next generation are produced



using the guided mutation operator. The pseudo-code for the guided mutation operator is
shown below.

Require: β (guided-mutation rate),
p = p1, p2, ..., pl (probability vector),
b = b1, b2, ..., bl (solution vector, bi ∈ 0, 1)

for i = 1 to l do

h = random(0|1)

if β > h // Sample the ith bit from p

if p[i] > h, y[i] = 1

else y[i] = 0

else // Copy the ith bit from the parent

y[i] = b[i]

end for

The guided-mutation operator is sensitive to the guided-mutation rate β. The operator decides
on the basis of β to sample new offspring either by copying the location information from the
parent or from the probability vector p; larger the value of β, more genes of the offspring (y)
are sampled from the probability vector and vice-versa. EA/G is sensitive to learning rate (λ),
guided-mutation rate β, and population size (N ).

3 Test Problems

In any empirical investigation of EAs, the selection of test problems is always vital. Care must
be taken to try and select problems that will hopefully prove illuminating for the investigation at
hand. As a rule of thumb, at least two factors are often considered while selecting test prob-
lems: a) comparison with the previous findings/results and b) representativeness. Usually, well
studied and a broad range of problems are suitable because they can provide a useful means
of comparison with the previous experimental results. Also, they can address the assumptions
behind any research and therefore highlight particular strengths and weaknesses of the algo-
rithms under scrutiny.
In this study, we are examining the performance of EA/G against PBIL and CGA on numerical
optimization functions (Yang 2010, Suganthan et al. 2005) and standard genetic algorithm test
problems (Reinelt 1995, Scholl & Klein 2003). It is instructive to give a brief overview of these
test problems, before discussing the experiment.

3.1 Numerical Optimization Problems

There are many test functions in literature to test the performance of evolutionary algorithms.
We have chosen the following numerical optimization functions (see Yang (2010) and Sugan-
than et al. (2005) for a detailed description of the functions F1−F5 and F6−F12, respectively),
which have widely been used in the previous studies on evolutionary algorithms. (In this study,
the number of dimensions (D) were set to 30 for each function; for shifted functions z = x− o,



where o is the shifted global optimum.)
Sphere Function (F1) is a smooth, uni-modal function. The function definition is given below.

f(x) =

D∑
i=1

xi
2, x ∈ [−5.12, 5.12]D (3.1)

Rosenbrock’s Function (F2) is a complicated surface, which follows a parabolic trajectory and
has a global optimum at just one point on the ridge. The function definition is given below.

f(x) =

D−1∑
i=1

((xi − 1)2 + 100(xi+1 − x2i )
2), x ∈ [−5, 5]D (3.2)

Ackley’s Function (F3) is a complex multi-modal function. The function definition is given
below.

f(x) = −20exp

(
− 0.2

√√√√ 1

D

D∑
i=1

xi2

)
− exp

(
1

D

D∑
i=1

cos(2πxi)

)
+ 20 + e, x ∈ [−32.77, 32.77]D

(3.3)
Rastrigin’s Function (F4) has many local minima, however, it has just one global minimum at
the point [0, 0] in the x-y plane. At any local minimum other than [0, 0], the value of the function
is greater than 0. The function definition is given below.

f(x) = 10D +
D∑
i=1

(xi
2 − 10 cos(2πxi)), x ∈ [−5.12, 5.12]D (3.4)

Griewank’s Function (F5) is a multi-modal function with an exponentially increasing number
of local minima as its dimensions increase, making it very difficult to optimize. The function
definition is given below.

f(x) =
1

4000

D∑
i=1

xi
2 −

D∏
i=1

cos(
xi√
i
) + 1, x ∈ [−600, 600]D (3.5)

Shifted Sphere Function (F6) is a shifted, uni-modal, scalable and separable2 function. The
function definition is given below (where bias = −450).

f(x) =
D∑
i=1

zi
2 + bias, x ∈ [−100, 100]D (3.6)

Shifted Rastrigin’s Function (F7) is a shifted, multi-modal, scalable and separable function.
This function has many local minima, which makes it very difficult to find the global optimum
value. The function definition is given below (where bias = −330).

f(x) =

D∑
i=1

(zi
2 − 10 cos(2πzi) + 10) + bias, x ∈ [−5, 5]D (3.7)

2A function of n variables is separable if it can be rewritten as a sum of n functions of just one variable, otherwise
it is non-separable.



