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ABSTRACT

Polygonal approximation is a process based on the division of a closed curve into a shorter
set of segments. This problem has been traditionally approached as a single-objective
optimization issue where the representation error was minimized according to a set of re-
strictions and parameters (min − #), or the number of segments minimized keeping the
error value bellow a certain value (min− ε) . When these approaches try to be subsumed
into more recent multi-objective ones, which attempt to provide a algorithm to handle these
two objectives jointly, a number of issues arise. Current work successfully adapts two of
these traditional approaches, bottom-up and top-down algorithms, and introduces them as
initialization procedures for a multiobjective evolutionary algorithm for polygonal approxima-
tion, being the results, both for initial and final fronts, analyzed according to their statistical
significance over a set of traditional curves from the domain.
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1 Introduction

Segmentation problems are based on the division of a given curve in a set of n segments
(being each of these segments represented by a linear model, which points to another com-
mon naming convention for this process: piecewise linear representation, PLR) minimizing the
representation error. This is an issue faced in several different domains, such as time series
(Keogh, Chu, Hart and Pazzani, 2004) and polygonal approximation (Sarfraz, 2008). Polygonal
approximation techniques are offline segmentation algorithms which are applied over a closed
curve. They can be considered a particular instance of time series, where the timestamp is an
implicit ordering value. These techniques and can be divided into three different categories:
sequential approaches, split and merge approaches and heuristic search approaches.



Sequential approaches (Sklansky and Gonzalez, 1980) are constructive methods which build
ever longer segments in their solution from a certainly established initial division. Split and
merge approaches (Ramer, 1972) are destructive methods which perform an iterative process
where segments are divided at each step until certain stopping criteria are met. Heuristic
search approaches are based on the development of heuristic methods in order to avoid the
exhaustive search of the optimal dominant points (the edges of the segments contained in the
segmented solution).
Among heuristic search approaches, it is of special interest for current work to highlight the ap-
proaches based on different metaheuristics (Talbi, 2009). Heuristic and metaheuristic based
algorithms have been successfully applied to loads of practical domains. Some recent exam-
ples may be emerging social structures (Ali, Alkhatib and Tashtoush, 2013), particular swarm
optimization (Gao, Huang and Li, 2012), adaptative search algorithms (Asawarungsaengkul,
Rattanamanee and Wuttipornpun, 2013), or adaptative gravitational search (Precup, David,
Petriu, Preitl and Radac, 2012). Among the different metaheuristic approaches available, we
will focus on the different solutions based on evolutionary algorithms for our current domain
(Pal, Kundu and Nandi, 2002; Yin, 1999; Tsai, 2006). The idea proposed by these works is to
use a genetic algorithm (Goldberg, 1989) to codify the curve or time series as a chromosome
with n genes, corresponding each of these genes to one of the points in the original data. If the
gene value is a ”1”, it is considered a dominant point, and the algorithm tries to find the ideal
codification of the chromosome according to a fitness function which evaluates the quality of
the given codified segmentation in the chromosome.
Recently, the multiobjective nature of these processes is being explicitly approached from dif-
ferent perspectives such as the approaches presented in (Kolesnikov, Franti and Wu, 2004;
Guerrero, Berlanga and Molina, 2012a). This nature had been already stated in different works
(Keogh et al., 2004; Liu, Lin and Wang, 2008; Sarfraz, 2008) but not explicitly approach in a
joint way. In polygonal approximation two different problems were traditionally stated: Min−#

