

A PRACTICAL INTRODUCTION TO

MICROCONTROLLER PROGRAMMING WITH

S12

Pal-Ștefan MURVAY Horațiu Eugen GURBAN Bogdan GROZA

Preface

Whether in home appliances, mobile devices or vehicles, microcontrollers are the drive behind an
easier, more enjoyable user experience in a technologically advanced word. Initially built for the
automotive industry, the HCS12 microcontroller family has provided derivatives which were quickly
adopted in many industrial applications. Designed to provide common microcontroller functionalities
(timer, PWM, ADC, serial communication, etc.) along with other application specific modules, the
HCS12 is an ideal platform for learning embedded systems programming.

Motivated by the availability of HCS12 controllers in our laboratories at UPT, mostly due to the

kind support that we received from Continental (the largest automotive entrepreneur in Timisoara),
this platform became employed in many courses at our university. The main intention of this book is
to provide a self-contained supporting material for learning the basic features of microcontrollers
from the perspective of the HCS12 platform during a single semester course. Due to inherent space
constraints, some specific features and modules found on the HCS12 were not included. The material
is intended for both novice and experienced students. Students following their first course on
microcontrollers could benefit from the specifics of the HCS12 family but also from the general
presentation of common microcontroller features that are illustrated on HCS12. Students that already
have a background in development with embedded devices may find the material useful for its
succinct and structured presentation.

While our work is intended as a short introduction, more comprehensive materials on this subject

can be found such as the two excellent books referenced as [1] and [2]. The first of them presents the
most common features of the HCS12 family members in detail along with supporting examples of
varying difficulty. The second also provides a detailed presentation of common HCS12 features and is
accompanied by different application examples. We recommend these two books to more involved
readers for an in-depth study of this platform.

The authors June 2016

Acknowledgement. This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-
UEFISCDI, project number PN-II-RU-TE-2014-4-1501.

Contents 3

CONTENTS

Contents .. 3

 Introducing the Freescale HCS12(X) microcontrollers and the ZK-S12-B starter kit 6

1.1 The Freescale HCS12(X) microcontroller family.. 6

1.1.1 Short historical note .. 6

1.2 The ZK-S12-B starter kit .. 8

1.2.1 Development board sections .. 8

1.2.2 Clock source configuration.. 10

1.3 CodeWarrior.. 11

1.3.1 CodeWarrior IDE ... 11

1.3.2 Creating a new project .. 16

1.3.3 True-Time Simulator & Real-Time Debugger .. 19

1.3.4 The Demo Project ... 26

 S12 I/O ports ... 28

2.1 General I/O interfacing ... 29

2.2 Ports A, B, C and D .. 30

2.3 Port E ... 31

2.4 Port K ... 32

2.5 Port T ... 32

2.6 Port S ... 33

2.7 Port M ... 33

2.8 Ports H, J and P.. 34

2.9 Ports AD0 and AD1 .. 34

 S12 Programming model, instruction set and memory addressing ... 36

3.1 Programming model ... 36

3.2 Instruction set ... 37

3.2.1 Data transfer instructions ... 39

3.2.2 Arithmetic instructions ... 41

3.2.3 Logic and bit instructions .. 42

3.2.4 Branch instructions ... 43

3.2.5 Comparison instructions ... 44

3.2.6 Function call instructions .. 45

3.3 Memory addressing modes .. 47

 The interrupt system, clock and reset generation .. 48

4.1 General concepts of interrupts ... 48

4 Contents

4.2 Interrupts on the S12 platform ... 48

4.2.1 The S12 Interrupt block ... 48

4.2.2 Using S12 interrupts and CodeWarrior ... 51

4.3 The S12 Clock and Reset Generator .. 54

4.3.1 General aspects on clock and reset generation and the S12 features 54

4.3.2 Clock generation ... 55

4.3.3 Reset generation ... 57

4.3.4 Using real-time interrupts ... 59

 The Timer Module ... 60

5.1 TIM associated registers ... 61

5.1.1 Timer counter registers ... 61

5.1.2 Registers common for input capture and output compare .. 63

5.1.3 Registers related to the input capture function ... 63

5.1.4 Registers related to the output compare function ... 64

5.1.5 Registers related to the pulse accumulator function ... 65

5.2 ECT extended timer features .. 66

5.2.1 Registers related to the input-capture function ... 66

5.2.2 Registers related to the modulus down counter .. 67

5.2.3 Registers related to the pulse accumulator .. 68

 Pulse Width Modulation (PWM) Module ... 70

6.1 General concepts of PWM .. 70

6.2 PWM generation on S12 ... 70

6.2.1 PWM Clock configuration ... 72

6.2.2 PWM waveform configuration.. 73

6.2.3 PWM module control .. 76

6.2.4 16 bit resolution PWM .. 78

 The Analog-To-Digital Converter Unit (ATD) ... 80

7.1 General ADC concepts and the S12 ATD unit ... 80

7.1.1 Applications and some theoretical considerations on sampling rate, resolution and

accuracy. 80

7.1.2 The S12 ATD unit ... 80

7.1.3 Conversion algorithm. ... 82

7.2 ATD associated registers ... 82

7.2.1 ATD control registers .. 82

7.2.2 ATD status registers .. 84

7.2.3 ATD test registers .. 85

Contents 5

7.2.4 ATD input enable register ... 86

7.2.5 ATD port data register... 86

7.2.6 ATD conversion result registers .. 86

 Internal memory ... 89

8.1 Basic concepts on memories .. 89

8.1.1 Common memory types.. 89

8.1.2 Memory mapping .. 89

8.2 The S12 memory system ... 90

8.2.1 S12 Flash memory ... 90

8.2.2 S12 EEPROM memory ... 95

8.2.3 Remapping memory sections.. 98

 References .. 100

 INTRODUCING THE FREESCALE HCS12(X) MICROCONTROLLERS AND THE

ZK-S12-B STARTER KIT

This first chapter will introduce the Freescale HCS12(X) microcontroller and the ZK-S12-B
development kit along with the included microcontrollers, the CodeWarrior IDE and the CodeWarrior
Debugger as this is the setup used to support the examples discussed in throughout the chapters of
this book.

1.1 THE FREESCALE HCS12(X) MICROCONTROLLER FAMILY

1.1.1 Short historical note

The HC9S12 microcontroller, subject of this book (briefly referred as S12), is part of a
microcontroller family introduced by Freescale since the beginning of 2000. This line is built upon the
success story of the HC11 platform developed in the ‘80s and enhanced in the mid 90’s as HC12. The
microcontroller is still under development at Freescale Semiconductors (a spinoff/division of
Motorola). The most advanced embodiments of this line, feature and additional co-processor called
XGATE and are referred as S12X. Briefly, this line of microprocessors can be described as a line of cost-
efficient and reliable 16-bit processors that is highly used in the automotive industry but nonetheless
in various industrial and home appliances. The clock speed varies through this family of
microprocessors, you may find several specifications, but the main lines are: the HC9S12 designed to
work at 25MHz and the stronger S12X that works at 50MHz. The first HC12 derivatives could achieve
speeds of only 8MHz. For current needs in the automotive industry, even the top of the S12 line is
reaching its limits for the most demanding tasks, but it is still widely deployed in areas within the car
where cost rather than performance is a major issue.

Figure 1.1 The three S12 cores included in the ZK-S12-B kit: S12C128, S12DT256 and S12XDT512 (with XGATE co-processor)

Some additional terminology may be also useful. Please pay attention to the fact that we refer
these as microcontrollers and not microprocessors. The difference between the two is that
microprocessors (see for example the well-known lines of Intel Pentium and AMD) do not embed the
memory and peripherals on the chip, while for microcontrollers this is clearly the case as memory and
peripherals are embedded with the core in the same capsule. The application range for
microcontrollers is usually centred on specific applications (e.g., engine control tasks) and thus lower
speeds, lower memory, etc. are usually sufficient to fulfil the task, low cost and high reliability being

1.1 The Freescale HCS12(X) microcontroller family 7

the more important constraint when designing these devices. This usually does not hold for
microprocessors which are designed to fulfil a large variety of tasks (in personal computers for
example) and their costs can reach prohibitive levels.

The S12 microcontroller has all the memory embedded on the chip. The additional numbers in the
chip name specifies the amount of Flash memory available. They can be seen in Figure 1.1 for models
dubbed: MC9S12C128CFU, S9S12DT256CFUE and MC9S12XDT512MFU which in turn have 128, 256 or
512 kilobytes of memory.

Although built around the same CPU, various members of the S12 family differ by the hardware
configuration packaged with the S12 core. This means that available modules and ports will vary from
one chip type to the other. Complete descriptions of chip capabilities and register definitions are
available in corresponding datasheets. If you are using the SofTec Microsystems installation package,
you can find datasheets on your system at c:\Program Files\SofTec Microsystems\SK and ZK-S12(X)
Series\DataSheets\ZK-S12-B\[<target MCU>]\, where <target MCU> stands in for the name of the
microcontroller. Alternatively you can access the datasheets online directly from the producer’s
website [3, 4, 5]. The variety of modules that are present on this device are presented in Figure 1.2
which also points out the chapters which are going to detail each of them. Only the basic modules are
going to be discussed as the communication modules are out of the scope of this book. These are
detailed as follows:

Figure 1.2 Block diagram of the HC9S12 with the associated chapter

• The first chapter introduces the ZK-S12-B development kit and the CodeWarrior

environment, an accessible setup for starting up with S12 development;

• The second chapter will introduce the S12 ports which are used as general purpose

input/outputs as well as for dedicated functionalities

• Chapter 3 addresses the programming model and the low-level (assembly) programming of

the microcontroller. This is mainly intended to make you more familiar with how this

microcontroller works.

• Chapter 4 continues somewhat on the same line by providing insights on the interrupt

system, a subsystem which is fundamental for programming embedded applications.

• Chapter 5 addresses the Pulse Width Modulation (PWM) subsystem, this is employed for

generating signals that can be used for various tasks such as the control of motor drives.

8 Introducing the Freescale HCS12(X) microcontrollers and the ZK-S12-B starter kit - 1

• Chapter 6 addresses the Analogue-to-Digital (ADC) conversion system that is used for signal

acquisitions.

• Chapter 7 addresses the Timer module, fundamental for any real-time application.

• Chapter 8 introduces the internal Flash and EEPROM memory units which are included in

microcontrollers for storing program and data.

1.2 THE ZK-S12-B STARTER KIT

1.2.1 Development board sections

The ZK-S12-B Starter KIT is an evaluation board designed for the Freescale HCS12(X)
microcontroller family. The starter kit user’s manual [6] (which is contained in the installation folder
of the Softec Microsystems System Software – “c:\Program Files\SofTec Microsystems\SK and ZK-
S12(X) Series\”) contains a presentation of the development board and its configuration options. An
electrical schematic of the board can be found in the accompanying schematics file [7] in the same
install folder. The board is organised into the following sections: MCU, Power supply, USB to BDM
interface, BDM, CAN, LIN, RS-232, Serial settings, Inputs, Reset, Outputs and a Prototype area. A short
description regarding each section follows.

Figure 1.3 ZK-S12-B Starter kit PCB sections Figure 1.4 MCU section

MCU section – The Freescale HCS12(X) microcontroller is connected to the board using an 80 pin QFP
ZIF (Zero Insertion Force) socket. All the microcontroller pins are accessible through four 20 pin header

connectors which are mounted around the socket. The clock source can also be selected in this section as
illustrated in Figure 1.4. By using the J13 and J14 jumpers, in the MCU section, the following selection
can be made: Clock, Pierce and Colpitts. The clock source configuration is discussed in detail in section
1.2.2.

!!! Before performing the following operation make sure the board is disconnected from the

power supply and also disconnect the USB cable if connected.

To change the microcontroller or to find out which microcontroller is currently installed in the
development board socket, open the ZIF socket and check the writing on the inserted MCU. Write
down the name of the microcontroller, you will need this when creating a new project or when loading
the demo projects. Avoid touching the microcontroller because it can be easily damaged due to
electrostatic discharges (ESD). Make sure you have closed the socket once you are done.

Power supply section – The evaluation board needs to be connected to a 12V DC power supply (used
to power the LIN and CAN transceivers) provides regulated 3.3V or 5V to the MCU and to other circuits
on the board. A power adapter is included within the kit content

1.2 The ZK-S12-B starter kit 9

USB to BDM interface and BDM interface – An USB to BDM convertor is installed on the board. By
using this interface no external BDM in-circuit debugger is required. The evaluation board provides a
BDM connector, so also an external in-circuit debugger can be employed if needed.
CAN section – This section contains two MC33388 CAN transceivers (capable of up to 125 Kbaud
speeds). The TX and RX signals for CAN0 and CAN4 can be individually connected or disconnected
to/from the transceiver by using 4 jumpers.

LIN section – The LIN section contains two MC33661 LIN transceivers (100 Kbps - fast mode). By using
the jumpers in this section the two LIN nodes can be configured as master nodes. Another jumper
selection allows the selection of the LIN transceivers power supply between the ZK-S12 board power
supply and by the LIN network.

Serial settings section – The MCU RX and TX lines can be connected to LIN section or to RS232 section.

RS-232 section – A MAX3232 transceiver is used to convert TTL to RS232 logic levels. Each of the two
serial communication channels can be configured as Data Terminal Equipment (DTE) or Data
Communication Equipment (DCE).

Inputs section – The inputs section provides the following elements: a potentiometer, eight DIP-
switches, and four push-buttons. The potentiometer is connected to the PAD00 MCU pin; this
connection can be disabled by removing a jumper. The push-buttons are connected to PP0, PP1, PP2
and PP3 while the dip-switches are connected to PT0-PT7.

Outputs section – The outputs section contains 8 LEDs which are connected to port B pins (PB0 – PB7).
Each LED can be disconnected from the corresponding port B pin by removing the associated jumper.

Prototype sections – The prototype section is divided in two areas, a SMD area and a trough-hole
area. The 5V, 12V, VDD, and GND signals are routed to the prototype section and can be easily
accessed in through-hole area.

Power supply section

 J202 VDD SEL 1-2 3.3 V

 2-3 5V

Inputs section

J205 ENA installed Potentiometer connected to PAD00

 removed Potentiometer disconnected

Outputs section

J204 LED ENA installed LED connected

 removed LED disconnected

MCU section

J105 VRH SEL 1-2 VRH connected to VDDA

 2-3 VRH connected to J103

J106 VRL SEL 1-2 VRL connected to GND

 2-3 VRL connected to J104

J113-J114 OSC SEL 1-2 CLOCK

 3-4 PIERCE

 5-6 COLPITTS
Table 1.1 Jumper configuration

10 Introducing the Freescale HCS12(X) microcontrollers and the ZK-S12-B starter kit - 1

As presented, various features of the development board, such as the MCU supply voltage,
potentiometer and LED availability, CAN, LIN and serial communication channels or clock source, can
be configured by means of jumper settings. The configurations that affect the power supply, MCU,
inputs and outputs sections are summarised in Table 1.1. For other settings please refer to the starter
kit user manual [6]. The default values are illustrated in bold letters.

1.2.2 Clock source configuration

In the MCU section the user can select one of the three clock sources that are available on the
development board: two 16 MHz crystals, in Pierce and in Colpitts configuration, or a CMOS
compatible external oscillator. Table 1.2 summarises the clock configuration settings. Figure 1.5
illustrates the board’s oscillator circuit.

Oscillator

configuration

J113 & J114

,connected pins

J115,

"XCLK#=0"

External Clock 1-2 Installed

Pierce 3-4 Installed

Colpitts 5-6 Removed
Table 1.2 Jumper configuration for oscillator selection

Figure 1.5 ZK-S12-B oscillator circuit

When the 16 MHz crystal needs to be used in Colpitts configuration, pins 5 and 6 have to be
connected (by jumper) on connectors J113 and J114.

When an external crystal is used together with the internal, low power, Colpitts oscillator the
XCLKS# signal has to be forced to high. XCLKS# signal is sampled on the rising edge of the RESET signal.
For forcing the XCLKS# signal to high the jumper has to be removed from the J115 connector.
When a Pierce oscillator or an external CMOS compatible external oscillator is used the XCLKS# signal
has to be low during the rising edge of RESET signal, therefore the jumper should be installed on J115.
When the 16 MHz crystal is used in Pierce configuration, pins 3 and 4 have to be connected (by jumper)
on connector J113 and J114 (OSC SEL).

1.3 CodeWarrior 11

An external clock module can also be used. In this case the CMOS compatible external oscillator
has to be inserted in the U102 socket and pins 1 and 2 have to be connected on connector J113. The
XCLKS# signal has to be low during the rising edge of RESET signal (J115 connector “XCLKS#=0” –
jumper installed).

1.3 CODEWARRIOR

This section provides a quick introduction to CodeWarrior IDE, a Freescale Semiconductor product
built for editing, compiling and debugging software for various microcontroller platforms provided by
the same manufacturer. CodeWarrior comes with various supporting packages according to the
platforms which it has to be used for. We need to use CodeWarrior Development Studio for HCS12(X)
Microcontrollers to build applications for microcontrollers in this family.

1.3.1 CodeWarrior IDE

The following guide was made based on version 5.7.0 of the CodeWarrior IDE. While window
appearance and some features may vary between different versions of CodeWarrior, the main
functionalities are as described in what follows.

For a quicker introduction to the CodeWarrior IDE a demo project provided with SofTec
Microsystems Software package is used to present its functionalities.

Figure 1.6 Locations of J204 and J205

The following steps should be taken before loading the demo project:
• Make sure the J204 “LED ENA” jumpers from the output section of the board are installed (Figure

1.6) – 8 jumpers.
• Make sure the J205 “POTENTIOMETER ENABLE” jumper from the input section of the board is

installed (Figure 1.6).
• Connect the power supply to the ZK-S12-B board
• Connect the PC and the board via USB cable

Figure 1.7 Launching CodeWarrior IDE from the start menu

12 Introducing the Freescale HCS12(X) microcontrollers and the ZK-S12-B starter kit - 1

To start CodeWarrior you can take one of the following steps:
• From the Start menu follow the path: Start � All Programs � SofTec Microsystems � SK and

ZK-S12(X) Series � CodeWarrior Development Studio, as in Figure 1.7
• Alternatively follow the drive path to the Start menu shortcut: “C:\ProgramData\Microsoft\

Windows\Start Menu\Programs\SofTec Microsystems\SK and ZK-S12(X) Series\CodeWarrior
Development Studio”

• Follow the local installation path: "C:\Program Files (x86)\Freescale\<CW install
folder>\bin\IDE.exe", where <CW install folder> should be replaced with the CodeWarrior
install folder on your system.

• If your CodeWarrior installation is located elsewhere, start it by following your install path.

On opening CodeWarrior a startup window will appear (if this was not disabled) like shown in
Figure 1.8. The appearance of this window can be disabled by unchecking the “Display on Startup”
checkbox. If needed it can later be re-enabled from the CodeWarrior settings.

Figure 1.8 Freescale CodeWarrior IDE Start-up window

1.3 CodeWarrior 13

Figure 1.9 Open window, select ZK-S12-B board and the MCU

Open the CodeWarrior demo project Demo.mcp (*.mcp is the CodeWarrior project file)which
should be locatet at the following path: c:\Program Files\SofTec Microsystems\SK and ZK-S12(X)
Series\CodeWarrior Examples\ZK-S12-B\[<target MCU>]\Demo\Demo.mcp. Here the <target MCU>
label stands for MC9S12C128, MC9S12DJ256 or MC9S12XDT512. Select the MCU that is installed on
your board (Figure 1.9).

The project items are organized in 3 tabs: Files, Link Orders and Targets (Figure 1.10).

Figure 1.10 Files, Link order and Targets tabs

14 Introducing the Freescale HCS12(X) microcontrollers and the ZK-S12-B starter kit - 1

Figure 1.11 Demp.mcp project files

The Files tab of the project area lists all the files used in the project. These files are organised in a
tree view manner, each main section in the view corresponding to a category of files. The following
sections can be seen in the Files tab (Figure 1.11):

• “Sources” - contains the source code
• “Startup Code” - contains the startup code (“Start12.c”), used for initializing C library and

calling the main() function
• “Libraries” - contains the library files (“ansibi.lib” is included as default), also the device

header and file (“MC9S12C128.h”, “MC9S12C128.c” in the presented example as we
employed an S12C128 MCU)

• “Debugger Project File”- contains the .ini file for the existing target connections, in this case
simulator and SofTec USB to BDM debugger (“Simulator.ini”, “SofTec.ini”).

• “Debugger Cmd Files” - contains subfolders for the existing target connections (“Simulator”,
“SofTec”). Each subfolder contains the associated command files.

The order in which the project files are linked can be set in the Link order tab (Figure 1.12). To

change the link order you have to grab and drag a file to the desired position. If some files should not
be included in the build they must be deleted from this list. A red check mark in the first column of
the list indicated a file that has changed or was touched and will be compiled during the next build
process. Files can be manually touched by selecting this option from the dropdown that opens when
pressing on the arrow on the last column.

1.3 CodeWarrior 15

Figure 1.12 Link order tab

Two connection methods have been configured for this demo project. A target connection that
uses a Full Chip Simulation and a connection target that uses the SofTech USB to BDM interface. You
can set the default target connection from the main menu: “Project->Set Default Target”. An
alternative is to use the CodeWarrior project panel as can be seen in Figure 1.13.

Figure 1.13 Selecting the target connection in the CodeWarrior project

The CodeWarrior toolbar provides quick access for most frequently accessed menu items (Figure
1.14) related to file access, editor and build process functionalities.

Figure 1.14 CodeWarrior toolbar

16 Introducing the Freescale HCS12(X) microcontrollers and the ZK-S12-B starter kit - 1

1.3.2 Creating a new project

For creating a new project you can use File -> New Project, the shortcut CTRL+SHIFT+N or the
“New Project” icon on the menu bar (Figure 1.15).

Figure 1.15 The create a new project icon on the menu bar

The new project window will open with a wizard that will guide you through the project setup
phase. In the first wizard page select the microcontroller derivative that needs to be used and the
connection types that should be included in the project. Chose the derivative according to the chip
installed on your board. Selecting a wrong derivative can lead to undefined behaviour due to
differences in memory mappings and feature availability. Select “Full Chip Simulation” if you want to
use a MCU simulator, or use the SofTec HCS12 (inDART In-Circuit Debugger) for the ZK-S12-B
development kit. Alternatively, if other debugger hardware is available you can select another
connection type accordingly. After making the desired settings press the Next button to continue.

Note that each wizard window will generally contain an inactive text box displaying additional
information about the selections made.

In the following wizard page, Figure 1.17, you can select the programing language between several
options: Assembly, C or C++. In most cases for implementing examples and exercises in this book we
will need a C type project. The project name and location will also be set in this step by filling the
corresponding fields. From this point on the Finish button becomes active and by pressing it you can
skip the next steps leaving the rest of the settings to their default values.