Shifted Schwefels’s Function (F8) is a shifted, uni-modal, scalable and non-separable func-
tion. The function definition is given below (where bias = −440).

f(x) =
D∑
i=1

i∑
j=1

zi
2 + bias, x ∈ [−100, 100]D (3.8)

Shifted Rotated Griewank’s Function (F9) is a shifted, multi-modal, scalable and non-separable
function. The function definition is given below (where z = (x− o) ∗M , M is a linear transfor-
mation matrix and bias = −180).

f(x) =
1

4000

D∑
i=1

zi
2 −

D∏
i=1

cos(
zi√
i
) + 1 + bias, x ∈ [−600, 600]D (3.9)

Shifted Rotated Elliptic Function (F10) is a shifted, uni-modal, scalable and non-separable
function. The function definition is given below (where z = (x − o) ∗ M , M is an orthogonal
matrix and bias = −450).

f(x) =
D∑
i=1

(106)
i−1
D−1 z2i + bias, x ∈ [−100, 100]D (3.10)

Shifted Rotated Rastrigin’s Function (F11) is a shifted, multi-modal, scalable and non-separable
function. This function also has many local minima, which makes it very difficult to find the
global optimum value. The function definition is given below (where z = (x − o) ∗ M , M is a
linear transformation matrix and bias = −330).

f(x) =

D∑
i=1

(zi
2 − 10 cos(2πzi) + 10) + bias, x ∈ [−5, 5]D (3.11)

Shifted Rotated Ackley’s Function (F12) is a shifted, multi-modal, scalable and non-separable
function. The function definition is given below (where z = (x− o) ∗M , M is a linear transfor-
mation matrix and bias = −140).

f(x) = −20exp

(
− 0.2

√√√√ 1

D

D∑
i=1

zi2

)
− exp

(
1

D

D∑
i=1

cos(2πzi)

)
+ 20 + e+ bias, x ∈ [−32, 32]D

(3.12)
All the above functions have known global minimum value, which is 0. In this study, for the
functions F6−F12, we used the same data set provided for CEC’2005 (Suganthan et al. 2005).

3.2 Standard Genetic Algorithms Test Problems

Again, many combinatorial optimization problems have been reported in literature to test the
performance of evolutionary algorithms. In this study, we used the following combinatorial
optimization problems, commonly known as standard genetic algorithms test problems (Reinelt
1995, Scholl & Klein 2003).
Traveling Salesman Problem (TSP) is an NP-hard combinatorial optimization problem. In
this problem, a salesman has to visit n cities by starting the trip from a given city and returning
back to the starting city to complete a tour. The constraint here is that each city should be



visited exactly once. The purpose is to find the minimum length tour. We solved two instances
of the problem: 29-cities TSP and 70-cities TSP. The distances between the cities were taken
from the TSP library provided by Reinelt (1995); the best known solutions reported for the two
problem instances are 2020 and 675, respectively (Reinelt 1995).
N-Queens Problem is also a classic NP-hard combinatorial optimization problem. In this
problems, there are n queens and an n x n board. The purpose is to place all queens on
the board such that no queen should attack the other one - a queen attacks another queen
if they are in the same row, the same column or on the same diagonal. We solved three
instances of the problem: 8-Queens, 16-Queens and 32-Queens.
Bin-Packing Problem is also proved to be an NP-hard combinatorial optimization problem.
In this problem, there are n bins of varying capacities and m elements of varying sizes. The
objective is to pack the bins with the maximum number of elements, without exceeding the
maximum capacity of a bin. The exceeded value (to a bin’s maximum capacity) is considered
as an error. The total error, in all the bins, is computed as following (where Ci is the capacity
and Si is the total size of the elements in the ith bin).