and Min − ε, where Min − # optimizes the representation error and Min − ε optimizes the
number of segments for a maximum error ε.
In (Guerrero et al., 2012a) a multi-objective evolutionary algorithm (Coello, Lamont and Van Veld-
huizen, 2007) is proposed for the multi-objective solution of the segmentation issue, while in
(Guerrero, Berlanga and Molina, 2012c) a comparison between different possible initializations
was carried, focusing on the different results between a random initialization aiming at the cov-
erage of the obtained Pareto fronts versus the results from different local search techniques.
One of the detailed issues is the single-objective nature of the traditional techniques used,
which required different executions with different parameters in order to obtain different individ-
uals from the front, also introducing issues regarding the configuration of these techniques to
obtain such different individuals.
Current work presents an extension over the original proposal presented in the conference
paper presented in (Guerrero, Berlanga and Molina, 2013b). An initial coverage of traditional
local search techniques is introduced, focusing on bottom-up and top-down techniques. That
coverage leads to the analysis of the multiobjective nature of the problem, and finally a multi-
objective explicit formulation is introduced. This implementation will produce a whole Pareto



front from a single execution without parametrization required from the user. These initializa-
tions will be later tested as initial populations for a MOEA approach, in order to determine
whether they have successfully created better initial populations than the approach presented
in (Guerrero et al., 2012c) and how these initial populations translate into the final results of
the algorithm.
The structure of this work is divided into the following sections: section two will present an
overview of local search techniques, focusing in top-down and bottom-up approaches. Section
three will introduce the analysis of the multiobjective nature of the problem and the proposal for
the two analyzed local search techniques. After the new implementation has been presented,
section four will present the results when these implementations are used to create the speci-
fied initial populations for a MOEA approach to segmentation, analyzing the final results of the
chosen algorithm over the initial and final populations. Finally the conclusions which can be
extracted from the presented results will be presented in the last section, leading to the future
lines of the work.

2 Local search polygonal approximation techniques

Polygonal approximation techniques (Sarfraz, 2008) are based on a dimmensionality reduction
over an initial closed curve, producing a set of segments as its output. These input data can
be formalized according to equation 2.1.

t = {~pi}, ~pi = (xi, yi, i), i = 1, . . . , n (2.1)

In fact, polygonal approximation can be considered a specific case of time series segmentation
applying Piecewise Linear Representation (PLR) (Keogh et al., 2004), bearing in mind that in
this case the timestamp (i in eq 2.1) is the implicit ordering in the series. Three main categories
can be stated regarding these techniques: sequential approaches, split and merge approaches
and heuristic search approaches.
Sequential approaches attempt to build the output segments from a constructive point of view:
at each step, new segments are created following certain specific criteria, providing at each
step longer segments (and a fewer number of them in the output of the algorithm). Examples of
these criteria might be finding the longest possible segments (Sklansky and Gonzalez, 1980)
or a joint approach (which is particularly interesting cause it introduces the multi-objective
nature explicitly dealt with in this work) trying to obtain the longest possible segments with the
minimum possible error (Ray and Ray, 1992). Bottom-up algorithm is included in this category.
Split and merge approaches provide the complementary point of view to the previous tech-
niques, performing a destructive approach where new segments are generated at each itera-
tion by dividing the ones resultant from the previous step. The most extended example of these
approaches is the Ramer algorithm (Ramer, 1972), At each iteration, the segment is split at
the point that has the farthest distance from the corresponding segment unless the approxima-
tion error is no more than the pre-especified error tolerance. This algorithm is also known as
Top-down.
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Figure 1: Top Down algorithm overview

Heuristic search approaches try to avoid the exhaustive search of the final segments, provid-
ing a wide variety of methods, such as dynamic programming, (Dunham, 1986; Sato, 1992),
or metaheuristics, highlighting the use of evolutionary computation in single (Yin, 1999) and
multiple objectives (Guerrero, Berlanga, Garcı́a and Molina, 2010).
Sections 2.1 and 2.2 will detail the top-down and bottom-up algorithms, since these algorithms
will be the ones used for their porposal as multi-objecive local search in section 3. Finally,
these proposal will be tested as initialization process following the metaheuristic evolutionary
algorithm proposal in (Guerrero et al., 2012a).

