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Abstract: The paper presents a stability analysis method meant for fuzzy control systems containing fuzzy
controllers with dynamics. The proposed method is based on the theory of hyperstability after Popov and on a discrete
time state space single input-single output linear time invariant mathematical model of the controlled plant.

I. Introduction

The stability analysis of a fuzzy control system (briefly, FCS) is necessary because only a stable FCS can:
ensure disturbance rejection, guarantee desired steady states, and reduce the risk of implementing the fuzzy controller
(FC).

The FC without dynamics represents a nonlinear element [1], [2] ensuring a nonlinear input-output (generalized)
static map due to the nonlinearities in: the shapes of membership functions, the rule base, and the defuzzification method,

The introduction of dynamics (i.e., of integral and/or derivative actions) in the structure of a FC can be done
on either the inputs or the outputs of the FC [3]. The paper deals with introducing the integral action resulting in Pl-type
fuzzy controllers.

Several methods for the stability analysis of a FCS are well-known (4], [5]. The paper presents a stability
analysis method based on the theory of hyperstability [6] based on considering a discrete time state space mathematical
model of a single input-single output linear time invariant (SISO-LTI) controlled plant (CP). An example is presented
as part of the paper concerning the application of the proposed method to the design of a Pl-fuzzy controller for
regulation and tracking of a class of nonminimum-phased systems,

2. Mathematical models of controlled plant extended with the linear part of fuzzy controller [7]

The CP is supposed to have the following n-th order discrete time SISO-LTI state space mathematical model
including the zero-order hold:

Xs1 = A X + by, (1)

Yk =€ X ()
where: u, - the control signal: Y - the controlled output; x, - the state vector; A, b, ¢T - matrices with the dimensions:
dim A = (n, n), dimb = (n, 1), dime" = (I, n); T - upper index used to express transposition; k - lower integer index
expressing the number of the current sampling period.

The block diagram of a FCS containing a FC
with its dynamic transferred to the CP can be transformed
as in Fig.1 for a relatively simple stability analysis.

a
Yy e ! n ECP —-9-*“> The elements from Fig.1 have the following
L significance: a € {i, o} - upper index corresponding to the
type of integration: a = i for integration on the input of
FC, a = o for integration on the output of FC; wy" - the
reference input vector;
Fig.1. Block diagram of a FCS. w' = [w 1 W' = Fwe L (3)
Lwi ] L Aw, ]

with: w - the reference input, wy, - the integral of
reference input, Aw, - the increment of reference input; " - the control error vector:
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with: ¢, - the control error, e, - the integral of control error, Ae, - the increment of control error; u.®, ¥,* - the control
signal vector and the controlled output vector, respectively, to be presented in the sequel; ECP - the extended controlled

plant (with integral action). The absence of disturbance in

Popov-type stability analysis [8].

put from the block diagram is fully justified for the sake of

Note that the extension of controlled plant appears in terms of the state space mathematical model (1), (2), and

it is caused by the existing zero-order hold.

According to Fig. 1, the FC is characterized by the following nonlinear input-output static map described by

the following function:

E: R —-> R,
[ fle? T
L 0 |

E(e)

(3)
(6)

The mathematical model of ECP can be derived as follows by taking into account [9] for the introduction of

additional state variables.

A) The case of integration on fuzzy controller input.
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Fig.2. Block diagram of ECP in the case of integration on

The block diagram of ECP is presented in Fig.2,
and it points out the additional state variable Xy The
controlled output vector y,’ can be expressed as:

¥ o=Tw 1

Loy |
where: y, - the controlled output; y, - the integral of
controlled output.

By the introduction of a fictituous control signal
uy for having an equal number of inputs and outputs as
required by the hyperstability theory in the multivariable

(7

PL g, case [8], the control signal vector becomes:
' = [y ] (8)
L ug |
So, the (n+ 1)-th order discrete time state space mathematical model of ECP can be arranged as:
X' = ATx) + By, (9)
' =Cx, (10)
where x,' represents the extended state vector:
X = r K -L (11)
L x|
and the matrices are:
At = A 0 |, dim A' = (n+1, n+1), (12)
cT A L
B = b 1|, dim B* = (n+1, 2), (13)
c' b 0o
c o= g 0 |, dim = (2, nsi). (14)
AF

B) The case of integration on fuzzy controller output.
The block diagram of ECP pointing out the additional state variables {Xuk» X"} is presented in Fig.3. The

extended state vector can be expressed as:
Xy

Xuk

Xy

o

Xy

(15)

The controlled output vector and the control input vector are:

[ Au T,
L Aug |

[ % 1
LAYkJ

o o _
¥ n- =
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Fig.3. Block diagram of ECP in the case of integration on

FC output.
A b 0

A° = BT 1 0 |, dim A° =
ct 0 0

B = b 1
L A |y dim B® = (n:2,
0 1

g = ct 0 0 |, dim ¢C° =
ct 0 -1

where: Ay, =y,-y,., - the increment of controlled output;
Au, - the increment of control signal; Auy, - the fictituous
increment of control signal introduced for the same reason
as in the previous case.

The (n+2)-th order discrete time state space
mathematical model of ECP in this case is as follows:

X" = A°%° + B° u,°, (17
w==0x"’ (18)

with the corresponding matrices:
(n+2, n+2), {19)
2) {20)
(2, n+2). (21)

The state spa-c_e mathematical models from (9), (10) and (17), (18) can be written down together in the following

forn:
X" = A'x® + Byl
¥ =" x5

where: a e {i, o}; dim A* = (r*, %), n' = n+1, 0° = n+2; dim B* = (1, 2); dim C* =

(22)
(23)
(2, o).