Error =

n∑
i:1

(|Ci − Si|) (3.13)

In this study, five instances of the benchmark data sets for the bin-packing problem (n1w1b1r0,
n1w1b1r1, n1w1b1r2, n1w1b1r3, n1w1b1r4) provided by Scholl & Klein (2003) were used. In
each data set, there are 50 bins with a total capacity 1000.

4 Empirical Study

Three primary aims were pursued in this study: a) system implementation, b) optimal parame-
ter settings for EA/G and c) statistical analysis to compare the strength of EA/G against PBIL
and CGA on the selected test problems. In the following, we discuss each of these in turn.

4.1 System Implementation

We used an empirical approach to compare the performance of EA/G, PBIL and CGA on a
set of test problems. An empirical investigation requires a system upon which experiments are
run. We implemented the system in Matlab-R2009a. A brief description of this implementation
is outlined below.

• The solutions were encoded as binary strings whose length varies from problem to prob-
lem as shown in Table 1.

• To keep uniformity, the probability vector was initialized to 0.5 for each competing algo-
rithms.

• Initial population was sampled randomly; the population size was kept 100 throughout
the study.



• Because, fitness of an individual is computed from its phenotype value rather than geno-
type, a function binary2real was implemented which maps binary value (genotype) into
corresponding decimal value (phenotype).

• In each generation, best and average fitness of population was recorded; for each algo-
rithm total time elapsed was also recorded.

• Each algorithm terminated when the maximum number of generations exceeded a preset
limit. The limit was set to 2.0e+05 generations for the numerical optimization functions
and 1.2e+04 generations for the standard genetic algorithms test problems.

• Because, many combinatorial optimization problems place constraints on valid solutions,
problem specific repair operators were built to transform an invalid solution to a valid
solution. We adapted the template-based approach of Mitchell, Donoghue, Barnes &
McCarville (2003), which, for example, corrects a tour (in TSP) by replacing the duplicate
cities with the missing ones, taking the given template into account.

Table 1: Solution Encoding
Problem Encoding Remarks

F1–F12 300-bits string 10-consecutive bits for each dimension.
TSP n ∗ log2n-bits string n is the number of cities; log2n bits are inter-

preted as an integer value, which represents a
(distinct) city in the tour.

N-queens n ∗ log2n-bits string n is the number of queens; again, log2n bits
are interpreted as an integer value, which rep-
resents the column position of a queen on the
board.

Bin-packing m ∗ log2n-bits string n is the number of bins, and m is the number of
items in each bin; each element to be packed is
assigned a sequential substring of length log2n

whose value indicates the bin in which the ele-
ment is placed.

4.2 Parameter Settings

Parameter tuning in an EA-based system is a challenging task and it needs a principled ap-
proach. In this study, we are investigating the optimal parameter values for EA/G only3. There
are several parameters in EA/G, but to keep the parameter tuning process simple and man-
ageable4, we focused on learning rate (λ), guided mutation rate (β) and population size (N ).

3We used the same parameter values for PBIL (population size = 100, learning rate = 0.1, mutation probability
= 0.02 and mutation shift = 0.05) as reported in Baluja (1994).

4We used the same parameter values for EA/G, for relatively less sensitive parameters (mutation probability =
0.02, mutation shift = 0.05, and negative learning rate = 0.075), as reported in Zhang et al. (2005).



To find the optimal values for the these parameters, we changed them in an orderly manner
and recorded the performance of the algorithm as follows.

for N = 10 : 10 : 100

for λ = 0.1 : 0.1 : 1.0

for β = 0.1 : 0.1 : 1.0

Record fitness value

We performed 10 independent runs for this purpose to stabilize the parameter values for each
test problem. We observed that a smaller value of λ (mostly 0.1) and a larger value of β

(mostly 0.9) provided better results. We further fine tuned the parameter β; keeping N = 100

and λ = 0.1, it was observed that β = [0.95, 0.96, 0.97, 0.98] gave the best results. Therefore,
in the rest of this study, we will be using N = 100, λ = 0.1 and β = 0.95 as optimal parameter
values for EA/G.