2.1 Top down algorithm

The Top-Down algorithm is an offline approach which considers, recursively, every possible
partitioning of a time series, splitting it at the best possible location. Beginning with the whole
time series, it finds the best splitting point (where the sum of the errors of both resulting seg-
ments has its lowest value) and continues the application of this process to both segments,
until both of them reach an error value bellow the user-defined boundary.
The Top Down algorithm is applied in a wide variety of domains and fields, being also known
by different names(Douglas and Peucker, 1973; Ramer, 1972; Duda and Hart, 1973; Li, Yu and
Castelli, 1998). There are numerous improvements to the basic top down algorithm. Alternative
approaches(Park, Lee and Chu, 1999) perform different initializations based on valleys and
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peaks, which is reported to perform poorly on noisy datasets. The need for alternative stopping
criteria was also faced in(Lavrenko, Schmill, Lawrie, Ogilvie, Jensen and Allan, 2000), where
they introduced a t-test for that purpose.

2.2 Bottom-up algorithm

The complement to the segmentation analysis proposed in the Top Down algorithm is the
synthesis in the Bottom Up proposal. This algorithm creates the finest possible approximation
of the figure, dividing it into n− 1 segments (where n is the number of points in the time series)
of length value 2. Afterwards, the cost of merging each pair of adjacent segments is calculated
and, if the merge with the lowest cost has an error bellow the user defined value, the segments
are merged. The process continues until no pair of adjacent segments can be merged with an
acceptable error value. It is important to notice that in every step of the algorithm the costs of
the adjacent segments to the merged one in the previous step must be updated.
Depending on whether each point belongs to one or two segments (providing a continuous or
discontinuous final segmentation) two different versions of this algorithm can be presented. A
detailed continuous version can be looked up in (Guerrero, Garcı́a and Molina, 2011), while
the discontinuous version is explained in(Keogh et al., 2004). Current approach will follow the
continuous version of this algorithm. This continuous version has been chosen due to the fact
that, as it was pointed out in(Keogh et al., 2004), the discontinuous version of the bottom up
algorithm imposes restrictions over the size of the segments (having no shared measurement,
the resultant merged segments will always have an even number of measurements). This



restriction is not present in the continuous version.
The bottom up algorithm, as well, has spread to different fields and research areas using
different names, such as the computer graphics domain and decimation methods(Heckbert
and Garland, 1997).

3 A multiobjective perspective to local search polygonal approximation tech-
niques

The traditional criteria in the time series domain to determine the quality of a segmentation
process(Keogh et al., 2004; Liu et al., 2008) are the following:

1. Minimizing the overall representation error (total error)

2. Minimizing the number of segments such that the representation error is less than a
certain value (max segment error)

3. Minimizing the number of segments so that the total representation error does not exceed
total error

where total error and max segment error are user defined parameters for the algorithm.
In the polygonal approximation domain, two different issues can be stated (Sarfraz, 2008):
Min −# and Min − ε. Min −# is based on the optimization of the representation error for
a previously set number of segments. Min − ε, on the other hand, tries to find the minimum
number of segments such that the final representation error does not exceed a previously
established error ε. In (Guerrero et al., 2012a) it was stated that, according to these two
different perspectives, the segmentation issue is in fact a multi-objective problem, and also
analyzed, according to different techniques available in the literature, how this nature had been
faced. It was also shown that, given that some key dominant points are shared by different
solutions with different resolutions, the solutions for Min − # and Min − ε problems can be
closely related and share information among them. This multi-objective nature is faced with a
Multi-objective evolutionary algorithm.
Local search algorithms may be introduced to enhance this approach, leading to several is-
sues: the configuration to obtain the different individuals is hard to establish, and each of this
individuals requires an independent execution of the local search algorithm, providing disap-
pointing results (Guerrero et al., 2012c). This section will present alternative, multi-objective
parameter-free versions of teh two previously covered local search algorithms for polygonal
approximation, in order to provide a whole Pareto front of solutions: Top-Down and Bottom-up
algorithms.
The multi-objective version of the Top Down algorithm suppresses the two issues available
in the traditional implementation: the recursive calls (which may prevent the application of the
algorithm to figures with a large number of points) and the user configuration (which introduces
the issues previously described in the obtaining of a whole Pareto front). At each step, the
best splitting point is located (the one which provides with the smallest representation error),
a new individual is generated adding that new dominant point and the costs of the possible
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Figure 3: Top Down algorithm multi-objective implementation