Figure 1.16 New Project - Device and Connection

1.3 CodeWarrior 17

Figure 1.17 New Project - Project parameters

After going to the following step (Figure 1.18) you can select and add aditional files in the project
if they are needed. This step is generaly needed when using already existing drivers or software
libraries. These files can be automatically copied in the project if the corresponding checkbox is
activated, otherwise they will be used as refferences from their existing location on disk. The main.c
file will be generated if the coresponding checkbox is checked.

Figure 1.18 New Project - Add additional files

The next wizard step, called Processor expert, is illustrated in Figure 1.19. In this step you can
select if CodeWarrior should generate some initialization code automatically (MCU peripherals
configuration, ISR templates).

18 Introducing the Freescale HCS12(X) microcontrollers and the ZK-S12-B starter kit - 1

Figure 1.19 New Project - Processor expert

The C/C++ Options wizard page (Figure 1.20) is dedicated for setting various options related to the
startup code, memory size and usage of floating point variables. By selecting “ANSI startup code” the
global variable will ne initialized and the main function called. A “Small” memory model can be
selected if the code doesn’t exceed 64K. If no floating point variables are needed select “none”. The
double datatype can be selected as 4 or 8 Bytes.

Figure 1.20 New Project - C/C++ options

In the last wizard page (Figure 1.21) the use of PC-Lint can be enabled for performing static code
analysis and for checking the code compliance with MISRA C and C++ rules.

1.3 CodeWarrior 19

Figure 1.21 New Project - PC Lint

1.3.3 True-Time Simulator & Real-Time Debugger

To start debugging you can use the debug icon from the CodeWarrior toolbar or the project
toolbar. The True-Time Simulator & Real-Time Debugger application will open with settings and debug
symbols preloaded as in Figure 1.22.

Alternatively you can manually open the debugger from its install folder:”C:\Program Files
(x86)\Freescale\<CW_install_folder>\prog\hiwave.exe”. In this case you have to load the
configurations and the debug symbols manually:

• To load the configuration, go to “File � Open Configuration…” or directly press Crtl+O. In the
dialog that opens select the project file (*.ptj) which will be located in the root folder of your
project after building the project. The file will be named according to the configuration it was
built for (e.g., Simulator.ptj or SofTec.ptj).

• To load the debug symbols, go to “File � Load Application…” or directly press Crtl+L. Select
the binary file (*.abs or *.elf) in the dialog that opens. This file should be located in your
project’s bin folder (<project_path>\bin). As in the case of configuration files this file will also
be named according to the configuration it was built for (e.g., Simulator.abs or SofTec.abs).

The True-Time Simulator & Real-Time Debugger default configuration is organised in 8 sub-

windows: Source, Procedure, Data:1, Data:2, Assembly, Register, Memory, Command.
• Source window – displays the source code
• Procedure window – displays the chain of functions and procedures called until the current

moment. This list is usually known as a call stack or call chain and is displayed in reversed
order – the last function called is on the top.

• Data:1 and 2 windows – in the default configuration the Data:1 window displays the global
variables and the Data:2 window displays the local variables.

• Assembly window – displays the source code in assembly

20 Introducing the Freescale HCS12(X) microcontrollers and the ZK-S12-B starter kit - 1

Figure 1.22 True-Time Simulator & Real-Time Debugger

• Registers window – displays the following MCU registers: D, A and B (accumulators), IX, IY (16
bit index registers), IP, PC (Instruction Pointer, Program Counter), PPAGE, SP (Stack Pointer),
CCR (Condition Code Register). The value of the registers can be modified by double clicking
in the value field. The registers display format can be modified from the contextual menu as
shown in Figure 1.23.

Figure 1.23 True-Time Simulator & Real-Time Debugger - Register window

• Memory window (Figure 1.24) – displays the MCU memory. Besides the normal memory
data the following characters can also be seen in the memory window: “-” byte not
configured, “r” byte not accessible (MCU is running) and “p” byte cannot be read or read
and written.

1.3 CodeWarrior 21

Figure 1.24 True-Time Simulator & Real-Time Debugger - Memory window

• Command window – the commands executed by the debugger are prompted here (Figure
1.25).

Figure 1.25 True-Time Simulator & Real-Time Debugger - Command window

For controlling the execution of the currently loaded program the following commands can be
used: Start/Continue, Restart, Halt, Single Step, Step Over, Assembly Step, Assembly Step Over,
Assembly Out and Halt. These commands can be accessed from the main menu (Figure 1.26), from
the toolbar (Figure 1.27) or by using the associated shortcuts.

Figure 1.26 Debug commands - Run menu

22 Introducing the Freescale HCS12(X) microcontrollers and the ZK-S12-B starter kit - 1

Figure 1.27 True-Time Simulator & Real-Time Debugger toolbar

• Start/continue (F5) - starts/continues the execution of the currently loaded code on the
target. The application runs until a breakpoint or watch point is reached or a halt command
is sent by the user.

• Single step (F11) – Can be used just when the target application is halted. It performs a
single instruction from the Source window. If the next instruction is a function call the
debugger will step into the function.

• Step over (F10) – Behaves in the same manner as the Single step command with the remark
that when the next instruction is a function call it will execute the function.

• Step out (Shift F11) – In the case the application execution is stopped in a function, by using
this command, the rest of the function code will be executed and the execution is halted at
the first instruction that follows the function call.

• Assembly step (Ctrl+F11) – Executes a single assembly instruction then halts the execution.
• Halt (F6) – Halts the application execution.
• Reset target (ctrl+r)

Breakpoints

Breakpoints are the most important type of control points used in SW debugging. Several types of
breakpoint are supported by the CodeWarrior debugger:

• Temporary breakpoints – they halt the code execution at the first encounter of the
breakpoint

• Permanent breakpoints – they halt the code execution each time the breakpoint is reached
• Conditional breakpoints – they halt the code execution when the breakpoint is reached and

a predefined condition is met
• Counting breakpoints – they halt the code execution after the associated instruction

executes a specified number of times

Permanent break points can be set by using one of two possible approaches:
1) Right click+“Set Breakpoint”

• Put the mouse pointer in the row on which you want to insert the break point.
• Right click to display the Source window context menu

• Select “Set Breakpoint”, symbol should appear in the code.
2) P + left mouse button

• Put the mouse pointer in the row on which you want to insert the break point
• hold down the left mouse button
• Press the P key, and release the mouse button

There are several different ways to set a temporary breakpoint:

1) Converting a permanent breakpoint to a temporary breakpoint

1.3 CodeWarrior 23

• Create a permanent breakpoint
• Right click anywhere in the Source window, select “Show Breakpoints” � the Controlpoints

Configuration window should appear
• In the Controlpoints Configuration window select the breakpoint you want to activate as

temporary and check the “Temporary” checkbox. Click Ok. The icon should become .

Figure 1.28 Configure a temporary breakpoint from Control Configuration, breakpoints tab

2) Run to Cursor

• Put the mouse pointer in the row with the instruction where you want to insert a
breakpoint.

• Right click � the Source window context menu appears
• Select “Run to Cursor”

3) T + left mouse button
• Put the mouse pointer in the row with the instruction where you want to insert a

breakpoint, hold down the left mouse button
• Press the T key, and release the mouse button

For setting conditional breakpoints follow these steps:
• Create a breakpoint
• Open the Controlpoints Configuration window
• Add the breakpoint activation condition (use C syntax) in the condition field

• The should become .

24 Introducing the Freescale HCS12(X) microcontrollers and the ZK-S12-B starter kit - 1

Figure 1.29 illustrates how to set up a conditional breakpoint to break execution only if the value of
the enCnt variable equals 0 at the time the breakpoint is reached.

Figure 1.29 Configure a conditional breakpoint from

Control Configuration, breakpoints tab

Figure 1.30 Configure a counting breakpoint from Control

Configuration, breakpoints tab

When setting counting breakpoints the following steps have to be taken as suggested in Figure 1.30:
• Create a breakpoint
• Open the Controlpoints Configuration window
• Update the Counter interval filed, click update.

• The should become .

Watchpoints

Watchpoints are control points associated with the MCU memory access. They offer the possibility
to halt the program execution when a selected memory range is accessed. There are five types of
watchpoints that can be set in the debugger:

• Read Access– halts the program when the “watched” memory locations are read.
• Write Access – halts the program when the “watched” memory locations are written.
• Read/Write – halts the program when the “watched” memory locations are read or written.
• Counting – applicable to any type of watchpoint: Read, Write, Read/Write.

A counter initialized by the user is associated to the memory access. This counter decrements
when the specified type of memory access is detected. When the counter reaches 0 the
program execution is halted. The counter is then automatically reloaded with the value
initially set by the user.

• Conditional – applicable to any type of watchpoint: Read, Write, Read/Write.
The program execution is halted the specified type of memory access is detected and a
condition imposed by the user is true.

For adding a watchpoint select the variable (in the Data window) or a memory range (in the

Memory window) and right click the selected area (the contextual menu should appear). Next, select
“Set Watchpoint” which will creat a read/write watchpoint.

To configure a watchpoint:
• Right click on the Memory window, select “Show Watchpoints…”

1.3 CodeWarrior 25

• Specify the type of memory access: read, write, read/write. In the Memory window the
memory locations that are monitored are underlined with different colours corresponding to
the 3 access monitoring types.

Figure 1.31 Configure a watchpoint (Read, Write, Read/Write access) from Control Configuration, watchpoints tab

Figure 1.32 Configure a counting watchpoint from Control Configuration, watchpoints tab

The process of creating counting watchpoints is similar to the one used for counting breakpoints:
• Create a watchpoint
• Open the Controlpoints Configuration window, Watchpoint tab
• Update the Counter interval filed, click update.

26 Introducing the Freescale HCS12(X) microcontrollers and the ZK-S12-B starter kit - 1

1.3.4 The Demo Project

The Starter Kit Demo (Code snippet 1) project provides a quick introduction in programming the
S12 MCU. The demo project configures the analogue-to-digital converter module to capture and
convert an input signal generated by the use of the PAD00 potentiometer located in the Inputs section
of the development board. The conversion result is then displayed in binary format on the LEDs from
the Outputs section.

Figure 1.33 ZK-S12-B Input/Output sections

All module configurations are made in the PeriphInit function. Additionally to the configurations
needed for Port B (connected to the LEDs) and for the ATD module, this function also configures ports
P and T corresponding to the push-buttons and DIP switches from the Input section of the board.

Port B pins[7..0] are configured as output and are connected to the outputs section LEDs (Figure
1.33). Port P pins [3..0] are configured as inputs (pull-up enabled) and are connected to 4 four push-
buttons (Inputs section). Port T pins [7..0] are configured as inputs (pull-down enabled) and are
connected to 8 DIP-switches (Inputs section).

PAD00 (AN00) is configured as analog input channel for the ADC convertor (8 bit resolution,
continuous conversion sequence mode). PAD00 is connected to the potentiometer in the inputs
section.

EXERCISE 1.1 Open the Demo project corresponding to the microcontroller on your board. Depending
on the microcontroller type, the project will include the corresponding header file which contains
register definitions. Code snippet 1 shows the main.c file for the S12C128 microcontroller. For other
targets, the difference will be in the included header (#include "mc9s12c128.h" will be replaced as
necessary) and the pragma defining the employed microcontroller derivative. Open the main.c file and
look over the configurations made to the different registers as indicated by the comments that sit
beside them.

EXERCISE 1.2 Compile the project and download the binaries on the microcontroller using the
debugger. Set a breakpoint at the beginning of the main function and run the program step by step
looking at how the microcontroller registers change upon each step. Also check the assembler code
generated for the corresponding C instructions in the Assembly window. How many assembler
instructions are executed for each C instruction? Try to explain why for several assembler instructions
are executed for a line of C code.

1.3 CodeWarrior 27

Code snippet 1.1 Demo Project, main.c file

EXERCISE 1.3 Make a copy of the Demo project and adapt it to turn on LEDs in a progress-bar manner,
i.e. each LED is turned on when a voltage threshold is reached and stays on until the voltage drops
under that threshold. Calculate intermediary thresholds knowing that the threshold for the first LED
(PB0) is 0V and the threshold for the last LED (PB7) is 4.375V given a [0, 5]V input voltage range.

#include <hidef.h>
#include "mc9s12c128.h"
#pragma LINK_INFO DERIVATIVE "mc9s12c128"

// Peripheral Initialization

void PeriphInit(void)
{
 // Configures PB[7..0] as output
 PORTB = 0x00;
 DDRB = 0xFF;

 // Configures PP[7..0] port as input and enables pull-ups on PP[3..0] port
 PTP = 0x00;
 DDRP = 0x00; // set Port P as input
 PERP = 0x0F; // PERP (Port P Pull Device Enable Register) – Enable PP[3..0]
 PPSP = 0x00; // PPSP (Port P Polarity Select Register), 0 = pull-up

 // Configures PT[7..0] port as input and enables pull-downs on PT[7..0] port
 PTT = 0x00;
 DDRT = 0x00; // set Port T as input
 PERT = 0xFF; // Port P Pull Device Enable for PT[7..0]
 PPST = 0xFF; //PPSP (Port P Polarity Select Register), 1 = pull-down

 // Configures the ATD peripheral
 // (1 conversions per sequence, 8 bit resolution, continuous conversion)
 ATDCTL3 = 0x08; // 1 conversions per sequence
 ATDCTL4 = 0x82; // 8 bit resolution
 ATDCTL2 = 0x80; // Normal ATD functionality
 ATDCTL5 = 0x30; // analog input channel configured as AN00 (PAD00)

 EnableInterrupts;
}

// Entry point

void main(void)
{
 PeriphInit();

 for(;;)
 {
 // Reads the ADC channels
 while(!(ATDSTAT0 & 0x80)) // Check the Sequence Complete Flag (SCF) from Bit 7 from ATDSTAT0 reg
 ; // when SCF is set to 1 => conversion is completed

 PORTB = ATDDR0H;

 // Resets SCF flag
 ATDSTAT0 = 0x80;
 }
}

 S12 I/O PORTS

All microcontrollers are equipped with a set of I/O pins which are used to assure the
communication with peripherals. To simplify usage and configuration these pins are usually organised
in groups of 8-bit (or 8-bit multiples, e.g.: 16, 32) named ports. Besides general purpose input/output
functionalities ports may have additional dedicated functions (e.g.: ADC input, PWM output, serial LIN
or CAN communication).

In S12 microcontrollers the interface between I/O ports and the peripheral modules is handled by
the Port Integration Module (PIM). The available ports will vary depending on the S12 family member.
Table 2.1 shows the available ports for each of the microcontrollers found in the ZK-S12 development
kit.

MCU
Port

A B C D E H J K M S P T AD0/AD AD1
S12C � � - - � - � - � � � � � -
S12D � � - - � � � � � � � � � �

S12XD � � � � � � � � � � � � � �
Table 2.1 Port availability depending on microcontroller

The port availability can also vary depending on the chip packaging. Packages with a larger amount
of pins will have more ports available. All port pins can act as general purpose input/output and some
can act as special inputs or outputs for a certain module. For compatibility reasons combination of
port pins and special module functionality available in lower pin count packages are the same in
packages with a larger pin count.

Figure 2.1 S12DJ256 80-pin QFP pinout, from [4]

2.1 General I/O interfacing 29

 To get pin locations check the data sheet for the pinout of your package configuration. For
example, the ZK-S12-B development board uses 80-pin QFP chips so this is the packaging to be
checked for the pin assignments. Figure 2.1 shows the pinout of an S12DJ256 chip in the 80-pin QFP
configuration.

A set of registers is available for configuring each port. Some of these registers are common to all
ports. Each bit in a port control register affects a corresponding pin, i.e. for a register controlling port
B, bit n sets up pin n of the same port. In what follows, where x is used in naming a register it represents
a placeholder for the port name.

2.1 GENERAL I/O INTERFACING

Circuit electrical characteristics of the I/O pins mush be considered when interfacing the
microcontroller to other electrical components. The electrical characteristics of each circuit are
presented in their corresponding datasheets.

Three main characteristics should be considered when compatibility is assessed: voltage level,
current drive and timing:

• Voltage level compatibility issues come from the fact that various integrate circuit
technologies use different voltage levels. Voltage level characteristics are presented for each
circuit as high and low values for the input and output voltages. For a circuit X to be capable
of driving circuit Y it is necessary for the output high voltage of circuit X to be higher than input
high level of Y and for the output low voltage of X to be lower than the input low voltage of
circuit Y;

• Current drive compatibility issues arise from the inability of a microcontroller to supply or to
sink the current needed in interfacing with another circuit. When connecting external circuitry
to a microcontroller I/O pin one must assure that the pin can supply and sink the current
needed by the interfacing circuit and that the total current required by all the connected
devices does not exceed the microcontroller maximum rating;

• Timing compatibility are encountered when an I/O pin does not satisfy the sample and hold
times while driving peripherals that contain latches or flip-flops. In this case the specified
sample and hold times specified for the connected circuit must be considered. If multiple
latches and flip flops are cascaded, the overall time delay must be satisfied.

Note that failing to satisfy the absolute maximum ratings of a microcontroller will lead to

damaging the I/O interfacing circuitry or even the entire microcontroller. Relevant information on the
effects of exceeding ratings given in the electrical specification of S12 microcontrollers is contained in
[9]. This application note shows that S12 microcontrollers can handle electrical characteristics outside
the recommended ratings. Even though negative effects of such operating conditions are not
immediately visible the performance and lifetime of the device can be affected.

The electrical behaviour of I/O pins in relation to pull-up and drive capabilities can be configured
by the user:

• Pull-up resistors protect high impedance input pins from oscillating when unconnected and
for them to take a high or low state. The S12 chips provide internal pull circuitry for port pins.
Core pins (ports A, B, E and K) are fitted with pull-up resistors that can be enabled or disabled.
Other ports (eg. ports T or S) have more complex circuitry that can enable the use of either
pull-up or pull-down circuitry or to disable the use of pull devices;

• Reduced drive can be configured on pins to lower the power consumption and reduce
electromagnetic interference if the load connected on the pin permits it. The reduced drive
strength is 1/3 of the full drive strength. On S12 the reduced drive mode can be configured on
a per-port manner for the core ports (A, B, E and K) and in a per-pin manner for other ports.

30 S12 I/O ports - 2

2.2 PORTS A, B, C AND D

Ports A, B, C and D along with ports E and K are part of the Multiplexed External Bus Interface
(MEBI) sub-block of the HCS12(X) core [8]. Ports C and D are part of the HCS12X core and are available
only for S12X sub-family members. Besides their general purpose I/O functionality, ports A and B can
be used for time-multiplexed addresses or data. On S12X microcontrollers ports A and B are used only
for addressing while C and D are used for data I/O. To use these ports, or any other port, for general
purpose I/O one must select if the port should be used as an output or as an input. This is done by
using the data direction register (DDRx).

Data direction register (DDRx) – This register is used to set up a pin as an input, by writing ‘0’ to the
corresponding bit, or as an output, by setting the bit to ‘1’.

The port data register (PTx) should be used for reading from or writing to the port.

I/O register (PTx) – This register holds the port value if the port is used as a general input/output port.
Writing to this register when the port direction is set to output changes the output values on the
corresponding pins while writing when the direction is set to input has no effect.
Reading from this register when the port direction is set as an input returns the values of the pins.
When the port direction is configured as an output reading this register gives the register content.

EXAMPLE 2.1 Write the C code needed to configure all port B pins for output and set ‘1’ only on even
pins.
Solution: To set the data direction we need to set the DDRB register for output usage. This means all
bits have to be set to ‘1’. Next, to output the required value we need to write a ‘1’ only for the even
bits from the PTB register. This means the binary value that must be written in the PTB register is
“10101010” which give 0xAA when converted in hex. The following code snippet presents the solution:

When using the pull-up registers for the pins of the core ports, the pull-up control register (PUCR)
should be configured. Pull-ups are assigned per port and will apply to any pin configured as an input
in the corresponding port. Setting PUPxE to ‘1’ will enable pull-up resistors on port x pins.

PUCR

7 6 5 4 3 2 1 0
PUPKE - - PUPEE - - PUPBE PUPAE

The reduced drive register (RDRIV) is used to select reduced drive for the pins associated to core

ports. This action results in reduced power consumption and reduced RFI (radio-frequency
interference) at the cost of a slight increase in transition time. Set a ‘1’ in the corresponding RDPx port
to activate reduced drive for associated ports according to the register illustration below.

RDRIV

7 6 5 4 3 2 1 0
RDPK - - RDPE - - RDPB RDPA

DDRB = 0xFF; // set port direction to output
PTB = 0xAA; // set ‘1’ to even pins and ‘0’ to odd pins

2.3 Port E 31

2.3 PORT E

Pins on port E can be used for controlling the external bus and as interrupt inputs. When not used
for one of these functionalities port E pins can be used as general purpose I/O pins excepting PTE bits
[1:0] which can only be used as inputs. For setting up general purpose I/O functionality, direction and
data registers presented for ports A, B, C and D are also available for port E. To assign functions to the
port pins when in the expanded mode the port E assignment register (PEAR) should be used.

PEAR

7 6 5 4 3 2 1 0
NOACCE - PIPOE NECLK LSTRE - RDWE -

• NOACCE (No Access output enable) – set ‘0’ to this bit to use PTE7 as general purpose I/O pin.

Otherwise, PTE7 is an output and will indicate if the cycle is a CPU free cycle.
• PIPOE (Pipe signal Output Enable) – a ‘0’ set to this bit will configure PTE [6:5] as general

purpose I/O. Writing ‘1’ to this bit sets PTE [6:5] as outputs which indicate the state of the
instruction queue.

• NECLK (No external E-clock) – write ‘0’ to this bit to set PTE4 as the input of the external E-
clock. When set to ‘1’ PE4 is a general purpose I/O pin.

• LSTRE (Low strobe (LSTRB) enable) – Write ‘0’ for using PTE3 as a general purpose I/O pin or
‘1’ to have PTE3 as the LSTRB bus-control output, when the HCS12 is not in single-chip or
normal expanded narrow modes.

• RDWE (Read/Write Enable) – for using PTE2 as a general purpose I/O pin write ‘0’ to this bit,
otherwise PTE2 is configured as the R/W pin. In single-chip modes, RDWE has no effect and
PTE2 is always a general purpose I/O pin. R/W is used for external writes.

The MODE register can be used to select between several chip operation modes. In addition it also

provides options like the visibility of internal operations on the external bus and Port E and K
emulation.

MODE

7 6 5 4 3 2 1 0
MODC MODB MODA - IVIS - EMK EME

• MODC, MODB, MODA – mode select bits. Set these bits according to the Table 2.2 to

configure various operation modes.

MODC MODB MODA Mode

0 0 0 Special single chip

0 0 1 Emulation narrow

0 1 0 Special test

0 1 1 Emulation wide

1 0 0 Normal single chip

1 0 1 Normal expanded narrow

1 1 0 Special peripheral

1 1 1 Normal expanded wide
Table 2.2 Selecting chip operation modes

• IVIS (Internal Visibility) – ‘0’ configures no visibility of internal bus operations on external bus,
while ‘1’ makes internal bus operations visible on external bus.

32 S12 I/O ports - 2

• EMK (Emulate Port K) – Set this bit to ‘0’ to make PTK and DDRK present in the memory map
and port K usable in general I/O. When setting it to ‘1’ while in expanded mode, PTK and DDRK
will be removed from the memory map.