4.3 Performance Test

The performance of an EA can be manifested in different ways. We are interested in two per-
formance gains: a) quality improvement and b) speed improvement, but our main focus will
be the solution quality. This is important, because even though most EAs use sophisticated
strategies to find “good” solutions, finding an acceptably “good-enough” solution is not guar-
anteed, and if the solution quality is not “good-enough” then the secondary aspects such as
speed are of little consequence.
We define that an algorithm A beats an algorithm B under the quality criterion, if, keeping other
things the same, the algorithm A attains a converged solution of higher fitness than the algo-
rithm B. Similarly, an algorithm A beats an algorithm B under the speed criterion, if, keeping
other things the same, the algorithm A attains a solution of a given quality/fitness in lesser
time than the algorithm B. It is possible, however, that there could be a quality-speed trade-off,
whereby a gain in quality may be obtained at the expense of time and vice-versa. Therefore,
in order to prove that the overall performance of an algorithm A is better than an algorithm B,
we must show one of the following scenarios to be true:

P1 : Algorithm A performs better than the algorithm B in both speed and quality.

P2 : Algorithm A performs better in terms of speed without being outperformed in quality.

P3 : Algorithm A performs better in terms of quality without being outperformed in speed.

To test these propositions, a series of experiments were run on a Pentium-4 machine with
3.20 GHz speed and 1.50 GB of RAM. For each algorithms, we recorded the fitness of a
solution for each generation, the best fitness by the end of a run, and the total time elapsed.
All experiments were averaged over 20 independent runs.



5 Results

In this section, we present the simulation results regarding the performance of EA/G, PBIL and
CGA on each test problem. To test whether the apparent differences in the performance gain
are statistically significant, we also report on a one-tailed t-test.

5.1 Solution Quality

We measured the quality of a solution x in terms of function error value defined as f(x)−f(x∗),
where x∗ is the known global optimum of f (Brest, Zamuda & Maučec 2010). Table 2 shows
the simulation results of the three algorithms on each test problem in 20 independent runs,
including the mean of best-of-run solution averaged over 20 runs (Mean), the standard devia-
tion in best-of-run solution (σ), the overall best solution (Best), and the p value for a one-tailed
t-test. The p value measures whether or not the pair-wise difference in the best solution for the
competing algorithms (EA/G against PBIL, and EA/G against CGA) is statistically significant;
in this study, p < 0.05 was our standard value for statistical significance.
It is evident from Table 2 that, overall, EA/G performed better than PBIL and CGA. The results
also indicate that both EA/G and PBIL appear to offer competitive performance on simple op-
timization problems (F1, F2, F3, F4, F6, F7, 8-Queens, 16-Queens and 32-Queens). However,
on relatively complex optimization problems (F5, F8 − F12, all instances of Bin Packing and
TSP), EA/G outperformed PBIL. Figure 1 plots the evolution of solutions for some selective
problems. It was also observed that, on complex optimization problems, the average solution
quality of EA/G at various points was greatly improved over PBIL and CGA. Pair-wise t-tests
further revealed that the apparent differences are statistically significant. It is interesting to
note that on separable functions, namely F6 and F7, both PBIL and EA/G offered competitive
performance. However, for the non-separable functions (F8 − F12), the performance of EA/G
was better than PBIL; explanation follows. It is also interesting to mention here that the perfor-
mance of EA/G on functions F6 − F12 is also comparable to the results reported by Auger &
Hansen (2005).