segments are updated (implying the recomputation of the costs of the segments from the
dominant point immediately to the left of the new splitting point and those from the splitting
point to the dominant one immediately to its right). Therefore, no recursive calls are included,
and each split point choice has a global view of the representation error (as opposed to the
partial one available in the traditional implementation). Figure 3 represents the multi-objective
version implementation of this algorithm.
The multi-objective version of bottom-up algorithm removes the user-defined boundaries for the
algorithm termination, being this ending triggered once no further merging can be performed.
Figure 4 presents the multi-objective version. It must be noted that each update here triggers
only one segment update, while every new splitting point in the top down algorithm triggered the
recomputation of all the possible new splitting points for the two new segments created in the
representation. Since each of these steps are, in fact, mutations over the chromosome guided
by a specific heuristic, the principles for an efficient implementation established in (Guerrero,
Berlanga and Molina, 2012b) can be applied for the computation of the fitness values of each
of the produced individuals.
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(a) Chromosome curve (b) Leaf curve (c) Semicircle curve

Figure 5: Curves included in the data set

4 Experimental validation: initialization for MOEA polygonal approximation

The experimental validation proposed will include the two detailed multi-objective local search
procedures to create the initial populations for a multi-objective evolutionary approach to polyg-
onal approximation. This algorithm is based on the SPEA2 (Zitzler, Laumanns and Thiele,
2001) MOEA, according to the configuration presented in (Guerrero et al., 2012a). The default
initialization process creates a uniform Pareto Front in terms of coverage of the objectives,
as presented in (Guerrero et al., 2012c). This section will cover the comparison between the
initial and final populations of the two techniques presented and the suggested initialization
process. The dataset used is composed of three traditional curves, usually named chromo-
some, leaf and semicircle. Their definition, according to their freeman chain-code represen-
tation (Freeman, 1961), can be found in (Guerrero et al., 2012a). Figure 5 represents these
figures.
It is interesting to notice, as explained in section 2, the complementary nature of the two multi-
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Figure 6: Chromosome initialization comparison

objective techniques presented, since one applies its heuristic with a value of 1 dominant point
and applies successive splitting over the figure (Top-Down) and the other begins with a solution
with all of its points considered dominant and applies successive merging (Bottom-up). Since
the solutions tend to degrade with the successive application of the heuristic, each of them will
be more successful at their initial individuals.
Three different comparisons of the two multi-objective local search techniques and the original
uniform approach for the three different curves in the dataset are presented in figures 6-8. The
only individuals included are those non-dominated (the Pareto fronts for the three techniques).
Regarding the previously stated complementary nature of the local search processes, it can
be clearly observed in these figures.
The results for the four techniques, including their mean and median values for the hypervol-
ume of the obtained Pareto fronts are included in tables 1 (initial fronts values) and 2(final fronts
values). Also, a best technique column has been added. This value is calculated according
to a Wilcoxon test with a 95% confidence performed over 30 different executions, since the
values do not follow a normal distribution (according to a Shapiro-Wilk test). If one technique
is superior to the remaining ones, its name is included, otherwise the ’-’ value is included.
Regarding the initial populations, the local search techniques are able to find the individual
with zero error with a much lower number of segments that the uniform approach. This is
especially important since finding solutions with a higher number of segments does not provide
information to the final solution, and can be considered a waste of computational cost. Also,
this information could be used to manage the size of the archive, allowing a reduction of the
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Figure 7: Leaf initialization comparison

Table 1: Initial populations comparison

Figure
Bottom-up Top-down Local search Uniform

Best
Mean Median Mean Median Mean Median Mean Median

Chrom. 0,98647 0,98647 0,98646 0,98646 0,98651 0,98651 0,98436 0,98427 L.S.
Leaf 0,99355 0,99355 0,99322 0,99322 0,99365 0,99365 0,99271 0,99281 L.S.