• EME (Emulate Port E) – Set this bit to ‘0’ to make PTE and DDRE present in the memory map
and Port E usable for general I/O. When setting it to ‘1’ while in expanded mode or special
peripheral mode, PTE and DDRE will be removed from memory map, which allows the user to
emulate the function of these registers externalIy.

External bus interface control register (EBICTL) – Only bit 0 of this register can be set and it controls
the stretching of the external E-clock. Clock stretching can be achieved by setting this bit to ‘1’.

2.4 PORT K

Port K is available only in the H subfamily. Its pins can be used as general purpose I/O pins by
employing the corresponding data direction register (DDRK) and port data register (PTK). In expanded
mode Port K pins are used as expanded address, emulated chip select and external chip select signals.

2.5 PORT T

Port T also has an associated data direction register (DDRT) and a port data register (PTT). The
input register PTIx is available for all registers which are not part of the S12 core.

Input register (PTIx) – This is a read-only register which returns the value of the pins.

The drive strength of the port T pins can be set RDRT register which is available also for other
ports.

Reduced drive register (RDRx) – Use this register to configure the drive strength of ports. Write ‘0’ to
select full drive strength as output or ‘1’ to configure 1/3 of the full drive strength.

Enabling pull-up and pull-down devices for non-core ports is configured by the use of the PERx
register. To select which kind of device should be activated for each pin use the polarity select register
(PPSx).

Pull device enable register (PERx) – This register turns on or off the usage of pull-up and pull-down
devices. Writing a ‘1’ to the corresponding pin enables pull-up or pull-down device usage, while a ‘0’
disables it.

Polarity select register (PPSx) – This register is used to select between a pull-up and a pull-down being
used for a pin. Write ‘0’ to the corresponding bit to have a pull-up device or a ‘1’ to have a pull-down
device.

EXAMPLE 2.2 Give the instructions (written in C code) for setting the following characteristics for port
T: reduced drive strength and pull-up device connected for all port pins.
Solution: Setting reduced port drive strength is straightforward and requires writing ‘1’ to all bits of
the RDRT register. To set up the pull-up device, this must first be enabled in the PERT register and then
the polarity set accordingly in the PPST register. The following code sequence satisfies the
requirements:

RDRT = 0xFF; // set port T drive strength to 1/3 of full strength
PERT = 0xFF; // enable pull-up or pull-down devices on all pins
PPST = 0x00; // select pull-up device

2.6 Port S 33

In addition to general purpose I/O functionality, port T pins are associated to the Timer-counter
unit and can be used for input capture or output compare action pins. Details on this functionality are
presented in Chapter 6 which is dedicated to the timer-counter unit.

For the S12C sub-family members port T pins are also associated to the pulse width modulation
(PWM) unit. To select whether pin functionality is to be controlled by the timer or by the PWM the
port T module routing register (MODRR) must be used.

MODDR

7 6 5 4 3 2 1 0
- - - MODRR4 MODRR3 MODRR2 MODRR1 MODRR0

• MODDRx (Module Routing) – If set to ‘1’ corresponding pin is connected to the PWM module.

Otherwise it will be connected to the timer module.

2.6 PORT S

Port S pins can be used as serial interface signals for SCI or SPI communication. When used for
general purpose I/O port S makes use of registers associated to port T: PTS, DDRS, PTIS, RDRS, PERS
and PPSS. In addition, port S has a Wired-OR Mode register (WOMS).

Wired-Or Mode Port x Register (WOMx) – Set a bit to ‘1’ to make output buffers operate as open-
drain outputs for the corresponding pin. When setting to ‘0’ output buffers behave as push-pull
outputs.

2.7 PORT M

Besides having the general purpose I/O functionality supported by the registers which are also
contained in port S (DDRM, PTM, PTIM, RDRM, PERM, PPSM and WOMM), port M also has a module
routing register (MODRR) which defines rerouting of CAN 0, CAN4, SPI0, SPI1, and SPI2. In S12C sub-
family members, which only have one CAN and one SPI channel, MODRR is used for port T pin routing.

MODRR

7 6 5 4 3 2 1 0
- MODRR6 MODRR5 MODRR4 MODRR3 MODRR2 MODRR1 MODRR0

Depending on the required modules, MODRR routing should be configured according to the values

presented in Table 2.3. As pin routing will vary depending on the options available on each individual
S12 family member you should consult the datasheet of the particular chip you are using in your
application.

Module

MODRR Related pins

6 5 4 3 2 1 0
 RXCAN TXCAN

CAN0

- - - - - 0 0 PM0 PM1
- - - - - 0 1 PM21 PM31
- - - - - 1 0 PM42 PM52
- - - - - 1 1 PJ63 PJ73

CAN4

- - - 0 0 - - PJ6 PJ7
- - - 0 1 - - PM44 PM54
- - - 1 0 - - PM65 PM75
- - - 1 1 - - Reserved

34 S12 I/O ports - 2

 MISO MOSI SCK /SS

SPI0
- - 0 - - - - PS4 PS5 PS6 PS7
- - 1 - - - - PM26 PM47 PM57 PM36

SPI1
- 0 - - - - - PP0 PP1 PP2 PP3
- 1 - - - - - PH0 PH1 PH2 PH3

SPI2
0 - - - - - - PP4 PP5 PP7 PP6
1 - - - - - - PH4 PH5 PH6 PH7

Table 2.3 Module pin routing configuration

Notes:
1. Routing to this pin takes effect only if CAN1 is disabled
2. Routing to this pin takes effect only if CAN2 is disabled
3. Routing to this pin is only possible on S12XD family members
4. Routing to this pin takes effect only if CAN2 is disabled; CAN0 is disabled if routed here
5. Routing to this pin takes effect only if CAN3 is disabled
6. Routing to this pin takes effect only if CAN1 is disabled; CAN0 is disabled if routed here
7. Routing to this pin takes effect only if CAN2 is disabled; CAN0 and CAN4 are disabled if routed here

2.8 PORTS H, J AND P

Ports J and P are available on all members of the three sub-families in the ZK-S12-B kit, while port
H is not available on S12C sub-family members. These three ports can be configured using identical
register sets. Basic registers found in previous ports are also used here: PTx, DDRx, PTIx, RDRx, PERx,
PPSx. Two additional registers are available for ports H, J and P: the port interrupt enable register
(PIEx) and the port interrupt flag register (PIFx).

Port interrupt enable register (PIEx) – Configures edge sensitive interrupts on associated port pins.
Write ‘1’ to the corresponding bit to enable interrupts on a certain pin.

Port interrupt flag register (PIFx) – Interrupt flags that are set by an active edge (rising or falling
depending on the PPSx register setting) on the associated input pin. Reading ‘1’ means that an active
edge has occurred on the associated pin. Write ‘1’ to clear the associated flag.

These three ports are also associated to various modules:
• Port H is associated to SPI modules
• Port J is associated to CAN
• Port P pins can be used by the PWM and SPI modules.

2.9 PORTS AD0 AND AD1

Some S12 family members have one 8-channel A/D converter implemented while others have
two. For those that have two A/D modules they are referred to as AD0 and AD1. When a single 8-
channel converter is present it is referred as AD instead of AD0. These ports are used as analogue
inputs to the A/D converters. When A/D conversion is not enabled they can be used as general purpose
I/O ports.

Besides the usual port control registers AD0 and AD1 each have an ATD digital input enable
register.

ATD input enable register (ATDxDIEN) – Configures a pin to be used as a digital input. Set a bit to ‘1’
to configure the corresponding pin as a digital input to PTADx.

EXERCISE 2.1 Display the state of the 8 DIP-switches that are connected to Port T (PT0-PT7) on
corresponding LEDs connected to the Port B pins.

2.9 Ports AD0 and AD1 35

EXERCISE 2.2 Display the state of the four push-buttons that are connected to Port P (PP0-PP3) on the
LEDs. When a Port P push-button is pressed the corresponding Port B LED should be turned ON.
Remark: Pins PP0 - PP3 are configured as pull-up inputs.

 S12 PROGRAMMING MODEL, INSTRUCTION SET AND MEMORY

ADDRESSING

This chapter brings into focus some notions on the low-level programming of the S12
microcontroller. Some motivation may be in order. When developing embedded applications you are
usually required to code in a programming language such as C/C++ at a higher layer (this happens for
the exercises in the other chapters here as well), which is fine because it clearly increases the speed
at which you can code. However, coding at higher levels gives less insights on how the system actually
works and in-depth knowledge is clearly useful when tackling a problem that is transparent to the
higher layer (where you depend mostly on the compiler). Besides learning how things work, there are
also a number of problems that can be more efficiently tackled from the assembly programming level,
e.g., direct hardware manipulation (drivers), reducing code overhead, speed optimizations, etc.

3.1 PROGRAMMING MODEL

By programming model we refer the abstraction of the S12 core. This includes the registry
structure that is discussed below and illustrated in Figure 3.1:

Figure 3.1 S12 core registers

• A and B – two 8 bit, i.e., 1 byte, accumulators which can be used as an extended 16 bit, i.e., 1

word, accumulator referred as D (the term accumulator comes from the fact that such

registers were used to cumulate the results of computer operations, e.g., additions, etc.)

• D a 16-bit, i.e., 1 word, accumulator which results from the concatenation of A and B (see

above) also referred as the double accumulator. Note that you should view A, B and D as your

main working area of the microcontroller.

• X and Y (sometimes referred as IX and IY) two 16 bit index registers used as the name suggests

in indexed addressing modes, usually involved in processing data from lists (stored in memory)

• SP a 16 bit stack pointer which contains the last used memory location from the stack, which

is the top of the stack (this is obviously used to retrieve the information from the stack and

closely resembles the other two index register)

• PC a 16 bit program counter which contains the address of the next instruction to be

processed,

• CCR an 8 bit condition code register (or status register) were each bit can be 0 (reset) or 1

(set) with the following significance:

3.2 Instruction set 37

- S (STOP Mask Bit) - microcontroller ignores the STOP instruction and treats it as

NOP (no operation),

- X (XIRQ Mask Bit) - enables non-maskable external interrupts,

- H (Half-Carry bit) - set when carry from lower to upper nibble occurs during

arithmetic operations (a nibble is 4 bits),

- I (Interrupt Mask Bit) - enables maskable interrupts,

- N (Negative Bit) - set when the results of an arithmetic operation is negative,

- Z (Zero Bit) - set when the result of an arithmetic operation is zero,

- V (Overflow Bit) - set when the results of an arithmetic operation is overflow,

- C (Carry Bit) - set when a carry from the most significant bit occurs after some

arithmetic operation.

Note that register access time is shorter than memory access time. This is why you can speed up
your code if, when possible, registers are used instead of memory stored values.

3.2 INSTRUCTION SET

The instruction set of a microcontroller (or of any CPU in general) comprises all the instructions
that its core can execute. This section is by no means intended to be exhaustive, please refer to
reference manuals [8] and [10] for the complete instruction set. Here we only intend to give an
overview of the instruction set and provide some examples. Summing up over the entire instruction
set would need of course a more extensive presentation (this runs well over 30 pages in Chapter 4 of
[8] so it is not our intention to cover the entire instruction set in detail). In Table 3.1 we give an
overview of the MC9S12 instruction set by comparing it as presented in the [8] with what is included
in this chapter (instructions from the sections written in grey italics from the core guide are not
presented in this book).

Core user guide instruction set [8]
Instruction set as grouped and

presented in these notes

Load and Store Instructions (§4.3.1),
Transfer and Exchange Instructions (§4.3.2),
Move Instructions (§4.3.3)

§3.2.1 Data transfer instructions

Add and Subtract Instructions (§4.3.4),
Add and Subtract Instructions (§4.3.5),
Decrement and Increment Instructions (§4.3.6),

Multiply and Divide Instructions (§4.3.10),

§3.2.2. Arithmetic instructions

Bit Test and Bit Manipulation Instructions (§4.3.11), Shift and
Rotate Instructions (§4.3.12),
Boolean Logic Instructions (§4.3.8),
Clear, Complement, and Negate Instructions (§4.3.9)

§3.2.3 Logic and bit instructions

Branch Instructions (§4.3.17),
Short Branch Instructions (§4.3.17.1),
Long Branch Instructions (§4.3.17.2),
Bit Condition Branch Instructions (§4.3.17.3),

Loop Primitive Instructions (§4.3.17.4)

§3.2.4 Branch instructions

Compare and Test Instructions (§4.3.7) §3.2.5 Comparison instructions
Jump and Subroutine Instructions (§4.3.18),
Interrupt Instructions (§4.3.19),
Index Manipulation Instructions (§4.3.20),

Stacking Instructions (§4.3.21)

§3.2.6 Function call instructions

Load Effective Address Instructions (§4.3.22),

Condition Code Instructions (§4.3.23),
Not addressed.

38 S12 Programming model, instruction set and memory addressing - 3

STOP and WAI Instructions (§4.3.24),

Background Mode and Null Operation Instructions (§4.3.25)

Fuzzy Logic Instructions (§4.3.13),

Maximum and Minimum Instructions (§4.3.14),

Fuzzy Logic Membership Instruction (§4.3.14.1),

Fuzzy Logic Rule Evaluation Instructions (§4.3.14.2),

Fuzzy Logic Averaging Instruction (§4.3.14.3),

Multiply and Accumulate Instruction (§4.3.15),

Table Interpolation Instructions (§4.3.16)

Not addressed.

Table 3.1 Overview of MC9S12 instruction set as presented in the Core User Guide and in this book

How to write assembly code in CodeWarrior?
In order to write code in assembly mode you have two options. The first is to start an assembly

mode project in CodeWarrior. If you are not going to use multiple files in your project starting with
Absolute assembly rather than a Relocatable assembly project is in order. The CodeWarrior new
project interface is pictured in Figure 3.2. The source file generated in this way for the project will
contain only assembly code.

Figure 3.2 Starting a new assembly project for HC(S)12(X) in CodeWarrior

The second option is to insert asm code directly in C source files. For this simply insert the asm{ …
} keyword in your C code and write the instructions within the braces (curved brackets), see Code
snippet 3.1. Note that some areas of the memory are protected, especially when using existing C
examples from the SoftecMicro package, therefore whenever some load/store (or other) instructions
do not work (i.e., memory location is not written with your specified value), the assembly instructions
are not to blame but rather consider that you do not have the permission to perform that operation
(starting a fresh assembly program should help you avoid such issues).

3.2 Instruction set 39

Structure of an assembly line

The structure of an assembly code line is detailed below. Underlined values (the label which
identifies the code line and the comment field which starts with semicolon ;) are optional and the bold
ones (operation code referred as mnemonic or opcode and operand) are mandatory (the operand(s)
can be of course absent for instructions that do not require them):

Label Mnemonic/Opcode Operand(s) ;Comment

There are two special symbols of prime importance which are going to be use in most assembly
lines. Be sure to keep them in mind:

• $ - indicates that the subsequent value is an hexadecimal one (without it, is treated as

decimal)

• # - the number that follows must be treated as data and not as address (without it, data will

be retrieved (stored) from (in) memory).

Some compiler directives are available for usage within assembly code. Note that these are not
S12 instructions but directives for the compiler on which you will frequently rely:

• EQU - gives a value to a symbol (note that equ just defines a constant and does not allocate

memory in contrast to the DB and DC directives next),

• DB (define byte) and DC.[size] (define constant) where size is b (byte), w (word) or l (4 bytes)

is used to allocate storage for variables. A similar directive is DS but this one just allocated

space for a variable without assigning it a value,

• ORG - sets value for the location counter where a piece of code will be, section defines a new

program section.

3.2.1 Data transfer instructions

Load instructions can be used to load values in memory or immediate values into the CPU registers
that were defined in the programming model. The available load instructions are listed in Table 3.2.

LDAA – loads A from memory or immediate value (8 bit)
LDAB – loads B from memory or immediate value (8 bit)
LDD – loads D from memory or immediate value (16 bit)
LDS – loads SP from memory or immediate value (16 bit)
LDX – loads X from memory or immediate value (16 bit)
LDY – loads Y from memory or immediate value (16 bit)

LEAS – loads effective address into SP (16 bit)
LEAX – loads effective address into X (16 bit)
LEAY – loads effective address into Y (16 bit)

Table 3.2 Load instructions

void main(void)
{
 asm {
 LDD #$1234
 STD $feee
 LDAA$feee
 LDAA 12
 LDAA #34
 }

 for (; ;) {
 }
}

Code snippet 3.1 Using assembly instructions inline with C code

40 S12 Programming model, instruction set and memory addressing - 3

In contrast store instructions, as presented in Table 3.3, have the ability to save the value of a CPU
register to memory.

STAA – stores A in memory (8 bit)
STAB – stores B in memory (8 bit)
STD – stores D in memory (16 bit)
STS – stores SP in memory (16 bit)
STX – stores X in memory (16 bit)
STY – stores Y in memory (16 bit)

Table 3.3 Store instructions

Transfer and exchange instructions are used when we need to have CPU registers as both source
and destination of the data transfer. Transfer instructions set the value of the destination register to
the value in the source register without affecting the content of the source. As their name implies,
exchange operations will exchange the content of one register with the content of the other one.

TAB – transfer A to B
TAP – transfer A to CCR
TBA – transfer B to A
TFR – transfer register (any to any of the A, B, CCR,
D, X, Y, or SP)
TPA – transfer CCR to A
TSX – transfer SP to X

TSY – transfer SP to Y
TXS – transfer X to SP
TYS – transfer Y to SP
EXG – exchange registers (any with any of the A, B,
CCR, D, X, Y, or SP)
XGDX – exchange D with X
XGDY – exchange D with Y

Table 3.4 Transfer and exchange instructions

Similarly to the register to register instructions there are also memory to memory move
instructions as shown in Table 3.5.

MOVB - Move byte from memory to memory (8-bit)
MOVW - Move word from memory to memory (16-bit)

Table 3.5 Move instructions

EXERCISE 3.1 Given the following lines of assembly code, specify at the end of each step the values
within the registers A and B both in hex and decimal. Please also use CodeWarrior to check that the
values are stored in memory and the status of the registers is as shown in Figure 3.3 and Figure 3.4.

LDD #$4321
STD $1234
LDAA $1234
LDAA #$12
LDAA #34

 A: ……………..h /…………….. B: ……………..h /……………..
 A: ……………..h /…………….. B: ……………..h /……………..
 A: ……………..h /…………….. B: ……………..h /……………..
 A: ……………..h /…………….. B: ……………..h /……………..
 A: ……………..h /…………….. B: ……………..h /……………..

3.2 Instruction set 41

Figure 3.3 Memory as modified by some of the previous

lines of code

Figure 3.4 Registers as modified by some of the previous

lines of code

3.2.2 Arithmetic instructions

We detail below only the basic arithmetic instructions: addition, subtraction, multiplication and
divisions. Note however, that there are also instructions that can be used for incrementing and
decrementing registers and even memory as well as instructions for Binary Coded Decimals (BCD).

ABA – add A to B
ABX – add B to X
ABY – add B to Y
ADCA – add memory or imm. value and carry to A
ADCB – add memory or imm. value and carry to B
ADDA – add memory or immediate value to A
ADDB – add memory or immediate value to B
ADDD – add memory or immediate value to D

SBA – subtract B from A
SBCA – subtract memory or imm. value and carry
from A
SBCB – subtract memory or imm. value and carry
from B
SUBA – Subtract memory or immediate value from A
SUBB – subtract memory or immediate value from B
SUBD – subtract memory or immediate value from D

Table 3.6 Add and subtract instructions

EMUL - 16 by 16 multiply (unsigned)
EMULS - 16 by 16 multiply (signed)
MUL - 8 by 8 multiply (unsigned) (A)
EDIV - 32 by 16 divide (unsigned)
EDIVS - 32 by 16 divide (signed)
FDIV - 16 by 16 fractional divide (unsigned)
IDIV - 16 by 16 integer divide (unsigned) (D)
IDIVS - 16 by 16 integer divide (signed)

Table 3.7 Multiply and division instructions

EXERCISE 3.2 As you already know, the S12 core has 16 bit register width. Consider that you want to
add the following two integers each of 32 bits: 0xEEFF FFEE and 0xAABB BBAA and consider that they
are stored in memory at locations $E000 and $0004 respectively (when programming this in
CodeWarrior, since the memory is blank on your fresh project, you are requested to place these values
in memory within your own code). Perform their addition on 32-bits (do not forget about the carry)
and put the result starting from memory location $0008 (highest word at the lowest address).
Solution: Below you are given the assembly source code for this addition. The code is commented but
additional explanations are needed, show the values of the registers after each step (you are
encouraged to use the code in CodeWarrior to see how the registers & memory change).

;store 1st integer in memory

42 S12 Programming model, instruction set and memory addressing - 3

LDD #$EEFF A: ……………..h /…………….. B: ……………..h /……………..
STD $E000 A: ……………..h /…………….. B: ……………..h /……………..
LDD #$FFEE A: ……………..h /…………….. B: ……………..h /……………..
STD $E002 A: ……………..h /…………….. B: ……………..h /……………..
;store 2nd integer in memory
LDD #$AABB A: ……………..h /…………….. B: ……………..h /……………..
STD $E004 A: ……………..h /…………….. B: ……………..h /……………..
LDD #$BBAA A: ……………..h /…………….. B: ……………..h /……………..
STD $E006 A: ……………..h /…………….. B: ……………..h /……………..
;retrieve 1st word from 1st integer A: ……………..h /…………….. B: ……………..h /……………..
LDD $E002
;add to it 1st word from 2nd integer A: ……………..h /…………….. B: ……………..h /……………..
ADDD $E006
;store the result in memory A: ……………..h /…………….. B: ……………..h /……………..
STD $E00B
;retrieve 2nd word from 1st integer
LDAB $E001 A: ……………..h /…………….. B: ……………..h /……………..
;add with carry to it the 2nd word from
2nd integer

A: ……………..h /…………….. B: ……………..h /……………..

ADCB $E005
LDAA $E000 A: ……………..h /…………….. B: ……………..h /……………..
ADCA $E004 A: ……………..h /…………….. B: ……………..h /……………..
;store the result in memory
STD $E009 A: ……………..h /…………….. B: ……………..h /……………..
;store the last carry in memory
LDAA #$00 A: ……………..h /…………….. B: ……………..h /……………..
ADCA #$00 A: ……………..h /…………….. B: ……………..h /……………..
STAA $E008

A: ……………..h /…………….. B: ……………..h /……………..

EXERCISE 3.3 Consider the same exercise as previously, but this time implement 32 bit multiplication.

3.2.3 Logic and bit instructions

Below we only detail the basic logic operations: AND, OR and XOR and some bit set, clear and test
instructions. Note that there are also instructions to complement and negate registers or memory.