5.2 Speed

Here, we report on our second performance criterion, speed gain. We recorded the time (in
milliseconds) taken by each algorithm to finish the search process. Again, all the simulation
results were averaged over 20 independent runs. The results are shown in Table 3.
The results in Table 3 indicate that both PBIL and CGA converge more quickly than EA/G.
Pairwise comparisons further revealed that the convergence time of CGA and PBIL is signif-
icantly faster than EA/G (see p < 0.05 in each case). These results suggest that EA/G is
computationally more expensive than PBIL and CGA; explanation follows.

5.3 Discussion

The study presented here revealed two primary results. First, on complex optimization prob-
lems, EA/G outperformed both PBIL and CGA in attaining a good-quality solution. This indi-



Table 2: Solution fitness over a sample of 20 independent runs
PBIL EA/G CGA p-value†

Mean (σ) Best Mean (σ) Best Mean (σ) Best p1 p2

F1 4.37e-06 0.0 1.72e-06 0.0 3.81e+02 3.15e+02 – < 0.01

(1.9e-08) (1.1e-08) (2.1e+01)
F2 2.13e-04 0.0 1.37e-05 0.0 7.12e+03 5.63e+02 – < 0.01

(8.0e-06) (7.4e-06) (7.9e+01)
F3 9.32e-01 7.18e-02 4.71e-04 2.85e-06 8.32e+02 3.74e+02 0.47 < 0.01

(1.9e-01) (2.7e-04) (3.4e+01)
F4 3.61e-02 5.82e-03 2.37e-03 1.61e-03 3.24e+02 2.83e+02 0.29 < 0.01

(2.3e-04) (4.2e-04) (5.8e+01)
F5 1.96e+01 1.21e+01 4.39e-01 6.13e-02 2.72e+03 1.95e+03 < 0.01 < 0.01

(5.6e-06) (3.6e-07) (7.6e+01)
F6 7.62e-01 2.31e-01 9.35e-01 8.51e-03 6.8e+04 5.12e+04 0.23 < 0.01

(9.3e-01) (6.9e-04) (2.9e+01)
F7 8.91e+01 2.65e+01 6.42e+01 1.47e+01 5.62e+03 4.39e+02 < 0.01 < 0.01

(1.9e-01) (1.5e-01) (1.3e+01)
F8 5.73e+01 3.27e+01 4.31e-02 2.18e-02 7.46e+04 7.12e+04 < 0.01 < 0.01

(7.9e-01) (3.7e-01) (2.7e+01)
F9 2.76e+00 1.31e+00 1.95e+00 3.23e-02 6.26e+02 5.42e+02 < 0.01 < 0.01

(7.9e-01) (3.7e-01) (4.3e+01)
F10 2.86e+02 1.52e+02 3.94e-02 5.73e-03 9.71e+04 9.14e+04 < 0.01 < 0.01

(4.8e-01) (4.1e-01) (1.7e+03)
F11 5.81e+03 4.37e+03 8.12e+02 6.14e+02 8.43e+05 8.17e+05 < 0.01 < 0.01

(9.1e+01) (2.3e+01) (1.3e+03)
F12 5.86e+02 3.95e+02 4.71e+01 3.82e+01 8.34e+06 8.21e+06 < 0.01 < 0.01

(6.3e+01) (2.3e+01) (1.3e+03)
BP 3.47e+01 2.82e+01 9.27e+00 6.83e+00 8.73e+01 8.36e+01 < 0.01 < 0.01

n1w1b1r0 (4.9e+00) (9.3e-01) (1.7e+01)
BP 4.71e+01 4.37e+01 1.63e+01 1.48e+01 9.73e+01 9.25e+01 < 0.01 < 0.01

n1w1b1r1 (7.1e+00) (5.8e+00) (1.3e+01)
BP 6.92e+01 6.17e+01 6.72e+01 6.25e+01 3.47e+02 2.72e+02 0.32 < 0.01

n1w1b1r2 (7.1e+00) (5.8e+00) (1.3e+01)
BP 8.13e+01 7.65e+01 2.83e+01 2.51e+01 1.73e+02 1.39e+02 < 0.01 < 0.01

n1w1b1r3 (5.9e+00) (7.3e+00) (6.1e+01)
BP 3.85e+01 3.32e+01 3.16e+01 2.71e+01 8.52e+01 7.96e+01 0.19 < 0.01

n1w1b1r4 (4.5e+00) (3.9e+00) (1.6e+01)
TSP70 3.2e+02 2.67e+02 9.72e+01 6.38e+01 1.37e+03 9.93e+02 < 0.01 < 0.01