Semi. 0,99157 0,99157 0,99183 0,99183 0,99218 0,99218 0,99101 0,99111 L.S.

Table 2: Final populations comparison

Figure
Bottom-up Top-down Local search Uniform

Best
Mean Median Mean Median Mean Median Mean Median

Chrom. 0.98665 0.98664 0.98667 0.98671 0.98665 0.98667 0.98671 0.98672 Unif.
Leaf 0.99376 0.99376 0.99374 0.99376 0.99376 0.99376 0.99377 0.99378 -

Semi. 0.99206 0.99219 0.99213 0.99217 0.99219 0.99219 0.99213 0.99217 L.S.
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Figure 8: Semicircle initialization comparison

computational cost (a detailed analysis of the impact of the archiving technique can be looked
up in (Guerrero, Berlanga and Molina, 2013a)). The representation errors for the individuals
for the different number of segments are also clearly better that those obtained by the uniform
initialization, which is reflected in the results in table 1.
In the analysis of the final populations results, different cases appear. For easy problems,
such as chromosome (fig 5a), the uniform initialization provides better final results, while as
the problem difficulty is increased, the statistical difference first disappears in leaf curve (fig
5b) and finally the local search initialization provides better results in the hardest problem, the
semicircle (fig 5c).
The analysis of these results can be obtained from the previous remark on initial populations:
the repeated application of a heuristic approach provides an ever growing error (as seen in the
comparisons of the the local search approaches in figures 6-8). Translated to the evolutionary
approach, the local search initialization introduces a certain bias to the further search, accord-
ing to its underlying heuristic. Even though the initial results are clearly improved, the final ones
are too guided by this heuristic, and thus, they fall into local minima solutions. To highlight this
analysis and provide a further understanding to the presented techniques, figures 9-11 provide
a comparison of the evolution of the hypervolume value through the different generations of
the algorithm.
The presented results seem to point to a combination of both techniques to provide initial pop-
ulations that, while benefiting from the enhanced initial populations of local search techniques,
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Figure 10: Leaf evolution comparison
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Figure 11: Semicircle evolution comparison

can be not hampered by the heuristic focus. Also, an initial run of constructive techniques such
as bottom-up can be used for the configuration of some algorithm parameters like archive size.

5 Conclusions

Local search techniques have been the focus of polygonal approximation, developing different
techniques based on specific heuristics for this issue. The nature of this problem is multi-
objective, minimizing the representation error and the number of segments of this representa-
tion jointly. To provide a proper multi-objective approach for this topic based on available local
search techniques, a number of modifications have to be performed over these techniques in
order to efficiently obtain the required Pareto Fronts. For parametric techniques, these individ-
uals could be obtained with different runs of the algorithm with different parameters, but this is
a computational costly process, requiring also a difficult configuration to obtain a well-spread
Pareto front.
This work has modified two representative constructive and destructive local search tech-
niques, namely Bottom-up and Top-down, to provide a multi-objective approach with the re-
quired characteristics presented. Once this definition has been presented, these techniques
are embedded as the initialization procedure of a MOEA algorithm to solve the segmenta-
tion issue (the final technique would benefit from the fast heuristic approach and the thorough
metaheuristic search). These results show that the multi-objective techniques are successful
in providing statistically better initial populations, however the final results may be too focused



on the heuristic used in these techniques, which makes the evolutionary search performed
afterwards less effective, making the results fall into local minima.
Future lines imply the research of the combination which may be performed over local-search
and uniform initialization in order to provide initial populations taking advantage of local search
improved initial populations without their excessive focus on their underlying heuristic. Also,
the design of these multiobjecive local search techniques allow the introduction of a fully mul-
tiobjective memetic algorithm for segmentation.
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