ANDA - AND A with memory or immediate value
ANDB - AND B with memory or immediate value
ANDCC - AND CCR with immediate value (clears
CCR bits)

EORA - Exclusive OR A with memory or immediate
value
EORB - Exclusive OR B with memory or immediate
value

ORAA - OR A with memory or immediate value
ORAB - OR B with memory or immediate value
ORCC - OR CCR with immediate value (sets CCR bits)

BCLR - Clear bit(s) in memory
BITA - Bit test A
BITB - Bit test B
BSET - Set bits in memory

Table 3.8 Boolean instructions and bit instructions

Shift and rotate instructions are available as well. Remember that the difference between logical
and arithmetic shifts is that in the arithmetic right shifting the bits are filled with the value of the carry
flag C (not with 0). While left shifts behave identical on the value, whether logical or arithmetic, the
flags they set in the CCR may be different in some deployments (they are identical on S12 according

3.2 Instruction set 43

to [8] and [10], but in some implementations arithmetic shifts will trigger overflows, etc., so you should
pay attention on this).

LSL - Logic shift left of value from memory
LSLA - Logic shift left of A
LSLB - Logic shift left of B
LSLD - Logic shift left of D
LSR - Logic shift right of value from memory
LSRA - Logic shift right of A
LSRB - Logic shift right of B
LSRD - Logic shift right of D

ASL - Arithmetic shift left of value from memory
ASLA - Arithmetic shift left of A
ASLB - Arithmetic shift left of B
ASLD - Arithmetic shift left of D
ASR - Arithmetic shift right of value from memory
ASRA - Arithmetic shift right of A
ASRB - Arithmetic shift right of B

Table 3.9 Logic and arithmetic shift instructions

ROL - Rotate left memory
ROLA - Rotate left A
ROLB - Rotate left B
ROR - Rotate right memory
RORA - Rotate right A
RORB - Rotate right B

Table 3.10 Rotate instructions

3.2.4 Branch instructions

Branch instructions (and also jump instructions) can be usually split in two classes: unconditional
(jump is always executed) and conditional (jumps are made only if a specific condition is met). This is
the case for the S12 core which has three unconditional branch instructions BRA, its long version LBRA
and the classical JMP. There are also negated versions of these, i.e., jumps that are never taken, and
are useful for debugging purposes BRN, LBRN. Note that LBRA and JMP can use a larger address space
(16-bit) when compared to BRA (8-bit) but these also require 1 additional clock cycle (are slower), thus
you should always choose whatever is best fitted for your application. Being an 8-bit value, the
parameter for the BRA instruction is an integer in the range [-128, 127]. For conditional branches there
is a higher number of alternatives as pointed out in Table 1.7.

Further, besides the classical classification in unconditional vs. conditional branching, the S12 core
guide [8] makes a distinct classification according to the condition that must be satisfied: i) unary
branches are actions that are always taken (i.e., unconditional branches), ii) simple branches are taken
when a specific bit of the CCR is set or clear, iii) unsigned branches are taken after comparing or testing
unsigned values according to the bit state in the CCD, iv) signed branches are the same as unsigned
branches but this time obviously with respect to signed integers.

Unary Unary

BRA - Branch always 1 = 1
BRN - Branch never 1 = 0

LBRA - Long branch always 1 = 1
LBRN - Long branch never 1 = 0

Simple Simple

BCC - Branch if carry clear C = 0
BCS - Branch if carry set C = 1
BEQ - Branch if equal Z = 1
BMI - Branch if minus N = 1
BNE - Branch if not equal Z = 0
BPL - Branch if plus N = 0
BVC - Branch if overflow clear V = 0
BVS - Branch if overflow set V = 1

LBCC - Long branch if carry clear C = 0
LBCS - Long branch if carry set C = 1
LBEQ - Long branch if equal Z = 1
LBMI - Long branch if minus N = 1
LBNE - Long branch if not equal Z = 0
LBPL - Long branch if plus N = 0
LBVC - Long branch if overflow clear V = 0
LBVS - Long branch if overflow set V = 1

44 S12 Programming model, instruction set and memory addressing - 3

Unsigned Unsigned

BHI - Branch if higher (R > M)
BHS - Branch if higher or same (R ³M)
BLO Branch if lower (R <M)
BLS - Branch if lower or same (R £ M)

LBHI - Long branch if higher (R > M)
LBHS - Long branch if higher or same (R ³M)
LBLO - Long branch if lower (R <M)
LBLS - Long branch if lower or same (R £ M)

Signed Signed

BGE - Branch if greater than or equal (R ³ M)
BGT - Branch if greater than (R >M)
BLE - Branch if less than or equal (R £ M)
BLT - Branch if less than (R < M)

LBGE - Long branch if greater than or equal (R ³ M)
LBGT - Long branch if greater than (R >M)
LBLE - Long branch if less than or equal (R £ M)
LBLT - Long branch if less than (R < M) N Å V = 1

Table 3.11 Branching instructions

EXERCISE 3.4 Explain the effect of the following instructions: BRA $FE and BNE $FF.

At the end of next section which introduces comparison instructions, you will have the opportunity
to use branches in a more practical exercise.

3.2.5 Comparison instructions

Compare and test instructions are used to set conditions for branch instructions. They consist of
a subtraction performed on the pair of parameters without storing the result but with affecting the
condition codes in the CCR.

CBA - Compare A to B
CMPA - Compare A to memory or immediate value
CMPB - Compare B to memory or immediate value
CPD - Compare D to memory or immediate value
CPS - Compare SP to memory or immediate value
CPX - Compare X to memory or immediate value
CPY - Compare Y to memory or immediate value

TST - Test memory for zero or minus
TSTA -Test A for zero or minus
TSTB - Test B for zero or minus

Table 3.12 Compare and test instructions

EXAMPLE 3.1 Write an ASM program which sorts a vector stored in memory. For simplicity consider
the vector has a fixed size, for example 5 bytes.
Solution: For further simplicity we will use the basic bubble sort mechanism (this is good to serve as
an example, but not really encouraged for practice due to lack of performance). To store data in
memory we use the FCB (Form Constant Byte) directive which reserves a block of memory and sets it
to predefined values and the DC.W directive which can be used to define an array of words. There are
also variations of the two directives: FDB forms double byte (word), FCC forms constant character
(ASCII enclosed in “”) and DC.B which forms an array of bytes.

vector FCB 3, 2, 5, 7, 1
switch FCB 0
counter FCB 0
addr1 DS.W 1
addr2 DS.W 1
len FCB 5

loop_switch:
 LDAA #0 ;set switch to 0
 STAA switch
 LDAA #4 ;set len to 4 (i.e., 5 elements from 0..4)
 STAA len

3.2 Instruction set 45

 LDX #0 ;set index register X and Y to walk through consecutive elements
 LDY #1
loop_vector:
 LDAA vector, X ;load the i-th value in A
 LDAB vector, Y ;load the i-th+1 value in B
 CBA ;compare A to B
 BLS ok ;branch without exchanging if lower or same
xchg: ;it did not branch so need to exchange A to B
 STAA vector, Y
 STAB vector, X
 LDAA #1 ;also set switch to 1 as the array is not sorted
 STAA switch
ok:
 INX ;increment your index registers
 INY
 DEC len ;decrement the len loop variable

 TST len ;test if you reached the end of the array
 BNE loop_vector ;if len is not equal to 0 then loop

 TST switch
 BNE loop_switch ;if switch is 0 if not array is not sorted so loop again

EXERCISE 3.5 Write a sequence of asm code that can add 2 integers that are coded on n bytes (consider
that n is fixed).

3.2.6 Function call instructions

The easiest way to access a subroutine is with the BSR instruction that will branch the program to
the subroutine label. Note that the subroutine must end with instruction RTS. The return address
from the subroutine is automatically saved and reloaded from the stack. The CALL instruction can also
be used but note that this also allocates a new memory page for the subroutine.

BSR - Branch to subroutine (SP)
CALL - Call subroutine in expanded memory
JMP - Jump Subroutine address
JSR - Jump to subroutine
RTS - Return from subroutine
RTC - Return from call

RTI - Return from interrupt
SWI - Software interrupt
TRAP

Table 3.13 Jump and subroutine instructions

EXAMPLE 3.2 Modify the code from the previous exercise to use a subroutine that exchanges two
elements when they are unsorted. Use the stack to push all related parameters: values of the elements
and their index, as well as the effective address of the vector.
Solution: Note that all parameters passed into the stack: this includes, the values, their address (of
course you could simplify and pass only their address, this is just for illustration). Note the order in
which they are pushed and then extracted and how the return address is saved when entering the
subroutine. Also note that we are improving the previous code by: using CLR to clear switch and BSET
to set the switch, use LEAX to load effective address. It may be a good idea to follow the stack with
pen and paper (and the CodeWarrior IDE) at each step.

vector FCB 3, 2, 5, 7, 1
switch DC.B 0
counter DC.B 0
addr1 DS.W 1
addr2 DS.W 1
len DC.B 4

ret_addr DS.W 1

46 S12 Programming model, instruction set and memory addressing - 3

store_addr DS.W 1

loop_switch:
 CLR switch ;set switch to 0, this time ellegantly with clear memory instruction

 MOVB len, counter ;set len to 4 (i.e., 5 elements from 0..4)

 LDX #0 ;set index register X and Y to walk through consecutive elements
 LDY #1
loop_vector:
 LDAA vector, X ;load the i-th value in A
 LDAB vector, Y ;load the i-th+1 value in B
 CBA ;compare A to B

 BLS ok ;branch without exchanging if lower or same

 PSHX ;save index registers, you will use them to pass the effective address
 PSHY

 PSHA ;put data A, B, X, Y in the stack
 PSHB

 LEAX vector, X ;put the address of the sorted vector in stack
 PSHX
 LEAY vector, Y
 PSHY

 BSR XCHG ;branch to exchange subroutine
 BSET switch, $01 ;and also set switch to 1 as the array is not sorted, this time with a mask

 PULY ;retrieve index registers
 PULX

ok:
 INX ;increment your index registers
 INY
 DEC counter ;decrement the len loop variable

 TST counter ;test if you reached the end of the array
 BNE loop_vector ;if len is not equal to 0 then loop

 TST switch
 BNE loop_switch ;if switch is 0 if not array is not sorted so loop again

XCHG ;exchange subroutine
 PULD ;retrieve return address in D
 STD ret_addr ;store D in memory

 ;PULD
 ;STD store_addr ;retrieve vector address

 PULY ;pull Y, X, B, A - note the reverse order
 PULX
 PULB
 PULA

 STAA Y
 STAB X

 LDD ret_addr ;retrive return address from memory
 PSHD ;push D in stack

 RTS

3.3 Memory addressing modes 47

3.3 MEMORY ADDRESSING MODES

Addressing modes are of prime importance for coding in assembly language, they refer to how
the effective address of the operand is formed. The following addressing modes are present on S12:

• Inherent addressing mode. This is the case in which there is no address and happens for
instructions that have no operand. For example: INX, CBA, etc.

• Immediate addressing mode. This is the case when the data is present right after the instruction
and the data is always marked by the # sign. For example: LDAA #10, LDAB #$AA, etc.

• Direct addressing mode. In this case the address follows right after the instruction and the
address is specified by a single byte the higher one of the 16-bit address is always 0. That is, the
address is in the range $0000 to $00FF. For example LDAA $0F.

• Extended addressing mode. Here the address follows after the instruction but this time is in
the full 16-bit range, e.g., LDAA $1000, etc.

• Relative addressing mode. Is an addressing mode exclusively for branching instructions, that is,
you will only encounter it with branching instructions. In this case the address is computed by
adding to the program counter the value after the branch instruction. For example BEQ $0A will
add $0A to the PC (note that when hitting the branch instruction, the PC is already
incremented).

• Indexed addressing mode. As the name suggests this mode uses the index registers (IX, IY but
also SP or PC) and is usually present when working with lists of elements. Here the instruction
set is quite generous allowing 7 types of indexed addressing modes. These modes allow adding
an increment/decrement of 3, 5, 9 or 16 bits. In the case of 3 bits increment/decrement this can
be added/subtracted before or after, i.e., post/pre-incrementation and post/pre-
decrementation. For example: LDAA $2, +X will add $2 to X and put the value from memory
address [2+X] in A. On the contrary, LDAA $2, X- will place the content from location [X] in A and
only afterwards subtract (or adds if you use +) 2 from X. Since we are working on 3 bits, the
value that can be added is from 1 to 8. To sum up, the 7 indexed addressing modes allowed by
S12 are: i) indexed with constant 5 bit offset, ii) auto-increment/auto-decrement (on 3 bits as
shown above), iii) 9-bit constant offset, iv) 16-bit constant offset, v) accumulator offset (in which
values of A, B or D are added to the index), vi) 16-bit constant offset indexed-indirect and vii)
accumulator D offset indexed-indirect. For vi) and vii) the indexed-indirect addressing means
that the value in the index register plus the offset (constant or in D) point to the effective
address.

EXERCISE 3.6 Modify the code from the previous exercise by using indexed addressing modes with

predefined increments on the array.

EXERCISE 3.7 Explain in your own words the programming model of S12 and summarize the 7 types

of instructions of S12.

EXERCISE 3.8 Write a program using assembly instructions that finds the minimum (or maximum)

value in some predefined memory array.

EXERCISE 3.9 Starting from one of the previously solved exercises implement addition and

multiplication for arbitrary n byte (or word) integers that will be treated as vectors stored in memory

(we consider n to be a fixed constant in your code).

EXERCISE 3.10 Write a subroutine that returns the greatest common divisor of two integers, based on

the well-known Euclidean rule: if a=b return a, if (a<b) gcd = gcd (a, b-a) else gcd =gcd (a-b, b).

 THE INTERRUPT SYSTEM, CLOCK AND RESET GENERATION

This chapter begins by presenting fundamental concepts about interrupts – an efficient and
indispensable mechanism for building reliable embedded applications – and specific features of the
S12 Interrupt system. The second part of this chapter is dedicated to clock generation with the S12
Clock and Reset Generator (CRG) block.

4.1 GENERAL CONCEPTS OF INTERRUPTS

Interrupts are events that force the CPU to leave the normal execution path and perform specific
activities related to the event. An interrupt can be generated externally by external circuitry or
internally by the hardware associated to microcontroller subsystems and software exceptions.
Interrupts have various applications:

• triggering time-critical operations
• executing periodic tasks
• performing reliable I/O operations
• handling of software errors.

In some cases it may be needed that certain interrupts are prevented from affecting the normal

execution path. Most microcontrollers provide solutions for such situations by introducing maskable
interrupts, i.e. interrupts that can be ignored by setting an enable flag. If no interrupts should affect
program execution, the entire interrupt system can also be disabled by setting the appropriate value
in the interrupt enable flag.

When an interrupt is generated a set of actions may need to be taken. For this the CPU provides
service to the interrupt by executing a code sequence called an interrupt service routine (ISR). The
start addresses of the ISRs associated to each interrupt are stored in interrupt vectors. Interrupt
vectors are stored in a table called interrupt vector table. When the interrupt is generated the context
data of the current execution path is first pushed onto the stack. Next, after identifying the start
address of the ISR code associated with the issued interrupt, a jump is made to this address. After the
provided ISR is executed, the context will be restored and the previous execution path can be
resumed.

If several interrupts sources are available then it is possible that two or more interrupts are issued
simultaneously. To control the order in which the interrupts are serviced the microcontroller should
use a prioritization mechanism. Most microcontrollers, including the S12 can prioritize interrupts in
hardware but where this is not possible software implementations can be made to handle this task.

4.2 INTERRUPTS ON THE S12 PLATFORM

4.2.1 The S12 Interrupt block

The block diagram of the S12 interrupt block is shown in Figure 4.1. The S12 platform provides all
basic interrupt features like interrupt masking and prioritisation.

There are two categories of interrupts in the S12 interrupt system:
• maskable interrupts which include the IRQ pin interrupt and all peripheral function interrupts.

Different members of the S12 family implement various peripheral functions, therefore, the

number of maskable interrupts available on each member is different.

• nonmaskable interrupts which include the XIRQ pin interrupt, the swi instruction interrupt,

and the unimplemented opcode trap.

4.2 Interrupts on the S12 platform 49

Figure 4.1 S12 Real-Time Interrupt System Block Diagram, according to [11]

The I flag of the CCR register is the global mask of all maskable interrupts. Setting this flag to ‘1’
disables all maskable interrupts. Additionaly, maskable interrupts have local enable bits that can be
used for individual masking. These can be found within the register sets controlling each particular
block. For example, if we need to use the interrupts associated to the Port P pins the Port P Interrupt
Enable Register (PIEP) bits have to be set to the appropriate value as shown in section 2.8.

The global mask flags in the CCR have no effect when one of the nonmaskable interrupts are
issued. A nonmaskable interrupt can be generated by using the swi assembly instruction. This is
commonly used for debugging purposes, eg. for implementing breakpoints. Each assembly instruction
is encoded through an opcode. When an undefined opcode is assigned for execution to the S12 CPU a
nonmaskable interrupt called unimplemented opcode trap is generated.

Each interrupt source on the S12 platform has an assigned priority and position in the interrupt
vector table. The priorities and vector addresses of all S12 interrupt sources are listed below in Table
4.1 along with the corresponding register that holds the local enable bit. Detailed descriptions of the
registers used to enable interrupts for S12 modules presented in this table are included in
corresponding chapters as follows: PWM-related interrupts in chapter 5, ATD-related interrupts in
chapter 6 and Enhance Capture Timer related interrupts in chapter 7.

Vector

Address
Interrupt Source

CCR

Mask
Local Enable

HPRIO

Value to

Elevate

$FFFE Reset None None -
$FFFC Clock Monitor fail reset None COPCTL (CME, FCME) -
$FFFA COP failure reset None COP rate select -
$FFF8 Unimplemented instruction trap None None -
$FFF6 SWI None None -
$FFF4 XIRQ / BF High Priority Sync Pulse X-Bit None / BFRIER (XSYNIE) -
$FFF2 IRQ I-Bit INTCR (IRQEN) $F2
$FFF0 Real Time Interrupt I-Bit CRGINT (RTIE) $F0
$FFEE Enhanced Capture Timer channel 0 I-Bit TIE (C0I) $EE
$FFEC Enhanced Capture Timer channel 1 I-Bit TIE (C1I) $EC

50 The interrupt system, clock and reset generation - 4

$FFEA Enhanced Capture Timer channel 2 I-Bit TIE (C2I) $EA
$FFE8 Enhanced Capture Timer channel 3 I-Bit TIE (C3I) $E8
$FFE6 Enhanced Capture Timer channel 4 I-Bit TIE (C4I) $E6
$FFE4 Enhanced Capture Timer channel 5 I-Bit TIE (C5I) $E4
$FFE2 Enhanced Capture Timer channel 6 I-Bit TIE (C6I) $E2
$FFE0 Enhanced Capture Timer channel 7 I-Bit TIE (C7I) $E0
$FFDE Enhanced Capture Timer overflow I-Bit TSCR2 (TOF) $DE
$FFDC Pulse accumulator A overflow I-Bit PACTL (PAOVI) $DC
$FFDA Pulse accumulator input edge I-Bit PACTL (PAI) $DA
$FFD8 SPI0 I-Bit SPICR1 (SPIE, SPTIE) $D8
$FFD6 SCI0 I-Bit SCICR2 (TIE, TCIE, RIE, ILIE) $D6
$FFD4 SCI1 I-Bit SCICR2 (TIE, TCIE, RIE, ILIE) $D4
$FFD2 ATD0 I-Bit ATDCTL2 (ASCIE) $D2
$FFD0 ATD1 I-Bit ATDCTL2 (ASCIE) $D0
$FFCE Port J I-Bit PIEJ (PIEJ7, PIEJ6, PIEJ1, PIEJ0) $CE
$FFCC Port H I-Bit PIEH (PIEH7-0) $CC
$FFCA Modulus Down Counter underflow I-Bit MCCTL (MCZI) $CA
$FFC8 Pulse Accumulator B Overflow I-Bit PBCTL (PBOVI) $C8
$FFC6 CRG PLL lock I-Bit PLLCR (LOCKIE) $C6
$FFC4 CRG Self Clock Mode I-Bit PLLCR (SCMIE) $C4
$FFC2 BDLC I-Bit DLCBCR1 (IE) $C2
$FFC0 IIC Bus I-Bit IBCR (IBIE) $C0
$FFBE SPI1 I-Bit SPICR1 (SPIE, SPTIE) $BE
$FFBA EEPROM I-Bit ECNFG (CCIE, CBEIE) $BA
$FFB8 FLASH I-Bit FCNFG (CCIE, CBEIE) $B8
$FFB6 CAN0 wake-up I-Bit CANRIER (WUPIE) $B6
$FFB4 CAN0 errors I-Bit CANRIER (CSCIE, OVRIE) $B4
$FFB2 CAN0 receive I-Bit CANRIER (RXFIE) $B2
$FFB0 CAN0 transmit I-Bit CANTIER (TXEIE[2:0]) $B0
$FFAE CAN1 wake-up I-Bit CANRIER (WUPIE) $AE
$FFAC CAN1 errors I-Bit CANRIER (CSCIE, OVRIE) $AC
$FFAA CAN1 receive I-Bit CANRIER (RXFIE) $AA
$FFA8 CAN1 transmit I-Bit CANTIER (TXEIE[2:0]) $A8
$FFA6 BF Receive FIFO not empty I-Bit BFRIER (RCVFIE) $A6
$FFA4 BF receive I-Bit BFBUFCTL[15:0] (IENA) $A4
$FFA2 BF Synchronization I-Bit BFRIER (SYNAIE, SYNNIE) $A2
$FFA0 BF general I-Bit BFBUFCTL[15:0] (IENA),

BFGIER (OVRNIE, ERRIE,
SYNEIE, SYNLIE, ILLPIE,
LOCKIE, WAKEIE)
BFRIER (SLMMIE)

$A0

$FF96 CAN4 wake-up I-Bit CANRIER (WUPIE) $96
$FF94 CAN4 errors I-Bit CANRIER (CSCIE, OVRIE) $94
$FF92 CAN4 receive I-Bit CANRIER (RXFIE) $92
$FF90 CAN4 transmit I-Bit CANTIER (TXEIE[2:0]) $90
$FF8E Port P Interrupt I-Bit PIEP (PIEP7-0) $8E
$FF8C PWM Emergency Shutdown I-Bit PWMSDN (PWMIE) $8C

Table 4.1 Interrupt vector map

EXAMPLE 4.1 In an application where Port P interrupt and ATD0 interrupt were both enabled which
will be first served if they both are generated at the same time?
Solution: To answer this question we have to take a look at the interrupt priorities in Table 4.1. The
priority for Port P interrupts is 0x8E while the priority for the ATD0 interrupt is 0xD2. Hence, the ATD0
interrupt service routine will be executed first.

4.2 Interrupts on the S12 platform 51

One of the interrupts in the group of maskable interrupts can be promoted to the highest priority
using the HPRIO (Highest Priority I Interrupt) register. The priorities of the other sources remain
unchanged. To promote an interrupt, write the least significant byte of the associated interrupt vector
address to the HPRIO register. For example, to raise the Port P interrupt to the highest priority, write
the value of $8E to the HPRIO register.