(4.3e+01) (1.79+01) (1.9e+02)
TSP29 8.76e+02 6.72e+02 5.41e+02 4.27e+02 7.51e+04 7.26e+04 < 0.01 < 0.01

(6.7e+01) (3.6e+01) (1.7e+02)
8 0 0 0 0 0 0 – –

Queens (0.0) (0.0) (0.0)
16 0 0 0 0 0 0 – –

Queens (0.0) (0.0) (0.0)
32 6.27e-01 0 2.5e-01 0 2.53e+00 0 – –

Queens (1.8e-02) (9.7e-03) (1.7e+00)
† p1 and p2 are the p values for a pair-wise test between PBIL and EA/G, and EA/G and CGA, respectively.
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Figure 1: Convergence graph for F1, F10 and Bin-packing problem (n1w1b1r1)



Table 3: Computational time† over a sample of 20 runs
PBIL (σ) EA/G (σ) CGA (σ) p-value‡

p1 p2

F1 8.13e+05 8.52e+05 1.64e+03 0.25 < 0.01

(3.82e+01) (2.94e+01) (1.75+01)
F2 8.39e+05 1.32e+06 2.36e+03 < 0.01 < 0.01

(3.84e+01) (6.14e+01) (1.29e+01)
F3 9.64e+05 3.93e+06 1.88e+03 < 0.01 < 0.01

(1.27) (3.17e+01) (1.47e+01)
F4 2.92e+06 1.38e+07 9.73e+03 < 0.01 < 0.01

(1.14e+01) (2.47e+01) (1.58e+01)
F5 9.76e+05 1.3e+06 5.27e+03 < 0.01 < 0.01

(1.62e+01) (2.39e+01) (3.15e+01)
F6 1.74e+06 3.79e+07 6.92e+04 < 0.01 < 0.01

(7.83e+01) (1.36e+02) (1.26e+01)
F7 3.21e+07 4.96e+07 2.15e+05 < 0.01 < 0.01

(2.42e+01) (3.71e+01) (1.02e+01)
F8 3.59e+08 6.28e+08 1.27e+07 < 0.01 < 0.01

(4.62e+01) (8.93e+01) (2.17e+01)
F9 5.17e+07 8.33e+07 3.92e+05 < 0.01 < 0.01

(3.39e+01) (5.64e+01) (1.94e+01)
F10 2.15e+10 3.59e+10 2.37e+08 < 0.01 < 0.01

(2.16e+02) (3.73e+02) (4.83e+01)
F11 3.68e+08 5.95e+08 6.12e+06 < 0.01 < 0.01

(1.12e+02) (2.51e+02) (5.18e+01)
F12 5.18e+06 7.33e+08 7.32e+04 < 0.01 < 0.01

(2.49e+02) (4.77e+02) (9.38e+01)
BP 3.25e+03 6.17e+04 1.91e+02 < 0.01 < 0.01

n1w1b1r0 (1.66e+01) (2.13e+01) (1.18e+01)
BP 9.84e+03 3.72e+04 4.15e+02 < 0.01 < 0.01

n1w1b1r1 (1.13e+01) (2.17e+01) (1.13e+01)
BP 6.73e+03 9.18e+04 2.16e+02 < 0.01 < 0.01

n1w1b1r2 (2.17e+01) (3.52e+01) (1.91e+01)
BP 3.91e+03 3.25e+04 1.82e+02 < 0.01 < 0.01

n1w1b1r3 (1.68e+01) (3.11e+01) (1.17e+01)
BP 5.18e+03 7.17e+03 2.91e+02 < 0.01 < 0.01

n1w1b1r4 (1.19e+01) (1.85e+01) (1.02e+01)
TSP70 8.15e+04 3.19e+05 4.32e+02 < 0.01 < 0.01