Note that the last colunm of B® is full of ones in order to ensure that the above mentioned state space
mathematical models are minimum realizations. The last column of B could take any values because it is multiplied with
the fictituous controls {uy,, Aug} that have no influence on control system behaviour (the second component of E is zero,

relation (6)).

3. Stability analysis method

u

u? Y
= s ey

<
=

NL ==,

Fig.4. Block diagram of a nonlinear control system.

control signals (ug and Auy).

Generally speaking, the block diagram envolved
in the stability analysis of a nonlinear control system is
shown in Fig.4. The block NL from Fig.4 represents a
static nonlinearity due to the nonlinear (static) part of the
FC.

The relations between the block diagrams from
Fig.I and Fig.4 are [10]:

¥* from Fig.4 = -¢,* from Fig. |; (24)
u" = -v,* from Fig.4 = F(e*) from Fig.1. (25)
The second component of E is always zero (see

the relation (6)) for neglecting the effect of fictituous

By taking into account the relation (24), the relation (23) becomes (26):

Bp= =0 X,
and it can be written down as:
x = C'e,

with the matrix C° (dim C® =

(26)

27)

(', 2)) that can be easily obtained as function of C*.

The proposed stability analysis method can be stated in terms of the following theorem:
Theorem. The nonlinear system from Fig.4 with the mathematical model of the linear part (22), (23) is globally
assymptotically stable if the three matrices P (positive definite, dim P = (n?, 1)), L (regular, dim L = (o2, n%), V (any,

dim V¥ = (0%, 2)) fulfil the following requirements:
LATE AP =L L
C-BTP A = VT LT
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-BTPB =V'v; (30)
IL. by introducing the following matrices:

M=CT(LL'-P)C, dimM = (2, 2), (31)
N=CT(LV-ATPB-2C"), dimN = (2, 2), (32)
R = V'V, dimR = (2, 2), (33)
there exists the positive definite matrix S (dim § = (2, 2)) that makes the inequality (34) hold for any value of e,;
fle,) o7 g =g (8- M) &/, (34)

where n represents the first column of N.
Proof. The condition I is immediately fulfilled because it represents the first equation from the Kalman-Szego

lemma [11].
The Popov inequality - that ensures the global asymptotic stability of the nonlinear control system with the block

diagram from Fig.4 - is reminded for the fulfilment of condition I1:

S(k,) = ‘X vy = - B2, Yk e N, (35)
k=0
for any positive constant B,
By taking into account the correspondences (24) and (25) the Popov sum S(k,) from (35) becomes:

S(ky) = - i u Ty, Vk e N (36)
k=0
The substitution of y," from (23) in (36) followed by adding and subtracting the term x,,,*Px, . * yields:
Stky) = - i (Ekﬁ CTx + X P Xt - Xt P Xer1)y VK €N (37)
k=0

Then, x,.,* is substituted from (22) in (37) resulting in:

Stky) = 55 [- %" ATPA"x" - x,T (BT P A* + BT pT A0 gie
k=0
-y BT Bt + Ko™ B K™, ¥ k, e N. (38)
By replacing the expressions A*T P A®, BT P A® and B*T P B* from the equations (26), (29) and (30), respectively, in
(38), and using the relations (25), (31) ... (33), another form of the Popov sum is obtained:;

Stky) = t O . WL i lei” M e + & N F(e) + E'e) R Fe)], Yk, € N (39)
k=0 k=0
Finally, by pointing out the positive element r;; of R and the elements of F from (6), the relation (39) becomes:
S(k)) = & [Xee™T P xi® + 1, Ble®)] + &: [ Me® + fie®) n" e, Yk, € N'. (40)
k=0 k=0

It is obvious that the first sum from (40) is strictly positive. Using (34) determines the second sum from (40)
to be expressed as:

&:ikﬂﬁggk“, Vk eN. (41)
k=0
Therefore, the condition II ensures the positive value of S(k;) fulfilling the Popov inequality (35).
Finally, note that only the matrix P (instead of P, L and V) from the relations (28) ... (30) is important for FCS
stability analysis because the matrices M, N and R from (31) ... (33) can be expressed as:

M=-CTATP A, (42)
N =-CT(AT(P + P)B* + C), (43)
R=-B7"pB. (44)
4, Example

For the Pl-fuzzy controller with integration on FC output meant for a class of nonminimum-phased systems and
developed in [12] the matrices envloved in stability analysis have the following values:
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[0.9927 0.0072 -0.0142 0 -0.0142 1
A°=| 0 0.9556 0.1333 0|, B°=| 0.1333 1|, c°=[1 0 0 o0];
0 0 1 0 1 1 [1 00 -1J
1 0 0 0 0 1 (45)
(-1 0
c=l 00| , p= I,; (46)
00
| L&

M=[—l.9854 o], ﬁ:[o.9719 5.9853], E:[—l.OlBO -1.1192], 8 = I,. (47)
0 0 0 1 -1.1192 -4

The free parameter used in FC design is B,. For B, € [0.2; 0.5] the relation (34) is fulfilled, and the fuzzy control

system is globally assymptotically stable.

5. Conclusions

The paper outlines - by applying the theory of hyperstability - a stability analysis method for FCSs containig
two possible types of fuzzy controllers with dynamics, i.e. with integrator introduced on both the input and the output
of the FC.

The theorem presented as part of the paper gives sufficient conditions ensuring the stability of FCS when a
discrete time SISO-LTI mathematical model of the controlled plant is taken into consideration. The relation (34)
represents a geometrical condition because its left hand side describes a cone and its right hand side describes a cone.

The proposed stability analysis method is similar to the method from [10] for continuous time systems, and the
stability conditions are stronger than the conditions from [13] for discrete time systems.

Digital simulation results confirm the validity of the proposed stability analysis method.
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