HPRIO

7 6 5 4 3 2 1 0
PSEL7 PSEL6 PSEL5 PSEL4 PSEL3 PSEL2 PSEL1 -

4.2.2 Using S12 interrupts and CodeWarrior

To define an interrupt service routine in CodeWarrior the interrupt keyword must be used before
the function name. The ISR must be located in the non-banked segment of the S12 memory so the
CODE_SEG __NEAR_SEG NON_BANKED pragma directive must be used for signalling this. If the code
following the definition of the ISR should be located in the default segment of the memory then the
CODE_SEG DEFAULT pragma should be used. The code snippet below illustrates the template for
defining an ISR in CodeWarrior. Here, my_ISR is the name of the routine.

Code snippet 4.1 Declaration of interrupt service routine

When the interrupt is issued a corresponding flag is set to signal the event. This flag has to be
reset after executing the ISR. Otherwise the interrupt will stay active and the ISR will be called
repeatedly until the flag is reset.

After writing the ISR, the interrupt vector has to be set up. We do this by linking the created
interrupt service routine to the corresponding position of the interrupt vector table. The linker file will
have the *.prm extension and the same name as the debug configuration. When your debug
configuration is SofTec the linker file is called SofTec_linker.prm and can be found under the Prm folder
of the project structure as illustrated by Figure 4.2.

Figure 4.2 Location of the project linker file

#pragma CODE_SEG __NEAR_SEG NON_BANKED
interrupt void my_ISR(void)
{
 /*Add interrupt handling here*/
}

#pragma CODE_SEG DEFAULT

52 The interrupt system, clock and reset generation - 4

Code snippet 4.2 Linker file with added reference to the ISR

NAMES END
SEGMENTS
 RAM = READ_WRITE 0x1000 TO 0x3FFF;
 /* unbanked FLASH ROM */
 ROM_4000 = READ_ONLY 0x4000 TO 0x7FFF;
 ROM_C000 = READ_ONLY 0xC000 TO 0xFEFF;
 /* banked FLASH ROM */
 PAGE_30 = READ_ONLY 0x308000 TO 0x30BFFF;
 PAGE_31 = READ_ONLY 0x318000 TO 0x31BFFF;
 PAGE_32 = READ_ONLY 0x328000 TO 0x32BFFF;
 PAGE_33 = READ_ONLY 0x338000 TO 0x33BFFF;
 PAGE_34 = READ_ONLY 0x348000 TO 0x34BFFF;
 PAGE_35 = READ_ONLY 0x358000 TO 0x35BFFF;
 PAGE_36 = READ_ONLY 0x368000 TO 0x36BFFF;
 PAGE_37 = READ_ONLY 0x378000 TO 0x37BFFF;
 PAGE_38 = READ_ONLY 0x388000 TO 0x38BFFF;
 PAGE_39 = READ_ONLY 0x398000 TO 0x39BFFF;
 PAGE_3A = READ_ONLY 0x3A8000 TO 0x3ABFFF;
 PAGE_3B = READ_ONLY 0x3B8000 TO 0x3BBFFF;
 PAGE_3C = READ_ONLY 0x3C8000 TO 0x3CBFFF;
 PAGE_3D = READ_ONLY 0x3D8000 TO 0x3DBFFF;
/* PAGE_3E = READ_ONLY 0x3E8000 TO 0x3EBFFF; not used: equivalent to ROM_4000 */
/* PAGE_3F = READ_ONLY 0x3F8000 TO 0x3FBFFF; not used: equivalent to ROM_C000 */
END

PLACEMENT
 _PRESTART, /* Used in HIWARE format: jump to _Startup at the code start */
 STARTUP, /* startup data structures */
 ROM_VAR, /* constant variables */
 STRINGS, /* string literals */
 VIRTUAL_TABLE_SEGMENT, /* C++ virtual table segment */
 NON_BANKED, /* runtime routines which must not be banked */
 COPY /* copy down information: how to initialize variables */
 /* in case you want to use ROM_4000 here as well, make sure
 that all files (incl. library files) are compiled with the
 option: -OnB=b */
 INTO ROM_C000/*, ROM_4000*/;
 DEFAULT_ROM INTO PAGE_30,PAGE_31,PAGE_32,PAGE_33,PAGE_34,PAGE_35,

PAGE_36,PAGE_37,PAGE_38,PAGE_39,PAGE_3A,PAGE_3B,PAGE_3C,
PAGE_3D;

 DEFAULT_RAM INTO RAM;
END

STACKSIZE 0x100

VECTOR 0 _Startup /* reset vector: this is the default entry point for a C/C++ application. */
//VECTOR 0 Entry /* reset vector: this is the default entry point for a Assembly application. */
//INIT Entry /* for assembly applications: that this is as well the initialisation entry point */
VECTOR ADDRESS 0xFF8E my_ISR

4.2 Interrupts on the S12 platform 53

Linker files are used to add custom directives for the linker. Common uses will be for defining
address and size of the available memory areas and organize memory content in segments. The stack
and the interrupt vector content can be also configured by using the linker file.

An example for setting up the memory of a CodeWarrior project is given in Code snippet 4.2. The
file starts with the definition of the RAM segment with its access rights (read and write) and address
range. The FLASH memory is defined next as a series of 16Kbyte sectors. The arrangement of the
various sections into memory is provided by within the PLACING section. The stack size is also set here.
The last line of this snippet (marked in bold letters) is the one of interest for using interrupts as it
assigns the my_ISR routine to the interrupt vector position corresponding to Port P interrupts. When
adding

EXAMPLE 4.2 Modify the linker file line specifying the Port P interrupt ISR to set up a function called
your_ISR as the routine to be executed when the ATD0 interrupt is generated.
Solution: The vector address associated with the ATD0 interrupt is 0xFFD2. This is the address that we
have to provide after the VECTOR ADDRESS keywords followed by the name of our function. The actual
line that will have to be written in the linker file is given below:

As an alternative to using the linker file to set up the interrupt vector to point to a certain ISR this can
be done directly in the C source code file. The content of either the entire vector or just a part of it
can be defined as a constant variable with a compiler directive telling the linker the address at which
to locate its content. The code snippet shows how to set the reference to the my_ISR function to the
Port P interrupt vector location.

Code snippet 4.3 Setting interrupt vector routine refference in codeWarrior C source file

EXERCISE 4.1 Write an application that uses the interrupt system to capture press events of the 4
pushbuttons available on the S12 development board PTP0-PTP3. Each press will toggle the state of
the corresponding LED (Port B 0-3).

EXERCISE 4.2 Modify the demo application that demonstrates the use of the analog-to-digital
converter to provide the same functionality using interrupts. Interrupts will be used instead of polling
to call an ISR that reads the conversion result and outputs it on the port B LEDs at the end of the
conversion. You will need to use the ASCIE and ASCIF bits of the ATDCTL2 register.

EXERCISE 4.3 For this exercise you will have to use the function generator to generate square signals
of various frequencies on Port J bit 7 pin. Use interrupts and configure the port to issue interrupts on
the falling edge of the signal. Write an ISR that toggles another pin (e.g. one of the pins of port A)
whenever it is called. Use an oscilloscope to check if the signal generated on this pin matches the one
outputted by the signal generator.

VECTOR ADDRESS 0xFFD2 your_ISR

typedef void (*near tISR)(void);
const tISR _vect [] @0xFF8E { // Select the address for Port P interrupt
my_ISR
};

54 The interrupt system, clock and reset generation - 4

4.3 THE S12 CLOCK AND RESET GENERATOR

4.3.1 General aspects on clock and reset generation and the S12 features

All microcontrollers need a clock signal for the core and modules operation. In most cases a clock
signal is provided by an external crystal oscillator which has to be corrected by on-chip circuitry to
generate a square waveform. In other cases the external circuit directly generates the square
waveform alleviating the need for additional processing of the signal on the microcontroller side.
Some microcontrollers can even be used without any external clock circuit as they provide integrates
oscillators.

The base oscillator frequency needs to be derived to obtain the clock frequency needed by the
application. This is done by the phase-locked-loop (PLL) circuit which has a low-frequency signal as an
input and outputs a higher-frequency clock signal. The PLL circuit is built as a feedback loop system
using the feedback to correct and stabilise the output signal.

Reset circuitry react on a certain set of stimuli and initiate actions corresponding to the reset
sequence. Common reset sources are external reset pins, power-on, access exceptions or modules
assuring the reliable execution of device firmware commonly known as watchdogs. When reset
conditions are met the associated circuit executes initialization steps like setting registers to their
initial values.

Figure 4.3 Block diagram of the Clock and Reset Generator block according to [12]

For handling the tasks previously described, the S12 microcontroller integrates a Clock and Reset
Generator (CRG) module. The organization of the CRG block [12] is illustrated in Figure 4.3. The CRG
module interacts with external (i.e. outside the chip) circuitry through a set of signals:

• VDDPLL and VSSPLL – these pins provide the supply voltage (VDDPLL) and ground (VSSPLL) for

the PLL circuit allowing it to be powered independently of the rest of the circuitry. These

connections have to be properly made even if PLL is not used;

• XFC – this pin must be connected to an external loop filter to eliminate the VCO (Voltage

Controlled Output) input ripple. The needed filter is a second-order, low-pass filter that is used

along with the reference frequency to determine the speed of the corrections and the stability

of PLL. When the PLL is not used, the XCF pin must be tied to VDDPLL;

• EXTAL and XTAL – these pins are provided for the connection of a crystal or a CMOS

compatible clock circuit to control the internal clock generator. EXTAL is the input for the

external clock or the input for the crystal oscillator, while XTAL is the output of the crystal

oscillator amplifier;

4.3 The S12 Clock and Reset Generator 55

• RESET�������� – this is a bidirectional, active low reset pin. As an input it leads to the initialization of

the microcontroller to a known initial state. As an output it indicates that a system reset was

triggered;

• XCLKS – this pin indicates if an external crystal in combination with the internal oscillator

should be used or whether the oscillator clock will be provided by an external clock source.

4.3.2 Clock generation

The internal oscillator circuit (OSC) generates the internal reference clock OSCCLK based on the
input source with the XCLKS pin. The reference clock is used by the PLL block to derive the PLLCLK if
PLL is enabled or as an input to directly drive the system clock.

Phase-Locked-Loop (PLL)

The frequency value of the PLLCLK is determined by two components: the synthesizer (SYNR) and
the reference divider (REFDV) using the following equation: PLLCLK = 2 x OSCCLK x (SYNR + 1)/ (REFDV
+ 1). The values of the SYNR and REFDV members are given by two corresponding registers which are
presented below.

SYNR

7 6 5 4 3 2 1 0
- - SYN5 SYN4 SYN3 SYN2 SYN1 SYN0

REFDV

7 6 5 4 3 2 1 0
- - - - REFDV3 REFDV2 REFDV1 REFDV0

The PLL block can operate either in acquisition mode or in the tracking mode. After initially

powering up the PLL its output frequency will not be within the expected target bounds. This is when
the acquisition mode comes in handy as it allows the PLL to make large adjustments a fast correction
of the output signal. After this signal reaches its target output frequency, the PLL switches to the
tracking mode, in which it makes only small adjustments to keep the output from deviating from the
target frequency.

The PLL operation can be controlled via four registers: CRGFLG, CRGINT, CLKSEL and PLLCTL. Some
of these registers also contain fields for controlling other blocks of the CRC module.

The CRGFLG (CRG Flag) register provides status information on the operation of the CRG module.

CRGFLG

7 6 5 4 3 2 1 0
RTIF PORF - LOCKIF LOCK TRACK SCMIF SCM

• RTIF (Real Time Interrupt Flag) – this bit is set to 1 after a Real Time Interrupt period timeout.

This flag can be cleared by writing it to 1;

• PORF (Power on Reset Flag) – on the occurrence of a power on reset this flag is set to 1. To

clear it write a one to the PORF bit;

• LOCKIF (PLL Lock Interrupt Flag) – this flag is set to 1 when the LOCK status bit changes. It can

be cleared by writing a 1;

• LOCK (Lock Status Bit) – this bit reflects the status of the PLL lock. It reads to 0 when the PLL

Voltage Controlled Output (VCO) does not fit the desired tolerance or 1 when the tolerance is

met;

56 The interrupt system, clock and reset generation - 4

• TRACK (Track Status Bit) – this bit reflects the status of the PLL operation mode. When in

acquisition mode this bit is 0. In track mode this bit reads to 1;

• SCMIF (Self Clock Mode Interrupt Flag) – this flag is set to 1 when the self-clock mode (SCM)

status bit changes its value. To clear this flag write it to 1;

• SCM (Self Clock Mode Status Bit) – when the operating state is Self Clock Mode this bit is set

to 1.This mode, if enabled, is entered when a loss of the external clock signal is detected.

The CRGINT (CRG Interrupt Enable) registers is used to configure the interrupts available for the
CRG module.

CRGINT

7 6 5 4 3 2 1 0
RTIE - - LOCKIE - - SCMIE -

• RTIE (Real Time Interrupt enable) – set this bit to 1 for enabling the Real Time Interrupt

source;

• LOCKIE (PLL Lock Interrupt Enable) – set this bit to 1 to enable interrupt generation on the

PLL LOCK signal changes;

• SCMIE (SCM Interrupt Enable) – when this bit is set to 1 interrupts will be generated on

changes of the SCM status bit.

The CLKSEL (Clock Select) register controls the clock selection within the CRG module.

CLKSEL

7 6 5 4 3 2 1 0
PLLSEL PSTP SYSWAI ROAWAI PLLWAI CWAI RTIWAI COPWAI

• PLLSEL (PLL Select) – set this bit to 1 to enable the PLL and derive the system clocks from

PLLCLK or to 0 otherwise. This bit cannot be written when LOCK = 0 and AUTO=1 or when

TRACK=0 and AUTO=0;

• PSTP (Pseudo Stop) – this bit controls the functionality of the oscillator in Stop Mode. Writing

this bit to 0 will disable the oscillator in Stop Mode while setting it to 1 will let it run;

• SYSWAI (System clock stop in Wait Mode) – if this bit is set to 0 the clock will continue to run

while in Wait Mode. When set to 1 the clock will be stopped in Wait Mode;

• ROAWAI (Reduced Oscillator Amplitude in Wait Mode) – if this bit is set to 1 the oscillator

amplitude is reduced while in Wait Mode, otherwise it remains unchanged;

• PLLWAI (PLL stops in Wait Mode) – when this bit is set to 1 and the Wait Mode is active the

PLL stops. Setting it to 0 lets the PLL continue operation;

• CWAI (Core stops in Wait Mode) – if this bit is set to 1 when in Wait Mode, the core clock

stops running;

• RTIWAI (RTI stops in Wait Mode) – setting this bit to 1 stops the RTI block in Wait Mode;

• COPWAI (COP stops in Wait Mode) – if this bit is set to 1 and the Wait Mode is active the COP

stops. 0 will keep the COP running in Wait Mode.

The PLLCTL (PLL Control Register) is dedicated to controlling the PLL functionality:
• CME (Clock Monitor Enable) – to enable the clock monitor write this bit to 1. This bit cannot

be written when SCM is 1;

4.3 The S12 Clock and Reset Generator 57

• PLLON (Phase Lock Loop On) – when set to 1 this bit enables the PLL circuitry while 0 will

disable it. Write anytime except when PLLSEL is 1;

• AUTO (Automatic Bandwidth Control) – this bit selects if the PLL acquisition and tracking

modes should be selected automatically or by software by using the ACQ bit. Writing the

AUTO bit to 1 enables the automatic mode;

• ACQ (Acquisition) – when set to 1 the high bandwidth (tracking) mode is on. If set to 0 the

low bandwidth (acquisition) mode is activated;

• PRE (RTI Enable during Pseudo Stop) – when this bit is set to 1 the RTI continues to run during

Pseudo Stop Mode;

• PCE (COP Enable during Pseudo Stop) – when this bit is set to 1 the COP continues to run

during Pseudo Stop Mode;

• SCME (Self Clock Mode Enable) – set this bit to 1 to enable the usage of Self Clock Mode.

When set to 0 clock failures will result in a clock monitor reset.

PLLCTL

7 6 5 4 3 2 1 0
CME PLLON AUTO ACQ - PRE PCE SCME

As previously stated, the system clock (SYSCLK) can be chosen as either the PLLCLK or the OSCCLK.

The SYSCLK is directly connected to the core clock output of the CRG. The bus clock is used to drive
external memory and peripheral modules. Its frequency is obtained by dividing the SYSCLK by 2.

EXAMPLE 4.3 Configure the CRG so that a bus clock of 20MHz is used. Consider that the
implementation will be used on the ZK-S12-B board with the 16MHz crystal selected as the input clock.
Solution: The input clock is lower than the required bus clock. Therefore, the PLL has to be used to
obtain a higher frequency signal on the PLLCLK line. Since the frequency of the bus clock is half the
frequency of SYSCLK (which equals PLLCLK in this case), the PLLCLK has to be configured to a frequency
of 40MHz. The SYNR and REFDV parameters are determined by using the equation for computing the
PLLCTL: 40MHz = 2 x 16MHz x (SYNR+1)/(REFDV+1). In our case SYNR = 4 and REFDV = 3 are the values
that fit the equation. The following code snippet gives de required configuration:

4.3.3 Reset generation

The CRG provides special handling for several types of reset: power-on reset, external reset, COP
watchdog reset and clock monitor reset.

Power-On reset

A special circuit on the S12 chip monitors the level of the VDD power supply and asserts a reset
when it reaches a certain level. This circuit is triggered by power line slew rate. When the power-on is
triggered the CRG module performs a quality check of the input clock signal. The reset sequence will
start after the clock quality check indicates a valid clock signal or the CRG enters the Self Clock Mode
as a result of a failed clock check.

 SYNR = 0x04;
 REFDV = 0x03;
 PLLCTL = 0x60; //Enable PLL and Automatic Bandwidth Control
 while((CRGFLG & 0x08)==0x00); //Wait for the PLLCLK lock
 CLKSEL = 0x80; //Select the PLLCLK as the clock signal for the CRG

58 The interrupt system, clock and reset generation - 4

External reset

When any of the four reset events is detected the RESET�������� pin is driven to low for a period of 128
SYSCLK cycles. This period may be increased by 3 to 6 additional SYSCLK cycles depending on the
internal synchronization latency. After this period has elapsed, the RESET�������� pin is driven to high after
which the CRG block waits for another 64 SYSCLK cycles before reading the value of the pin. If the
value read back is still low this means the reset was caused by an external source.

Computer Operating Properly (COP)

The COP is the watchdog timer feature provided by the S12 to assure proper execution of the
firmware. The watchdog functionality, commonly available and employed on most embedded
platforms, is implemented in the form of a timer with configurable period that has to be restarted by
the user program before the configured time period elapses. If the software fails to restart the
watchdog timer it is an indication that the intended execution sequence is no longer followed and a
reset is issued.

The COPCTL (COP Control) register is used to enable and configure the S12 COP block as described
below.

COPCTL

7 6 5 4 3 2 1 0
WCOP RSBCK - - - CRG2 CRG1 CRG0

• WCOP (Window COP Mode) – when set to 1 writing to the ARMCOP register must occur in

the last 25% of the selected period. Writing any value in the first 75% of the period resets the

COP;

• RSBCK (COP and RTI stop in Active BDM mode) – writing this bit to 1 stops the COP and RTI

counters while in Active BDM mode while setting it to 0 allows them to run;

• CRGx (COP Watchdog Timer Rate select) – these three bits allow the selection of the COP

time-out period according to Table 4.2.

CR2 0 0 0 0 1 1 1 1

CR1 0 0 1 1 0 0 1 1

CR0 0 1 0 1 0 1 0 1

OSCCLK cycles to time-out COP disabled 214 216 218 220 222 223 224

Table 4.2 Setting COP time-out period

The COP reset and time-out period restart is done by using the 8-bit ARMCOP (Timer Arm/Reset)
register. Writing any value to this register besides 0x55 or 0xAA will cause a COP reset. To restart the
COP time-out period the value 0x55 has to be written to the ARMCOP register followed by a 0xAA.
When read this register always returns 0x00.

Clock monitor

If enabled, the clock monitor circuit constantly checks the OSCCLK signal and signals its failure.
Depending on the value set to the SCME bit of the PLLCTL, the OSCCLK failure can lead to an immediate
switch to the Self Clock Mode or to a clock monitor reset. The reset event forces the registers to their
default settings which means the SCME bit will be set to 1 after the reset resulting in the operation in
the Self Clock Mode. The input clock signal is checked in parallel and, when the clock checker indicates
that it meets the required state, the CRG leaves Self Clock Mode selecting OSCCLK as a source clock.

4.3 The S12 Clock and Reset Generator 59

4.3.4 Using real-time interrupts

A special type of periodical interrupt is provided by the clock and reset generation block. The CRG
includes a Real-Time Interrupt (RTI) module. This block can be used to generate periodical hardware
interrupts. To enable the RTI, the RTIE bit of the CRGINT (previously presented in this chapter) register
has to be set.

The interrupt occurrence rate is set via the RTICTL register, where the RTR[6:4] bits are used to
select the prescale rate for RTI and the RTR[3:0] bits select the modulus counter target in order to
provide additional granularity. Table 4.3 illustrates all possible divide rates. To calculate the frequency
at which the interrupts occur use the frequency of the OSCCLK signal as this is the clock source that
drives the RTI block.

RTICTL

7 6 5 4 3 2 1 0
- RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0

RTR[3:0]

RTR[6:4]

000

(OFF)

001

(210)

010

(211)

011

(212)

100

(213)

101

(214)

110

(215)

111

(216)

0000 (÷1) OFF 210 211 212 213 214 215 216
0001 (÷2) OFF 2x210 2x211 2x212 2x213 2x214 2x215 2x216
0010 (÷3) OFF 3x210 3x211 3x212 3x213 3x214 3x215 3x216
0011 (÷4) OFF 4x210 4x211 4x212 4x213 4x214 4x215 4x216
0100 (÷5) OFF 5x210 5x211 5x212 5x213 5x214 5x215 5x216
0101 (÷6) OFF 6x210 6x211 6x212 6x213 6x214 6x215 6x216
0110 (÷7) OFF 7x210 7x211 7x212 7x213 7x214 7x215 7x216
0111 (÷8) OFF 8x210 8x211 8x212 8x213 8x214 8x215 8x216
1000 (÷9) OFF 9x210 9x211 9x212 9x213 9x214 9x215 9x216
1001 (÷10) OFF 10x210 10x211 10x212 10x213 10x214 10x215 10x216
1010 (÷11) OFF 11x210 11x211 11x212 11x213 11x214 11x215 11x216
1011 (÷12) OFF 12x210 12x211 12x212 12x213 12x214 12x215 12x216
1100 (÷13) OFF 13x210 13x211 13x212 13x213 13x214 13x215 13x216
1101 (÷14) OFF 14x210 14x211 14x212 14x213 14x214 14x215 14x216
1110 (÷15) OFF 15x210 15x211 15x212 15x213 15x214 15x215 15x216
1111 (÷16) OFF 16x210 16x211 16x212 16x213 16x214 16x215 16x216

Table 4.3 RTI Frequency divide rates

 THE TIMER MODULE

A dedicated timer system is needed in many embedded applications to perform various tasks such
as: creating time delays, measuring time, measuring signal period, frequency or pulse width, counting
events or generating periodic interrupts.