(1.88e+01) (2.61e+01) (1.97e+01)
TSP29 2.37e+03 3.86e+04 2.19e+02 < 0.01 < 0.01

(1.32e+01) (3.72e+01) (2.38e+01)
8 2.34e+02 5.12e+03 1.17e+02 < 0.01 < 0.01

Queens (3.18e+01) (7.63e+01) (2.37e+01)
16 7.18e+03 6.92e+04 1.25e+02 < 0.01 < 0.01

Queens (1.96e+01) (5.27e+01) (2.43e+01)
32 9.27e+03 1.14e+05 7.12e+02 < 0.01 < 0.01

Queens (1.73e+02) (6.81e+01) (5.12e+01)
†: Time was recorded in milliseconds.
‡ p1 and p2 are the p values for a pair-wise test between PBIL and EA/G,
and EA/G and CGA, respectively.



cates that, in sampling offspring, a combination of global statistical information and the location
information of the solutions found so far is better than using the global statistical information
only. We observed that on separable functions, both PBIL and EA/G performed well but on
non-separable functions, EA/G performed far better than PBIL. This suggests that the under-
lying assumption in EDAs that the problem variables are independent may prevent efficient
convergence to the global optimum when problem variables interact strongly.
Second, both PBIL and CGA were found faster than EA/G. This suggests that EA/G is compu-
tationally expensive. The reason behind this expensiveness is that the guided mutation oper-
ator used in EA/G involves many computations in sampling offspring. If both solution quality
and computational time are addressed, this raises the question of how these two dimensions
should be traded off against each other. If the output of one algorithm was better than that of
another, but found more slowly, which of the two should be preferred? Perhaps solution quality
should be given more weight as compared to speed.
Finally, there are rather high differences between the known global optimum solution and the
solution found by the three algorithms. One explanation to these differences could be that
our encoding scheme seems suboptimal. We encoded the solutions (genotype) as bit strings,
but fitness of these solutions was computed from their phenotype values. Therefore, binary
(genotype) to decimal (phenotype) conversion was necessary, and this conversion could have
resulted in sufficient accuracy loss. It was also observed that this conversion takes a significant
amount of time, which as a whole degrades the performance of an algorithm in terms of speed
as well.

6 Conclusion

This article described a comparative study of EA/G (Evolutionary Algorithm with Guided Mu-
tation) against PBIL (Population-Based Incremental Learning) and CGA (Compact Genetic
Algorithm). In a nutshell, we found that EA/G performed better than PBIL and CGA in attain-
ing a good-quality solution. This confirms that a hybrid approach to use both global statistical
information and the location information of the optimal solutions to sample offspring is better
than using the the global statistical information only. On the other hand, both PBIL and CGA
were found faster than EA/G. This confirms that EA/G is computationally expensive.
In future, we aim to analyze thoroughly the performance of PBIL and EA/G on large-scale
global optimization problems (Tang, Li, Suganthan, Yang & Weise 2010) to see how scalable
these algorithms are. We also intend to compare these algorithms with some recently devel-
oped algorithms to solve more application-oriented optimization problems (Guzmán, Gómez,
Ardila & Jabba 2013, Purcaru, Precup, Iercan, Fedorovici, David & Dragan 2013, Torres, Quin-
tana & Pinzón 2013). For example, Purcaru et al. (2013) used Gravitational Search Algorithm
to find an optimal path for a robot in a complex environment. The present study also revealed
that our solution encoding scheme is suboptimal, hence degrading the performance of an al-
gorithm in attaining a good-quality solution. In the future work, we also aim to encode solutions
as Edge Histogram Model (Tsutsui 2002). We conjecture that the Edge Histogram based sam-
pling would greatly improve the performance of these algorithms.
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