The S12 Timer module is built around a 16-bit programmable counter. It can provide three main
functions: input capture, output compare and pulse accumulator. The input capture function offers
the possibility of measuring characteristics of an external signal and is triggered by an event
represented by a signal edge which can be a rising of falling edge. It can be used to measure the duty
cycle and frequency of a periodic signal or the length of an input pulse. The output compare makes a
comparison of the internal timer value with the output compare register. If they are equal several
actions can be performed: toggle a pin, generate an interrupt request and setting a flag. The last timer
functionality, of pulse accumulator is used to count external events marked as signal pulses on a
corresponding pin.

Some of the S12 family members (e.g. the S12C) provide a Standard Timer Module (TIM). TIM
consists of 8 input-capture/output-compare channels and one 16-bit pulse accumulator. On other S12
family members the timer module features additional functionality and is referred to as Enanced

Capture Timer Module (ECT). The block diagram illustrated in Figure 5.1 depicts the features of TIM
and ECT. Components that are marked with grey colour are additional features found only on ECT
modules.

Figure 5.1 Diagram of the timer module TIM/ECT, according to [13] and [14]

There are three main components at the base of the standard timer counter module:
• the 16-bit free-running counter and the associated prescaling hardware

• the 8 capture/output compare channels

• the pulse accumulator

The 16-bit free-running counter sits at the heart of the timer module. The timing information used
by all the input capture and output compare functions is derived from this counter. After the timer

5.1 TIM associated registers 61

system is enabled the counter starts at 0x0000 and is incremented at each puse. Once the counter
reaches 0xFFFF it rolls over back to 0x0000 and continues counting. The frecuency at which this
counter is incremented can be set to the needed value by deriving the system clock using the prescaler
block.

The IOC[7:0] pins associated to the 8 dual-function 16-bit input-capture/output-compare channels
are connected to the pins of Port T. Each channel can be configured to work either as an input capture
or an output compare channel but not both at the same time. When configured as an input capture
channel the corresponding register captures the 16-bit value of the free-running counter when an
external event ocurs. If configured in the output compare event, a 16-bit value has to be loaded in the
corresponging 16-bit timer channel register. When the counter reaches this value a chain of events is
triggered. First, the associated channel flag is set followed by the generation of the corresponding
interrupt request (if the interrupt was enabled for the channel). Lastly, the user-specified event is
generated on the associated pin.

The pulse accumulator can be configured in event-counting mode to count the number of events
that appear on the associated pin (pin 7 of Port T). In the gated-time-accumulation mode, the pulse
accumulator measures the duration of a pulse.

5.1 TIM ASSOCIATED REGISTERS

Table 5.1 provides an overview of the registers associated to the standard S12 timer module.
Entries that are greyed out and marked with a strikethrough line are registers that are only used for
factory testing purposes. The main registers used for configuring the timer module will be detailed
next.

TIOS - Timer Input Capture/Output Compare Select RW TCTL4 - Timer Control 4 RW
CFORC - Timer Compare Force RW TIE - Timer Interrupt Enable RW
OC7M - Output Compare 7 Mask RW TSCR2 - Timer System Control 2 RW
OC7D - Output Compare 7 Data RW TFLG1 - Main Timer Interrupt Flag1 RW
TCNT - Timer Count RW TFLG2 - Main Timer Interrupt Flag2 RW
TSCR1 - Timer System Control1 RW TCx - Timer Input Capture/Output Compare x RW
TTOV - Timer Toggle Overflow RW PACTL - 16-Bit Pulse Accumulator Control RW
TCTL1 - Timer Control 1 RW PAFLG - Pulse Accumulator Flag RW
TCTL2 - Timer Control 2 RW PACNT - Pulse Accumulator Count RW
TCTL3 - Timer Control 3 RW TIMTST - Timer Test RW

Table 5.1 Registers associated to the standard timer module

5.1.1 Timer counter registers

There are four registers related to the main timer counter: TCNT, TSCR1, TSCR2 and TFLG2. The
TCNT register is a 16-bit up counting register which can be read to get the current counter value. Both
bytes of this register have to be read in a single cycle to get a correct value. Writing to this register has
no effect.

TCNT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
bit
15

bit
14

bit
13

bit
12

bit
11

bit
10

bit
9

bit
8

bit
7

bit
6

bit
5

bit
4

bit
3

bit
2

bit
1

bit
0

The TSCR1 register is used to enable the timer module and set the fast flag clearing mode. Its bits

are described below:
• TEN (Timer Enable) - Setting this bit to 1 enables the timer module while a 0 value disables it;

• TSWAI (Timer Module Stops While in Wait) – 1 disables the timer counter while the

microcontroller is in wait mode. 0 enables running also during wait state.

62 The Timer Module - 5

• TSFRZ (Timer Stops While in Freeze Mode) – Setting this bit to 1 disables the timer counter

when the microcontroller is in the freeze mode. A 0 enables running of the timer module

during freeze mode;

• TFFCA (Timer Fast Flag Clear All) – When this bit is set to 1 then a read from an input capture

or a write to the output compare channel causes the corresponding channel flag – CnF – from

TFLG1 to be cleared. In the case of TFLG2, any access to the TCNT register clears the TOF flag.

Any access to the PACNT registers clears the PAOVF and PAIF flags in the PAFLG register. This

has the advantage of eliminating software overhead in a separate clear sequence. 0 will lead

to the normal functioning of the timer flag clearing.

TSCR1

7 6 5 4 3 2 1 0
TEN TSWAI TSFRZ TFFCA - - - -

TSCR2 holds additional timer settings for using the overflow interrupt, enabling timer self-reset

and configuring the prescaler. The structure of the TSCR2 register is presented below.

TSCR2

7 6 5 4 3 2 1 0
TOI - - - TCRE PR2 PR1 PR0

• TOI (Timer Overflow Interrupt Enable) – Setting this bit to 1 generates an interrupt request

when the TOF flag is set.

• TCRE (Timer Counter Reset Enable) – Setting this bit to 1 will lead to a reset of the timer

counter after a successful output compare 7 event.

• PRx (Prescaler) – these bits are used for setting the prescaler value to derive the timer clock

frequency from the bus clock. Set the prescaler values according to the table below.

PR2 PR1 PR0 Timer Clock

0 0 0 Bus Clock / 1
0 0 1 Bus Clock / 2
0 1 0 Bus Clock / 4
0 1 1 Bus Clock / 8
1 0 0 Bus Clock / 16
1 0 1 Bus Clock / 32
1 1 0 Bus Clock / 64
1 1 1 Bus Clock / 128

Table 5.2 Prescaler setting

The TFLG2 register indicates when interrupt conditions are met. To clear the interrupt flag, a 1 has
to be written in the corresponding flag position.

• TOF (Timer Overflow Flag) – This bit indicates when the 16-bit counter overflows.

TFLG2

7 6 5 4 3 2 1 0
TOF - - - - - - -

5.1 TIM associated registers 63

5.1.2 Registers common for input capture and output compare

The TIOS register is used to select whether a channel should function in the input capture or
output compare mode. Setting the IOSx bit to 0 sets the corresponding channel x to work as an input
capture, otherwise it will function as an output compare.

TIOS

7 6 5 4 3 2 1 0
IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0

To enable interrupts for input capture or output compare events the TIE register should be

configured. Setting the CxI bit of this register to 1 enables the interrupt for the corresponding channel
x.

TIE

7 6 5 4 3 2 1 0
C7I C6I C5I C4I C3I C2I C1I C0I

When the interrupt condition has occurred on a channel, the corresponding bit of the TFLG1

register is set. To clear the interrupt flag its value should be set to 1.

TFLG1

7 6 5 4 3 2 1 0
C7F C6F C5F C4F C3F C2F C1F C0F

The eight 16-bit registers TC0 through TC7 are each associated to one timer channel. When the

corresponding channel is configured as input capture the TC register will hold the timer counter value
latched when the defined event appears. If the channel is configured as output compare the condition
value for output compare should be written in the corresponding TCx register.

TCx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
bit
15

bit
14

bit
13

bit
12

bit
11

bit
10

bit
9

bit
8

bit
7

bit
6

bit
5

bit
4

bit
3

bit
2

bit
1

bit
0

5.1.3 Registers related to the input capture function

TCTL3 and TCTL4 are used to configure the behaviour of the input capture edge detector circuits
by setting appropriate values for each bit pair (EDGxB, EDGxA) according to Table 5.3. Setting this
registers specifies the signal edge on which to record the capture.

TCTL3

7 6 5 4 3 2 1 0
EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A

TCTL4

7 6 5 4 3 2 1 0
EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0SA

If an input capture channel is configured but the capture is disabled, the associated pin can be

used as a general purpose I/O pin.

64 The Timer Module - 5

EDGnB EDGnA Configuration

0 0 Capture disabled
0 1 Capture on rising edges only
1 0 Capture on falling edges only
1 1 Capture on any edge (rising or falling)

Table 5.3 Configuration of the edge detection circuit

5.1.4 Registers related to the output compare function

TCTL1 and TCTL2 are used to specify the output action to be taken as a result of a successful output
compare. When either OMx or OLx is 1, the pin associated with output compare channel x becomes
an output tied to this channel. Table 5.4 shows the outcomes of all possible combinations for setting
the OM-OL pairs value.

TCTL1

7 6 5 4 3 2 1 0
OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4

TCTL2

7 6 5 4 3 2 1 0
OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0

OMx OLx Action

0 0 Timer disconnected from output pin logic
0 1 Toggle output compare x output line
1 0 Clear output compare x output line to zero
1 1 Set output compare x output line to one

Table 5.4 Compare result output action

To force an output compare action on a channel set the corresponding bit of the CFORC register
to 1.

CFORC

7 6 5 4 3 2 1 0
FOC7 FOC6 FOC5 FOC4 FOC3 FOC2 FOC1 FOC0

Output compare function on channel 7 is special because it can control up to 8 output compare

functions simultaneously. Register OC7M is used to set the channels than should be controlled. The
values of the corresponding pins are specified in the OC7D register. In this way, on a successful output
compare for channel 7 each affected pin (specified by OC7M) assumes the value in the OC7D register.

OC7M

7 6 5 4 3 2 1 0
OC7M7 OC7M6 OC7M5 OC7M4 OC7M3 OC7M2 OC7M1 OC7M0

OC7D

7 6 5 4 3 2 1 0
OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0

5.1 TIM associated registers 65

The pins corresponding to output compare channels can be forced to toggle when the counter
timer register overflows. This is done by setting bits of the TTOV register corresponding to the
channels on which this behaviour is wanted to 1.

TTOV

7 6 5 4 3 2 1 0
TOV7 TOV6 TOV5 TOV4 TOV3 TOV2 TOV1 TOV0

5.1.5 Registers related to the pulse accumulator function

PACTL

7 6 5 4 3 2 1 0
- PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI

The PACTL register is used to configure the pulse accumulator function by setting each individual

bit to proper values:
• PAEN (Pulse Accumulator System Enable) – Setting this bit to 1 enables the pulse accumulator

functionality;

• PAMOD (Pulse Accumulator Mode) – If this bit is set to 0 the pulse accumulator functions in

the event counter mode while if set to 1 it works in gated time accumulation mode;

• PEDGE (Pulse Accumulator Edge Control) – Setting this pin according to Table 5.5 affects the

behaviour of the pin associated to the pulse accumulator.

PAMOD PEDGE Pin Action

0 0 Falling edge
0 1 Rising edge
1 0 Div. by 64 clock enabled with pin high level
1 1 Div. by 64 clock enabled with pin low level

Table 5.5 Setting pulse accumulator pin action

• CLKx (Clock Select Bits) – set them to select the clock according to Table 5.6

CLK1 CLK0 Timer Clock

0 0 Use timer prescaler clock as timer counter clock
0 1 Use PACLK as input to timer counter clock
1 0 Use PACLK/256 as timer counter clock frequency
1 1 Use PACLK/65536 as timer counter clock frequency

Table 5.6 Pulse Accumulator Timer clock selection

• PAOVI (Pulse Accumulator Overflow Interrupt enable) – Set this bit to 1 to enable an

interrupt when the pulse accumulator overflows;

• PAI (Pulse Accumulator Input Interrupt enable) – Set this bit to 1 to issue an interrupt on an

input signal change.

When an interrupt related to the pulse accumulator functionality is produced, a flag signalling the
corresponding reason is set in the PAFLG register:

• PAOVF (Pulse Accumulator Overflow Flag) – this bit is set when the 16-bit pulse

accumulator overflows. Write a 1 in this bit to clear the flag;

• PAIF (Pulse Accumulator Input edge Flag) – this flag is set when the selected edge is

detected on the IOC7 pin. Write this bit to 0 to clear the flag.

66 The Timer Module - 5

PAFLG

7 6 5 4 3 2 1 0
- - - - - - PAOVF PAIF

The number of events counted by the pulse accumulator is stored in the PACNT register. This

register should be read in a single clock cycle operation as separate readings of its low and high bytes
will result in a different value.

PACNT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
bit
15

bit
14

bit
13

bit
12

bit
11

bit
10

bit
9

bit
8

bit
7

bit
6

bit
5

bit
4

bit
3

bit
2

bit
1

bit
0

5.2 ECT EXTENDED TIMER FEATURES

S12 family members that are equipped with an Enhanced Capture Timer (ECT) module come with
additional features on top of the basic ones in TIM modules:

• a 16-bit buffer register for the first four input-capture channels
• 2 additional 8-bit pulse accumulators, each with an associated 8-bit buffer, that can be

concatenated and used as a single 16-bit pulse accumulator
• a 16-bit modulus down-counter with 4-bit prescaler
• 4 user selectable delay counters for input noise immunity increasing

Additional configuration of the ECT inputs behaviour can be configured with the ICSYS (Input

Control System Control) register:
• SHxy (Shared input action of channels x and y) – write 1 to the selected bit to generate same

action onchannels x and y as a reaction to the channel x input;
• TFMOD (Timer Flag Setting Mode) – dictates the triggering of an interrupt either after the

one capture is made by an input-capture channel or only when a value is latched to the holding
register;

• PACMX (8-bit Pulse Accumulator Maximum Count) – set this bit to 0 to allow the register to
overflow after reaching 0xFF or to 1 for preventing the register to roll over after reaching its
maximum value;

• BUFEN (IC Buffer Enable) – enable (set to 1) or disable (set to 0) holding registers for the input-
capture and pulse accumulator

• LATQ (Input Control Latch or Queue Mode enable) – queue mode is enabled by writing 0 to
this bit while latch mode is set by writing 1.

ICSYS

7 6 5 4 3 2 1 0
SH37 SH26 SH15 SH04 TFMOD PACMX BUFEN LATQ

5.2.1 Registers related to the input-capture function

Input-capture channels 0-3 of the ECT module are fitted with 16-bit holding (buffer) registers TCxH
(Timer Input Capture Holding). These registers are used to latch the values of the corresponding input-
capture registers

TCxH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit bit

5.2 ECT extended timer features 67

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Delays can be introduced for the events on the input capture pins by configuring the DLYCT (Delay

Counter Control) register.
DLYCT

7 6 5 4 3 2 1 0
- - - - - - DLY1 DLY0

The delay is set according to Table 5.8. When the delay is activated the delay counter will count

the prescribed number of clock cycles and then generate the pulse for the input-capture circuit.

DLY1 DLY0 Delay

0 0 Disabled (bypassed)
0 1 256 bus clock cycles
1 0 512 bus clock cycles
1 1 1024 bus clock cycles

Table 5.7 Delay counter selection

The ICOVW (Input Control Overwrite) register prevents the overwriting of the content of the
related capture or holding register. Setting bit NOVWx to 0 allows the overwrite of the associated
channel input capture register while setting it to 1 only allows overwriting after the content was either
latched or read.

ICOVW

7 6 5 4 3 2 1 0
NOVW7 NOVW6 NOVW5 NOVW4 NOVW3 NOVW2 NOVW1 NOVW0

5.2.2 Registers related to the modulus down counter

The modulus down counter can be used either as a time base for generating periodic interrupts
or to latch values of the IC registers and pulse accumulators to their holding registers. The MCCTL
(Modulus Down-Counter Control) register is used to setup the circuit.

MCCTL

7 6 5 4 3 2 1 0
MCZI MODMC RDMCL ICLAT FLMC MCEN MCPR1 MCPR0

• MCZI (Modulus Counter Underflow Interrupt Enable) – when set to 1 the modulus counter

interrupt is enabled;
• MODMC (Modulus Enable Mode) – when this bit is set to 0 the counter will only count

down once until reaching 0x0000. Setting it to 1 makes the counter reload with the previous
value every time it reaches 0x0000;

• RDMCL (Read Modulus Down-Counter Load) – by setting this bit to 0 the values read from
the modulus down counter will return the actual value of the counter while setting it to 1
returns the load register value;

• ICLAT (Input Capture Force Latch Action) – when input capture latch mode is enabled,
writing 1 to this bit results in the immediate transfer of the TC0-3 input capture registers
content and the content of the 8-bit pulse accumulators to their holding registers. This
action leads to the clearing of the pulse accumulators;

• FLMC (Force Load Register into Modulus Counter Count Register) – writing 1 into this bit
loads the load register into the modulus counter count register and resets the modulus
counter prescaler

68 The Timer Module - 5

• MCEN (Modulus Down-Counter Enable) – when written to 1 this bit enables the modulus
down counter while a 0 will disable it

• MCPRx (Modulus Counter Prescaler) – these bits are used to select the prescaler value for
the modulus counter clock according to Table 5.8.

MCPR1 MCPR0 Prescaler division rate

0 0 1
0 1 4
1 0 8
1 1 16

Table 5.8 Modulus counter prescaler selection

The MCFLG register holds the flags associated to the 16-bit modulus down-counter:
• MCZF (Modulus Counter Underflow Flag) – this flag is set when the counter reaches 0x0000.

Write 1 to this bit to reset the flag;
• POLFx (First Input Capture Polarity Status) – each POLFx bot gives the polarity of the first

edge that caused an input capture to occur after a capture latch was read on timer PORTx
input. 0 indicates a falling edge while 1 corresponds to a rising edge.

MCFLG

7 6 5 4 3 2 1 0
MCZF - - - POLF3 POLF2 POLF1 POLF0

The value of the modulus counter is available in the MCCNT register. This register should be read

in a single clock cycle operation as separate readings of its low and high bytes will result in a different
value.

MCCNT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
bit
15

bit
14

bit
13

bit
12

bit
11

bit
10

bit
9

bit
8

bit
7

bit
6

bit
5

bit
4

bit
3

bit
2

bit
1

bit
0

5.2.3 Registers related to the pulse accumulator

Each of the two 16-bit pulse accumulators of the ECT module are built by cascading two 8-bit pulse
accumulators. The additional Pulse accumulator B is configured by the PBCTL register

PBCTL

7 6 5 4 3 2 1 0
- PBEN - - - - PAOVI -

• PBEN (Pulse Accumulator B Enable) – when set to 1 this bit leads to the enabling of the two

associated 8-bit pulse accumulators cascaded to form the 16-bit pulse accumulator;
• PBOVI (Pulse Accumulator Overflow Interrupt enable) – enables (when set to 1) the

overflow interrupt on pulse accumulator B.

Interrupt flags associated to the pulse accumulator B are grouped in the PBFLG register and their
function is similar to the corresponding flags in the PAFLG register.

PBFLG

7 6 5 4 3 2 1 0
- - - - - - PBOVF -

5.2 ECT extended timer features 69

The counter register associated to the pulse accumulator B is built by cascading two 8-bit registers

PACN1 and PACN0. As in the case of PACNT, this register should also be read in a single clock cycle
operation because separate readings of its low and high bytes will give different results as when
reading as a word.

PACN1 PACN0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
bit
15

bit
14

bit
13

bit
12

bit
11

bit
10

bit
9

bit
8

bit
7

bit
6

bit
5

bit
4

bit
3

bit
2

bit
1

bit
0

Holding registers are available for all pulse accumulator registers. They are available as the 8-bit

PAxH registers.

PAxH

7 6 5 4 3 2 1 0
PAxH7 PAxH6 PAxH5 PAxH4 PAxH3 PAxH2 PAxH1 PAxH0

Exercise 7.1 Use the input capture functionality to measure the period of a signal that is generated on
the pin associated to the Timer channel 0. Configure the signal generator to generate signals of various
frequencies and shapes and connect its output to the Timer channel 0 input capture pin.

Exercise 7.2 Generate a 1kHz square waveform with a 50% duty cycle using the output compare
function on the Timer channel 2. The generated signal should be check by using the oscilloscope.

Exercise 7.3 Use the pulse accumulator functionality to generate an interrupt when a number of N
pulses have been generated on the PT7 pin. Make connection between the PT7 pin and one of the
four pushbuttons available on the development board. This will enable you to generate the pulses
using one of the pushbuttons.

Exercise 7.4 Write an application that uses the timer to count the number of seconds elapsed since
the start of the program. The leas significant byte of the variable holding the number of seconds
elapsed should be displayed on the LEDs associated to Port B.

 PULSE WIDTH MODULATION (PWM) MODULE

The purpose of this chapter is to introduce basic concepts of pulse width modulation and the
particularities of the S12 PWM module.

6.1 GENERAL CONCEPTS OF PWM

Pulse width-modulation (PWM) is the technique employed for encoding a given message in a
pulsing signal. The main use of PWM is in electrical motor control. Although modulated signals could
be generated by the use of other microcontroller components such as timers and GPIO this can be
done more efficiently by using a hardware module dedicated to this purpose.

A PWM waveform is characterized by two parameters (as illustrated in Figure 6.1): frequency (or
alternatively the period) and duty cycle. The PWM frequency will be derived from the microcontroller
clock and can be configured by using prescalers. The duty cycle is the ratio between the active pulse
duration and the signal period.

Figure 6.1 PWM waveform

6.2 PWM GENERATION ON S12

All members of the S12 family are equipped with PWM modules, however, the number of
channels available on each member may differ. The S12C128 has 6 independent PWM channels which
can be used in 8 bit mode or in 16 bit mode, where pairs of PWM channels are concatenated. The
S12DT256 and S12XD512 have 8 PWM channels when used in 8-bit mode or a maximum of 4 PWM
channels if used in 16-bit mode.

Figure 6.2 illustrates the block diagram of the PWM module as available on the S12C128. Other
S12 family member will have 2 additional PWM channels. As the diagram suggests there are a set of
common configuration registers for setting up the clock and controlling several signal parameters for
all channels. Additionally, each channel has dedicated registers for individually configuring the signal
period and duty cycle. The steps to take when configuring a PWM channel output on S12 are the
following:

• configure PWM the clock
• configure the PWM waveform parameters as required: period, duty cycle, polarity and

alignment
• enable the output on the selected PWM channel

The actual PWM period will be affected by both the PWM clock and the channel period register
settings.

6.2 PWM generation on S12 71

Figure 6.2 S12C128 PWM module Block Diagram

Table 6.1 provides an overview of the PWM module registers, the strikeout values are only
available for factory testing purposes. A complete register description can be found in [15].

PWME - PWM Enable R/W PWMSCLA - PWM Scale A R/W
PWMPOL - PWM Polarity R/W PWMSCLB - PWM Scale B R/W
PWMCLK - PWM Clock Select R/W PWMSCNTA - PWM Scale A Counter R/W
PWMPRCLK - PWM Prescale Clock Select R/W PWMSCNTB - PWM Scale B Counter R/W
PWMCAE - PWM Center Align Enable R/W PWMCNTx - PWM Channel x Counter R/W
PWMCTL - PWM Control R/W PWMPERx - PWM Channel x Period R/W
PWMTST - PWM Test R/W PWMDTYx - PWM Channel x Duty R/W
PWMPRSC - PWM Prescale Counter R/W PWMSDN - PWM Shutdown R/W

Table 6.1 Overview of the PWM associated registers (strikeout registers are for factory test purposes only)

72 Pulse Width Modulation (PWM) Module - 6

Table 6.2 gives a summary of the registers needed to configure each of the PWM channels when
working in 8 bit mode.

PWM

channel

Enable Polarity Clock Prescaler Alignment 8/16 bit

PWME PWMPOL PWMCLK PWMPRCLK PWMCAE PWNCTL Output

PWM ch. 0 PWME0 PPOL0 PCLK0 PCKA2 PCKA1 PCKA0 CAE0 CON01 PWM0

PWM ch. 1 PWME1 PPOL1 PCLK1 PCKA2 PCKA1 PCKA0 CAE1 CON01 PWM1

PWM ch. 2 PWME2 PPOL2 PCLK2 PCKB2 PCKB1 PCKB0 CAE2 CON23 PWM2

PWM ch. 3 PWME3 PPOL3 PCLK3 PCKB2 PCKB1 PCKB0 CAE3 CON23 PWM3

PWM ch. 4 PWME4 PPOL4 PCLK4 PCKA2 PCKA1 PCKA0 CAE4 CON45 PWM4

PWM ch. 5 PWME5 PPOL5 PCLK5 PCKA2 PCKA1 PCKA0 CAE5 CON45 PWM5

PWM ch. 6 PWME6 PPOL6 PCLK6 PCKB2 PCKB1 PCKB0 CAE6 CON67 PWM6

PWM ch. 7 PWME7 PPOL7 PCLK7 PCKB2 PCKB1 PCKB0 CAE7 CON67 PWM7
Table 6.2 Summary for 8 bit mode PWM channel configuration

6.2.1 PWM Clock configuration

There are four clock sources that can be used for the PWM channels: Clock A, Clock B, Clock SA
(scaled A) and Clock SB (scaled B). Clock A and B are obtained directly by dividing the bus clock by a
factor of 1, 2, 4, 8, 16, 32, 64 or 128. The prescaling is done by configuring the PWMPRCLK (PWM

Prescale Clock Select) register.

PWMPRCLK

7 6 5 4 3 2 1 0

- PCKB2 PCKB1 PCKB0 - PCKA2 PCKA1 PCKA0

• PCKB[2, 0] – used for selecting the prescaler value used to generate clock B. Table 6.3
presents the correspondence between the PCKB[2:0] value and clock B frequency

• PCKA[2, 0] – used to select the prescaler value used to generate clock A. The correspondence
between the PCKA[2:0] value and the clock A frequency is presented in Table 6.3.

PCKx2 PCKx1 PCKx0 Value of clock x

0 0 0 Bus clock
0 0 1 Bus clock/2
0 1 0 Bus clock/4
0 1 1 Bus clock/8
1 0 0 Bus clock/16
1 0 1 Bus clock/32
1 1 0 Bus clock/64
1 1 1 Bus clock/128

Table 6.3 Prescaler options for the two main clock sources, x stands for A and B

If a lower clock frequency is needed clock A and B can be further scaled down by using an 8 bit
down counter which loads a value configurable by the PWMSCLA (PWM Scale A) and PWMSCLB

(PWM Scale B) registers respectively. The resulting clock signals are provided on the clock SA and SB
lines.

PWMSCLA

7 6 5 4 3 2 1 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

6.2 PWM generation on S12 73

For generating the clock SA a down counter loads the value from the PWMSCLA register, at each
clock A cycle it decrements by 1 and. When it reaches 1 it generates a pulse and reloads the value
from the PWMSCLA register. The obtained clock frequency is further divided by 2. Therefore clock SA
is derived with respect with: clock SA = clock A / (2 * PWMSCLA), e.g., when PWMSCLA = 0xFF, clock
SA = clock A/(2*255).

A special case is considered when PWMSCLA = 0x00 because the down counter can newer reach
value 0 when decrementing. In this case clock A will be divided by 256 and then by 2. (clock SA = clock
A/(2*256)).

PWMSCLB

7 6 5 4 3 2 1 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

All the remarks presented about PWMSCLA are also applicable for PWMSCLB.
On each PWM channel we can select from two clock sources as follows: for PWM channels 0, 1, 4

and 5 clock A or clock SA can be selected while for PWM channels 2, 3, 6 and 7, clock B or clock SB can
be set as a source. The clock source selection is made through the PWMCLK (PWM Clock Select)
register.

PWMCLK

7 6 5 4 3 2 1 0

PCLK7 PCLK6 PCLK5 PCLK4 PCLK3 PCLK2 PCLK1 PCLK0

• PCLKx - used to select the corresponding PWM channel clock source for channel x, where x ∈ {0,

1, 4, 5}. When PCLKx is cleared to 0 clock A is selected as clock source, when set to 1 clock SA is
selected as a clock source

• PCLKy - used to select the corresponding PWM channel clock source for channel y, where y ∈ {2,
3, 6, 7} (note that channels 6 and 7 only available on some S12 family members). When PCLKy is
cleared to 0 clock B is selected as clock source while setting it to 1 selects clock SB as a clock source
for these channels.

6.2.2 PWM waveform configuration

The PWM waveform is controlled by registers associated to the four configurable properties:
period, duty cycle, polarity and alignment.

PWM counters

Each 8 bit PWM channel has an associated 8 bit PWMCNTx (PWM Channel Counter) register used
to implement the different operation modes of the module. The PWMCNTx is automatically
configured as an up or up/down counter depending on the chosen PWM alignment mode (left aligned
and center aligned). When using the left aligned mode for a PWM channel the counter register will
act as an up counter, and when using a center aligned mode it will act as a up and down counter.

The PWMCNTx can be read at any time, special attention should be taken when writing this
register as writing any value to the counter will:

• reset the counter to 0x00

• set the counting mode to up

• load the duty register (PWMDTYx) and the period register (PWMPERx) with the values from

their corresponding buffers

74 Pulse Width Modulation (PWM) Module - 6

PWM period

Each channel has a dedicated 8 bit PWM period register PWMPERx which determines the period
of the signal generated by the corresponding channel. The period register is double buffered which
means that a change to the register value will not affect the channel output unless one of the following
occurs: the effective period ends, the channel counter is written (counter resets to 0x00) or the
channel is disabled. The actual signal period can be calculated based on the channel clock source as
follows:

• when in left alignment mode : PWMx period = PWMPERx /(PWM channel clock frequency)
• when in center alignment mode: PWMx period = 2*PWMPERx/(PWM channel clock

frequency)
Note that reading the PWMPERx register will not return the PWMPERx register value but will get

the value from the PWMPERx buffer

PWM duty cycle

The duty cycle is also configured by a double buffered 8 bit PWM channel duty register PWMDTYx

one allocated for each channel. Similar to the PWMPERx register a write to the PWMDTYx does not
immediately change the wave duty cycle but only after the occurrence of one of the three events
previously mentioned. Based on the register value and the waveform polarity the dusty cycle is
calculated as follows:

• when the PWM wavefrom start polarity equals 0: PWMx duty cycle = (PWMPERx - PWMDTYx)/

PWMPERx*100%

• when the PWM wavefrom start polarity equals 1: PWMx duty cycle = (PWMDTYx)/PWMPERx

*100%

PWM polarity

The PWM polarity represents the starting voltage level of a PWM period as illustrated in Figure
6.3. The PWMPOL (PWM Polarity) register is used to set the polarity on all PWM channels, each
register bit corresponding to one channel. Clearing PPOLx sets a low starting voltage on the
corresponding PWM channel output, while setting it to 1 makes the corresponding PWM channel
output starts on high.

PWMPOL

7 6 5 4 3 2 1 0

PPOL7 PPOL6 PPOL5 PPOL4 PPOL3 PPOL2 PPOL1 PPOL0

Figure 6.3 PWM waveform polarity

PWM waveform alignment

Two types of alignment of the PWM signal within a period are provided by the S12 PWM module:
left alignment and center alignment. The alignment mode is configured by the PWMCAE (PWM Center

Align Enable) register.

6.2 PWM generation on S12 75

PWMCAE

7 6 5 4 3 2 1 0

CAE7 CAE6 CAE5 CAE4 CAE3 CAE2 CAE1 CAE0

CAEx bits are used to select PWM waveform alignment for each PWM channel. When CAEx is
cleared to 0 a left aligned PWM waveform is generated for channel x. When CAEx is set to 1 a center
aligned PWM waveform is generated for channel x.

When configuring a PWM channel in left aligned mode the PWM Channel Counter register will act
as an up counter only. The PWMCNTx will be continuously compared with the PWM Channel Duty
Register (PWMDTYx) and when a match occurs the corresponding PWM signal output is
complemented as illustrated in Figure 6.4. PWMCNTx is also continuously compared with the PWM
Channel Period register (PWMPERx). When a match occurs the PWMCNTx value is reset and both
PWMDTYx and PWMPERx are updated with the values from their corresponding buffers.

Figure 6.4 Left aligned PWM waveform

When configuring a PWM channel in center aligned mode the PWM Channel Counter register will
act as a up and down counter. Similarly to the left aligned mode, the PWM Channel Counter register
(PWMCNTx) is continuously compared with the PWM Channel Duty register (PWMDTYx). When a
match occurs the corresponding PWM signal output is complemented. When a match between the
PWMCNTx and the PWM Channel Period Register (PWMPERx) occurs, the PWMCNTx changes the
counting direction from UP to DOWN. When the PWMCNTx reaches 0 while counting DOWM the
PWMDTYx and PWMPERx are updated with the values from their corresponding buffers and the
counter register changes the counting direction back from DOWN to UP. This process along with the
resulting waveform is illustrated in Figure 6.5. While in this operation mode the waveform parameters
on channel x are as follows:

• PWMx frequency = ch_x_clock_frequency/(2*PWMPERx);
• PWMx period = ch_x_clock_period*PWMPERx*2 ;
• PWMx duty cycle = (PWMCNTx - PWMDTYx)/ PWMCNTx*100%, when starting polarity is 0;
• PWMx duty cycle = (PWMDTYx)/PWMCNTx*100%, when starting polarity equals 1.

76 Pulse Width Modulation (PWM) Module - 6

Figure 6.5 Center aligned PWM waveform

6.2.3 PWM module control

The PWM Control (PWMCTL) register is used to control the PWM signal resolution and the PWM
module behavior in wait and freeze mode.

PWMCTL

7 6 5 4 3 2 1 0

CON67 CON45 CON23 CON01 PSWAI PFRZ 0 0

• CON67, CON45, CON23, CON01 – are used to concatenate two 8 bit PWM channels into a 16
bit PWM channel. When set to 1, CON01 concatenates PWM channel 0 and PWM channel 1.
When set to 1 CON23 concatenates PWM channel 2 and PWM channel 3. When set to 1,
CON45 concatenates PWM channel 4 and PWM channel 5. CON67 acts in a similar manner
for channels 6 and 7. When the register concatenation bits (CON67, CON45, CON23, CON01)
are cleared to 0 the corresponding PWM channel has a 8 bit resolution.

• PSWAI (PWM Stops in Wait Mode)—when cleared to 0, the bus Clock is fed into the prescaler
when the MCU is in wait mode, when set to 1 the bus Clock is no longer fed to the prescaler
(this leads to the disabling of the PWM module => lower power consumption)

• PFRZ (PWM Counters Stop in Freeze Mode) - when cleared to 0, the bus Clock is fed into the
prescaler when the MCU is in freeze mode, when set to 1 the bus Clock is no longer fed to the
prescaler (this leads to the disabling of the PWM module => lower power consumption).

The PWMSDN (PWM Shutdown) register provides emergency shutdown functionality for the

PWM module. The pin used to implement this functionality is the pin associated with the last PWM
channel output, i.e. channel 7 for most devices or channel 5 for devices with only 6 PWM channels.

6.2 PWM generation on S12 77

PWMSDN

7 6 5 4 3 2 1 0

PWMIF PWMIE PWMRSTRT PWMLVL 0 PWM7IN PWM7INL PWM7ENA

• PWM7ENA – when set to 1, enables the emergency shutdown functionality and forces the
PWM Channel 7 corresponding output pin to input (PP7/PWM7).

• PWM7INL – indicates the shutdown active level to react on when the emergency shutdown is
active. A low active level is considered when PWM7INL is 0, while a high level is indicated by a
1

• PWM7IN – this bit reflects the current status of the PWM channel 7 pin
• PWMLVL – when the expected level is found on the last channel pin the outputs of the other

PWM channels will be set to the value indicated by PWMLVL
• PWMRSTTRT – writing a 1 to this bit restores the PWM operation but only when the asserted

input is changed
• PWMIE – writing a 1 to this bit enables the PWM interrupt for emergency shutdown
• PWMIF – this interrupt flag indicates the asserted state. Write a logic 1 to this bit to reset it
The PWME (PWM Enable) register is used to individually enable/disable the PWM channels.

PWME

7 6 5 4 3 2 1 0

PWME7 PWME6 PWME5 PWME4 PWME3 PWME2 PWME1 PWME0

• PWMEx – when cleared to 0 the corresponding PWM channel is disabled, when set to 1 the
corresponding PWM channel is enabled.

EXAMPLE 5.1 Configure the PWM module to generate a 1.25MHz PWM signal on channel 0 with a
25% duty cycle. A 10 MHz bus clock should be considered.
Solution: Clock A or SA can be a source for PWM channel 0, therefore we first configure a prescaler
for clock A. By using a Bus Clock/2 prescaler we obtain a 5MHz (200 ns period) clock for the PWM
channel 0. Further period scaling will be made by using the dedicated period register. The PWM
frequency/period is determined as follows:

• PWM0 period = PWM channel 0 clock period * PWMPER0
• PWM0 frequency = PWM channel 0 clock frequency / PWMPER0

thus, PWM 0 frequency = 5 MHz / 4 = 1.25 MHz.
To get the required duty cycle, the PWMDTY0 register must be configured according to: PWM duty
cycle = [(PWMPER0 – PWMDTY0) /PWMPER0] * 100% = 25%.
The PWM waveform polarity will be set to 0. The last step is to enable the output on the PWM
channel by setting the PWME register. The C code segment needed to configure PWM registers as
presented is given below.

The resulting PWM signal should look as illustrated in Figure 6.6.

PWMCLK=0; // select Clock A as clock source for PWM channel 0 (PCLK0=0)
PWMPRCLK=1; // configure the prescaler for Clock A =Bus Clock / 2
PWMPOL=0; // configure PWM starting polarity as 0 (PWMPOL0=0)
PWMPER0=0x04; // configure PWM channel 0 period
PWMDTY0=0x03; // configure PWM channel 0 duty cycle
PWME=0x01; // Enable PWM channel 0

78 Pulse Width Modulation (PWM) Module - 6

Figure 6.6 PWM waveform generated in exercise 5.1

6.2.4 16 bit resolution PWM

When a higher resolution is desired for the PWM waveform, the 8 bit PWM channels can be
concatenated in pairs, to obtain 16 bit PWM channels. The concatenation is controlled by the CONx
bits of the PWMCTL register (CON01 for channels 0 and 1, CON23 for channels 2 and 3, CON45 for
channels 4 and 5 and CON67 for channels 6 and 7).

Figure 6.7 Diagram of the 16 bit PWM channel obtained by concatenating channels 0 and 1

When two PWM channels are concatenated the lower numbered register in the pair becomes the
high-order byte of the double byte channel. As shown in Figure 6.7, for the case of concatenating
channels 0 and 1, the PWMCNT0, PWMDTY0 and PWMPER0 registers take the role of high order byte.
All the other control features (enable, polarity, alignment, clock source -including the prescaling
functions) of the 16 bit PWM channels are controlled by the low order bytes (higher number in the
pair). in the case of concatenating channel 0 and 1 the following configuration bits are used: PWME1,
PPOL1, PCLK1, CAE1.

PWNCTL PWME PWMPOL PWMCLK PWMPRCLK PWMCAE PWM Output

CON67 PWME7 PPOL7 PCLK7 PCKB2 PCKB1 PCKB0 CAE7 PWM7
CON45 PWME5 PPOL5 PCLK5 PCKA2 PCKA1 PCKA0 CAE5 PWM5
CON23 PWME3 PPOL3 PCLK3 PCKB2 PCKB1 PCKB0 CAE3 PWM3
CON01 PWME1 PPOL1 PCLK1 PCKA2 PCKA1 PCKA0 CAE1 PWM1

Table 6.4 16 bit PWM channels configuration registers

EXERCISE 5.1 Generate two 12.5 KHz PWM signals, with a 20% duty cycle on channel 1 and an 80%
duty cycle channel 5. Use the oscilloscope to view the generated signals.

6.2 PWM generation on S12 79

EXERCISE 5.2 Repeat the previous exercise but for channels 2 and 3.

EXERCISE 5.3 Remove the jumper mounted to connect the LED associated to the Port B 0 pin on the
ZK-S12-B board and connect the PWM channel 0 output to the LED-side pin. Use the PWM channel 0
output to control the brightness of this LED. The brightness change will be controlled by using the 4
switches on the board as follows:

• pushing SW0 sets the brightness to 20%
• pushing SW1 sets the brightness to 40%
• pushing SW2 sets the brightness to 60%
• pushing SW3 sets the brightness to 80%

Hint: The brightness is controlled by changing the duty cycle. A 100% duty cycle will lead to a full
brightness level while a 0% duty cycle will lead to a turned off LED.

 THE ANALOG-TO-DIGITAL CONVERTER UNIT (ATD)

Depending on the chosen variant, the S12 chip has 1 or more identical ATD units (while ATD is the
name of the S12 converter, ADC is the more often employed acronym for analog to digital converters).
Each ATD unit is able to perform conversions on 8 or 10 bit resolution at a sample rate that varies
between 500 kHz and 2 MHz. A single 8 bit conversion can be performed as quickly as 6μs while 10-
bit conversions require 7µs. These conversions are accurate at ±1 in the Least Significant Bit (LSB). The
use of 10-bit resolution is encouraged only when the application mandates it, otherwise note that this
requires 16 bits to store the result and also increases the acquisition time; while 16 bits are not
necessary a high demand, the main idea behind embedded applications is to be rational when
spending resources. For further reading, see [16] as the reference manual for the ATD unit and also
[17] as an introduction on how this unit works.

Practical consideration. Always use the 8-bit conversion in favour of 10-bit if this is enough for your
application. Using a lower conversion rate will always increase the accuracy of the conversion.

7.1 GENERAL ADC CONCEPTS AND THE S12 ATD UNIT

7.1.1 Applications and some theoretical considerations on sampling rate, resolution and accuracy.

In general, the ADC converter is used whenever acquiring data from sensors is needed. This is
because a sensor can represent the value of some continuous physical quantity (there are countless
examples: temperature, humidity, pressure, acceleration, weight, etc.) by means of electric voltage
and then the ADC unit can further convert this voltage in a digital (binary) format. Briefing through
some theoretical notions is in order:

• A strong theoretical result is the Nyquist-Shannon sampling theorem which states that in order

to perfectly reconstruct a continuous signal (analog) of limited bandwidth B, it is sufficient to sample

it at a rate that is twice the bandwidth 2B. This sampling rate of 2B (which is twice the highest

frequency for baseband signals) is also called the Nyquist rate. While this gives you a hint on the rate

at which signals should be sampled, it does not mean that if you do so you will be able to perfectly

reconstruct the signal because in practice your conversion is also limited by the resolution of the

measurement (you will always sample on a predefined number of bits, but a continuous signal has an

amplitude that is part of the real domain, thus a perfect reconstruction may not be practically

possible).

• The resolution of the ADC is the number of discrete values that it can produce over the analog

range. For ADC this is usually expressed in bits, for an 8-bit ADC you have 28 = 256 values and for 10-

bit ADC you have 210 = 1024 values. The resolution can also be expressed in volts by dividing the full

input range of the signal to the number of discrete values, i.e., ���� � ���	/2�, where b is the

resolution in bits. For example, for b = 8, we have a
��

��
� 19.53�� resolution.

• The precision and accuracy are two relevant (and distinct) notions related to the

measurement. Accuracy means how close your measurement is to the real (true) value. Precision is

the degree in which your measurement, if repeated in the same conditions, will yield the same result.

7.1.2 The S12 ATD unit

Figure 7.1 presents the block diagram of the ATD module according to [16], we will detail this in
what follows. To begin with, the following need to be defined:

• ANx are the analog signal input pins,

7.1 General ADC concepts and the S12 ATD unit 81

• PADx are the pins used for general purpose digital input,

• VDDA and VSSA are the power (voltage) supplies of the circuit,

• VRH and VRL are the high and low reference voltages. For simplicity VRL is usually set to

ground (0V) and VRH to VDD (5V).

Figure 7.1 Block diagram of the ATD unit from S12 (as described in [16])

The main elements are of the ADC are now described based on [17]. Let us group them in two
categories:

a. The analog subsystem – contains the analog part that is necessary for conversion:

• MUX – a multiplexer that selects one of the 8 inputs,

• an input sample amplifier is connected next to the MUX,

• RC-DAC – a resistor-capacitor digital-to-analog converter,

• Comparator – a high-gain comparator that indicates if each successive output of the

RC-DAC is higher or lower than the sampled input.

b. The digital control subsystem – contains the registers and logic for controlling the

conversion:

• SAR – the successive approximation register that stores one bit at a time and when

finishing it transfers the result to the result register,

• Mode and Timing control – used to specify the format of the result, the multiplexer

input, sample time, etc.,

• ATD Input Enable register – controls the input buffer from the analog input pin ANx.

Prerequisites for using the ATD

Before performing a conversion VDDA must be connected to 5V, VSSA to 0V, VRH must be less or
equal to 5V and VRL must be higher than 0 but less than VRH. The circuit needs about 20μs to stabilize
and the result of the conversion can be read only after the SCF flag is set, make sure to wait at least
20μs when powering up the ATD (make sure to implement a small sub-routine to guarantee this
delay).

Steps when acquiring conversion results.

Make sure to follow the following steps whenever performing conversions (registers mentioned
below are described in the following section):

82 The Analog-To-Digital Converter Unit (ATD) - 7

a. power up the ATD by setting ADPU bit in ATDCTL2,

b. configure the ATD as desired for your application by setting up ATDCTL3 and ATDCTL4 (wait

at least 20μs after this step),

c. select the channel on which you want to perform conversion by writing to ATDCTL5,

d. whenever you want to read the result of the conversion, make sure to test the SCF flag in

the ATDSTAT register.

7.1.3 Conversion algorithm.

Clarifying how conversion actually works may be useful. The ATD circuit uses the successive-
approximation method for conversion. That is, it first initializes the SAR register to 0 and then makes
bit-by-bit guesses starting from the most-significant bit. Concretely, starting from the most-significant
bit, the bit is set to 1, then the value from the SAR is converted to an analog voltage and compared via
the Comparator to the original value. If the value from the SAR is larger, then clears the bit to 0. The
operation is repeated for each subsequent bit until reaching the least significant one.

7.2 ATD ASSOCIATED REGISTERS

Table 7.1 provides an overview of the ATD registers. The striked-out values are only available for
factory testing purposes. From the rest of the registers, the ones that are of more interest to us are
the control registers, status registers and result registers. These are going to be explained next.

ATDCTL0 - ATD Control 0 R ATDTEST0 – ATD Test 0 R
ATDCTL1 - ATD Control 1 R ATDTEST1 - ATD Test 1 RW
ATDCTL2 - ATD Control 2 RW ATDSTAT1 - ATD Status 1 R
ATDCTL3 - ATD Control 3 RW ATDDIEN - ATD Input Enable RW
ATDCTL4 - ATD Control 4 RW PORTAD - Port Data R
ATDCTL5 - ATD Control 5 RW ATDDRHx - ATD Conversion Result High RW
ATDSTAT0 - ATD Status 0 RW ATDDRL - ATD Conversion Result Low RW

Table 7.1 Overview of the ATD associated registers and their (striked-out registers are for factory test purposes only)

7.2.1 ATD control registers

ATDCTL2

7 6 5 4 3 2 1 0
ADPU AFFC AWAI ETRIGLE ETRIGP ETRIGE ASCIE ASCIF

The ATDCTL2 registers controls power-down, triggers and interrupts as follows:
• ADPU (ATD Power Down/UP) - cleared to 0 powers down the ATD, when set to 1 results in

normal ATD functionality,

• AFFC (ATD Fast Flag Clear All) - cleared to 0 results in ATD flag clearing to operate normally

(read the status register ATDSTAT1 before reading the result register), when set to 1 any

access to a result register will cause the associate CCF flag to clear automatically,

• AWAI (ATD Power Down in Wait Mode) - when cleared to 0 ATD continues to run while S12

is in Wait mode, when set to 1 it halts conversion and power down ATD during Wait mode

• ETRIGLE (External Trigger Level/Edge Control) and ETRIGP (External Trigger Polarity) control

the trigger edge and polarity as seen in table below:

ETRIGLE ETRIGP External Trigger Sensitivity

0 0 Falling edge
0 1 Rising edge
1 0 Low level

7.2 ATD associated registers 83

1 1 High level

• ETRIGE (External Trigger Mode Enable) - when cleared to 0 disables external trigger, when

set to 1 enables external trigger. The external trigger must be applied on channel 7, i.e., PAD7.

• ASCIE (ATD Sequence Complete Interrupt Enable) - when cleared to 0 ATD Sequence

Complete interrupt requests are disabled, when set to 1 an ATD Interrupt will be requested

whenever ASCIF=1 is set.

• ASCIF (ATD Sequence Complete Interrupt Flag) - cleared to 0 when no ATD interrupt occurred

and set to 1 when ATD sequence complete interrupt pending (writes have no effect on it)

ATDCTL3

7 6 5 4 3 2 1 0
- S8C S4C S2C S1C FIFO FRZ1 FRZ0

ATDCTL3 is responsible for the length of the conversion, behaviour in freeze mode and the FIFO

mode as follows:
• SxC (Conversion Sequence Length) - set the length of the conversion as follows:

S8C S4C S2C S1C Conversion Sequence Length

0 0 0 0 8 conversions
0 0 0 1 1 conversion
0 0 1 0 2 conversions
0 0 1 1 3 conversions
0 1 0 0 4 conversions
0 1 0 1 5 conversions
0 1 1 0 6 conversions
0 1 1 1 7 conversions
1 x x x 8 conversions

• FIFO (Result Register FIFO Mode) - when cleared to 0 the result of the first conversion appears

in the first result register, the result of the second in the second result registers, etc., when

set to 1 conversion results are placed in consecutive result register and wrap around at the

end,

• FRZx (Background Debug Freeze Enable) - operates as follows:

FRZ1 FRZ0 Freeze mode behavior

0 0 Continues conversion
0 1 Reserved
1 0 Finish current conversion then freeze
1 1 Freeze immediately

ATDCTL4

7 6 5 4 3 2 1 0
SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0

ATDCTL4 is responsible for the length of the conversion, sample time and clock pre-scaler as

follows:
• SRES8 (A/D Resolution Select) - when cleared to 0 it gives 10 bit resolution, when set to 1 it

gives 8 bit resolution

84 The Analog-To-Digital Converter Unit (ATD) - 7

• SMP1 and SMP0 (Sample Time Select) - selects the length of the second phase of the sample

time according to the following table.

SMP1 SMP0 Sample time

0 0 2 A/D conversion clock periods
0 1 4 A/D conversion clock periods
1 0 8 A/D conversion clock periods
1 1 16 A/D conversion clock periods

• PRSx (ATD Clock Prescaler) - used to divide the Bus Clock which yields an ATD clock equal to

BusClock/(PRS+1)*0.5. For example if PRS is set to 00011 (3) the ATDclock is the BusClock

divided by 8.

ATDCTL5

7 6 5 4 3 2 1 0
DJM DSGN SCAN MULT - CC CB CA

ATDCTL5 is responsible for the type of conversion and the inputs that are sampled (any write to

this register aborts the current activity and starts a new conversion) as follows:
• DJM (Result Register Data Justification) - when cleared to 0 sets left justified data, when set

to 1 selects right justified data in the result register,

• DSGN (Result Register Data Signed or Unsigned Representation) - when cleared to 0

unsigned data is selected and when set to 1 signed data representation is available in the

result registers,

• SCAN (Continuous Conversion Sequence Mode) - when cleared to 0 a single conversion takes

place, when set to 1 continuous conversions are taken,

• MULT (Multi-Channel Sample Mode) - when cleared to 0 a single channel is sampled, when

set to 1 multiple channels are sampled (the number of channels is given by the SxC bits),

• CC, CB, CA (Analog Input Channel Select Code) - selects the input channel, when MULT = 0

this is precisely the channel that is measured, when MULT = 1 this is the first channel to be

measured and subsequent channels are measured in incremental order (wrapping around the

minimum value), e.g., 000 is AN0, 001 is AN1, 010 is AN2, etc.

EXERCISE 6.1 The following sequence of code can be seen in the demo that comes with your S12
development kit. Please explain how the ADC works when set via the following lines. Detail the effect
of each line

 ATDCTL3 = 0x08;
 ATDCTL4 = 0x82;
 ATDCTL2 = 0x80;
 ATDCTL5 = 0x30;

7.2.2 ATD status registers

ATDSTAT0

7 6 5 4 3 2 1 0
SCF - ETORF FIFOR - CC2 CC1 CC0

7.2 ATD associated registers 85

The ATDSTAT0 register provides a set of indicator flags for the status of various functions. It

contains the following fields:
• SCF (Sequence Complete Flag) – will be set to 1 when a conversion is completed. When

continuous conversions are enabled this flag is set after the completion of each conversion.
The flag is cleared by setting it to 1 or as a consequence of writing to ATDCTL5 (starting a new
conversion) or when a result register is read while AFFC = 1.

• ETORF (External Trigger Overrun Flag) – this flag is set if additional active edges are detected
during a conversion sequence when edge trigger mode is active. The flag is cleared by setting
it to 1 or if any of the non-reserved ATDCTLx registers are written to.

• FIFOR (FIFO Overrun Flag) – this flag is set when a result register is written to before clearing
the conversion complete flag associated to it. To clear this flag set it to 1 or start a new
conversion sequence.

• CCx (Conversion Counter) – The conversion counter bits indicate the result register that holds
the result of the current conversion. The counter is always reset to 0 at the beginning and end
of a conversion in non-FIFO mode but will not be reset in FIFO mode. When the maximum
value is reached the counter wraps around to 0. The conversion counter is cleared by a write
to a non-reserved ATDCTL register.

ATDSTAT1

7 6 5 4 3 2 1 0
CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0

The ATDSTAT1 register is a read-only register that contains the Conversion Complete Flags (CCF)

for all channels. Each conversion flag CC is automatically set at the end of a conversion in a sequence
of conversions. Each flag is associated to a position in the conversion sequence, eg. CCF0 is associated
to the first conversion in a sequence, CCF1 to the second one and so on. When CCFx is 0 the xth

conversion in the sequence is not completed while when it is set to 1 the conversion is completed and
the result is available in the ATDDRx register.

7.2.3 ATD test registers

ATDTEST0 is reserved, writing to it can be done only in special modes and can alter functionality.
Reading it can be done at any time but returns undefined values.

ATDTETST1

7 6 5 4 3 2 1 0
- - - - - - - SC

ATDTEST1 register has a single implemented bit – the SC (Special Channel Conversion) Bit. This

bit can be set to 1 to enable special channel conversions. If it is set to 0 the special channel conversions
will be disabled. When in special channel conversion mode, the analog input behaves as illustrated in
the table below.

SC CC CA CB Analog Input Channel

1 0 X X Reserved
1 1 0 0 VRH
1 1 0 1 VRL
1 1 1 0 (VRH+VRL)/2
1 1 1 1 Reserved

86 The Analog-To-Digital Converter Unit (ATD) - 7

7.2.4 ATD input enable register

ATDDIEN1

7 6 5 4 3 2 1 0
IEN7 IEN6 IEN5 IEN4 IEN3 IEN2 IEN1 IEN0

The ATDDIEN register is used to configure the analog input pins as digital inputs. Setting IENx to 1

enables digital input buffer from ANx to the PTADx data register.

7.2.5 ATD port data register

PORTAD

7 6 5 4 3 2 1 0
PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0

PORTAD is used to read the digital signal levels of the pins (the pins are shared with analog inputs

AN0..AN7). If the digital input is enabled on pin x, that is IENx=1, then PTADx returns the logic level on
ANx, otherwise PTADx will read 1.

7.2.6 ATD conversion result registers

The results of the conversion are stored in pairs of 8-bit read-only registers ATDDRHx/ATDDRLx.
The result data is formatted according to the justification and sign settings. When left justification is
selected the result is positioned so that the MSB of the result is located in the MSB of the ATDDRHx
register. If right justification is used the result starts with its LSB situated in the ATDDRLx LSB. Signed
data is stored as 2’s complement and can be used only with left justification. Signed data setting is
ignored when right justification is active.

EXAMPLE 6.1 In this exercise you will have to use an oscilloscope (Figure 7.2 shows a Tektronix
TDS1001B oscilloscope) and a function generator like the TG120 pictured in Figure 7.3. You are
requested to generate rectangular waves of [0, 5V] with a period of 1 to 8 ms and compute the length
of this period by using your S12 development kit. You will light up LEDs 1 to 8 (LD0-7) according to the
period of the signal. Figure 7.4 shows the board setup for this exercise. Note the following:

• a wire is connected to pin 56 which is channel 05 of the ATD
• the oscilloscope and function generator probes are connected to the other end of the wire
• set the common ground pin on the board.

Solution: The next step to take after making the HW setup is to set up the ATD module. We decided
to use 8-bit resolution, and continuous conversions on channel 5. All this is configured by using the
ATDCTLx registers. The period of the signal will by calculated by incrementing a counter after each
conversion until the first encountered falling edge. The counter value along with the ATD timing
settings will give a measure on the signal period. This can be then used to light up the LEDs according
to the exercise requirements.

7.2 ATD associated registers 87

Figure 7.2 A Tektronix TDS1001 oscilloscope (use it to visualise the signal generated by the function generator)

Figure 7.3 TG120 function generator (use it to generate the square wave that is the input to the ADC)

Figure 7.4 The board setup for this exercise

The complete solution for implementing this example is given in the following code snippet.

void wait1()
{
 asm{
 LDX #$230
loop2:
 DEX
 BNE loop2

88 The Analog-To-Digital Converter Unit (ATD) - 7

EXERCISE 6.2 Using the code from the previous example, measure the characteristics of the square

wave and output an identical one by the use of the PWM circuit. Use channel 2 of the oscilloscope to

plot the second square wave. Consider also asymmetrical signals

 }
}

void main(void)
{
 byte current_value = 0, previous_value = 0;
 int period = 0;

 ATDCTL2 = 0x80; //power up the ADC by setting ADPU bit in ATDCTL2
 wait1(); //wait 100us before using the ATD
 ATDCTL3 = 0x00; //configure ATDCTL3, ATDCTL4 and ATDCTL5
 ATDCTL4 = 0x81; //8-bit resolution, ATDClk=BusClk/4
 ATDCTL5 = 0x25; //contiouns conversions, i.e., SCAN, on channel 5: PAD05/AN05, i.e. pin 56

 for(;;)
 {
 while((ATDSTAT0 & 0x80) == 0) {} //waits while SCF bit is set to 1
 //result is in ATTDR0
 current_value = ATDDR0H;
 if ((current_value - previous_value) < 5) {
 period++;
 }
 else {
 period = 2*period;
 // f = 1Hz => T = 1000ms
 if (period > 1000) { PORTB = 0x01;}
 // f = 2Hz => T = 500ms
 else if ((period > 500) && (period < 1000)) { PORTB = 0x03;}
 // f = 3Hz => T = 333ms
 else if ((period > 333) && (period < 500)) { PORTB = 0x07;}
 // f = 4Hz => T = 250ms
 else if ((period > 250) && (period < 333)) { PORTB = 0x0F;}
 // f = 5Hz => T = 200ms
 else if ((period > 200) && (period < 250)) { PORTB = 0x1F;}
 // f = 6Hz => T = 166ms
 else if ((period > 166) && (period < 200)) { PORTB = 0x3F;}
 // f = 7Hz => T = 140ms
 else if ((period > 140) && (period < 166)) { PORTB = 0x7F;}
 // f = 8Hz => T = 125ms
 else if (period < 140) { PORTB = 0xFF;}
 period = 0;
 }
 previous_value = current_value;
 wait1();
 }

 INTERNAL MEMORY

This chapter will present basic memory concepts and guide you through the S12 internal memory
system by presenting the types of available memory, its organization and mapping.

8.1 BASIC CONCEPTS ON MEMORIES

8.1.1 Common memory types

Most microcontrollers require different types of memories to fulfill their tasks. Some are built for
being used along with external memories but more commonly they come equipped with the needed
memories. Memories can be divided in two main categories: random access memory (RAM) and read
only memory (ROM).

RAM memories are volatile memories (their content is lost once the power supply is turned off)
which can be written to or read from. They have shorter access times in comparison to ROM memories
and are usually used to store temporary data during program execution. Several types of RAM
memory are available such as the dynamic RAM (DRAM) and the static RAM (SRAM). SRAM has a
smaller density and more power consuming than DRAM but it offers faster memory access.

On the other side, ROM memories are nonvolatile (their content is retained even when the power
supply is removed), with a much longer access time than RAM and are typically used to store the
program object code and constants. The first ROM memory types were not reprogrammable (ROM
and PROM). They could only be programmed once and if changes were made to the firmware they
had to be completely replaced. Erasable programmable ROMs (EPROMS) can be erased by exposure
to UV light and reprogrammed afterwards. The electrically erasable programmable read only memory
(EEPROM) can be erased electronically.

The most commonly used ROMs currently available are based on this technology. There are two
categories of EEPROMs: flash EEPROM (commonly known as flash memory) and byte-erasable
EEPROM (simply called EEPROM). The main difference between these two types is that flash can be
erased and reprogrammed either completely or in a block-wise manner while the byte-erasable
EEPROM, as its name suggests, allows the erasing and reprogramming of individual bytes. Flash
memories are typically employed for holding the embedded software as it eases the development
process due to its easy reprogrammable mechanism. EEPROMs are usually used for storing data such
as constants or system configuration and calibration data.

8.1.2 Memory mapping

Memory content is accessed through addressing requiring the association of addresses to memory
locations. Memories available on a microcontroller are all mapped in an address space the size of
which is given by the addressing capabilities of the CPU, i.e. the width of the address bus. A part of
this address space is reserved for registers and the interrupt vector.

This apparently limits the amount of memory that can be used on certain configuration. For
example in a 16 bit addressing space we can address 0x10000 (65536) memory locations (bytes).
However, there is a solution to alleviate this problem which implies using a memory paging or banking
scheme. This means that certain memory sections will act as windows in which at a given time we can
access one portion of a larger memory area. If for example we would need to work with a 256Kbyte
flash memory using a single 16Kbyte page we will only be able to access 16Kbytes from the entire flash
memory at a time. For accessing another part of the flash memory a page/bank change operation is
needed. Even though it is functional, this mechanism adds overheads that should be avoided if
possible by choosing a chip with a larger address space.

90 Internal memory - 8

8.2 THE S12 MEMORY SYSTEM

The S12 family members come with specific memory configurations, each having a specified
amount of RAM, Flash and EEPROM. These memories can be accessed from the S12 address space in
which they are assigned a default position. Figure 8.1 illustrates the memory maps of the three S12
microcontrollers included in the ZK-S12 development kit. This shows that the memory organization is
very similar on all S12 devices, the variations being given only by the register count and memory sizes.

Figure 8.1 Memory map of various S12microcontrollers according to [3], [18] and [5]

Due to the limited addressable memory space (16-bit address bus) some S12 family members use
memory paging schemes for being able to address the entire memory available. This applies to all
memory types available: RAM, Flash and EEPROM. The following presentation of the S12 memory
system will be based on the S12DT256 and can be used as a reference for other S12 chips. For specifics
on other family members please consult the corresponding datasheets and user manuals.

8.2.1 S12 Flash memory

The amount of Flash memory available on each S12 family member can vary in size between 32kB
and 1MB. Memories larger than 64kB are divided in two or more blocks 64kB in size (4 such blocks in
the case of 256K flash) which can be read, erased or programmed concurrently. The entire Flash
memory is organized into 16kB pages as illustrated in Figure 8.2. The last two pages in Block 0 will be
directly mapped to fixed memory locations. Page 0x3E will be directly accessible in the 0x4000-0x7FFF
interval while page 0x3F will always be directly accessible at 0xC000-0xFFFF. All the pages can selected

8.2 The S12 memory system 91

to be mapped in the 0x8000-0xBFFF interval by setting the PPAGE register. This includes pages 0x3E
and 0x3F even though this might seem redundant.

Figure 8.2 S12D256 Flash memory layout according to [18]

As for all previously described modules, a set of register dedicated for the configuration of the
flash memory module is provided. These registers are described in what follows.

The Flash Clock Divider (FCLKDIV) register is dedicated for the configuration of timings in the
programming and erasing process.

FCLKDIV

7 6 5 4 3 2 1 0
FDIVLD PRDIV8 FDIV5 FDIV4 FDIV3 FDIV2 FDIV1 FDIV0

• FDIVLD (Clock Divider Loaded) – when this flag is set to 1 it indicates that the FCLKDIV register

has been written to since the last reset. This bit is read-only;
• PRDIV8 (Enable Prescaler by 8) – enables (when set to 1) a prescaling by 8 of the flash module

input clock before feeding it into the CLKDIV divider;
• FDIVx (Clock Divider Bus) – The flash module clock will be divided by (1 + FDIV). In conjunction

with PRDIV8 this field is used to divide the flash module input clock to a frequency of 150-

92 Internal memory - 8

200kHz with a maximum divide ratio of 512. For more details on the sequence to be followed
when setting these fields refer to [18].

The security settings of the flash module are indicated by the FSEC (Flash Security) register. All bits

of this register are read-only.

FSEC

7 6 5 4 3 2 1 0
KEYEN1 KEYEN0 NV5 NV4 NV3 NV2 SEC1 SEC0

• KEYENx (Backdoor Key Security Enable) – set the bits of this field to ‘10’ to enable the

backdoor key access to the flash module. All other values (‘00’, ‘01’, ‘11’) will disable this
option;

• NVx (Non-Volatile Flag) – these bits are available as non-volatile flags;
• SECx (Flash Security) – when the two bits of this field are set to ‘10’ the state is set to

unsecured. All other bit combinations (‘00’, ‘01’, ‘11’) will secure the chip. After a backdoor
key access, the flash module is unsecured and the value of this field is automatically set to’10’.

The FTSMOD (Flash Test Mode) register is used to control Flash special modes.

FTSMOD

7 6 5 4 3 2 1 0
- - - WRALL - - - -

• WRALL (Write to All) – setting this bit to 1 enables the simultaneous writing of all banked

registers.

Other configuration options for the flash module are available in the FCNFG (Flash Configuration)
register.

FCNFG

7 6 5 4 3 2 1 0
CBEIE CCIE KEYACC - - - BKSEL1 BKSEL0

• CBEIE (Command Buffer Empty Interrupt Enable) – when set to 1 this bit enables interrupts

in case of empty command buffers in the Flash module;
• CCIE (Command Complete Interrupt Enable) – this bit should be set to 1 to enable interrupts

when all commands are being completed in the flash module;
• KEYACC (Enable Security Key Writing) – set this bit to 1 when interpret writes to the flash

array as keys for opening the backdoor. When this bit is 0 flash writes are interpreted as the
start of program or an erase sequence

• BKSELx (Register Bank Select) – these bits are used to select the available register bank. Table
8.1 shows the bit combinations needed to select each of the 4 banks of a 256KB Flash memory.
Bank 0 is selected by default.

BKSEL[1:0] Selected Register Bank

00 Flash 0
01 Flash 1
10 Flash 2
11 Flash 3

Table 8.1 Flash register bank selection

8.2 The S12 memory system 93

The FPROT (Flash Protection) register is a banked register that specifies which sectors are
protected against programming or erase. Each Flash block has its own FRPOT register all sharing the
same access address. The accessible protection register is selected by setting the bank bits. The default
accessible protection register is the one for Block 0. The upper sector of Flash has to be unprotected
to change the Flash protection settings loaded on reset.

FPROT

7 6 5 4 3 2 1 0
FPOPEN NV6 FPHDIS FPHS1 FPHS0 FPLDIS FPLS1 FPLS0

• FPOPEN (Open Flash for Program or Erase) – writing this bit to 1 removes protection and

enables programming or erasing on the flash sectors. When this bit is set to 0 protection is
enabled and all the other register field are ignored;

• NV6 (Non Volatile Flag) – this read only bit is used for non-volatile flags;
• FPHDIS (Flash Protection Higher address range Disable) – a 0 in this bit activates the

protection on the higher space of the flash address map (0xC000-0xFFFF);
• FPHSx (Flash Protection Higher address Size) – these bits determine the size of the protected

sector in the higher Flash address space according to Table 8.2 also illustrated in Figure 8.2.

FPHS Address range Size

00 0xF800-0xFFFF 2K bytes
01 0xF000-0xFFFF 4K bytes
10 0xE000-0xFFFF 8K bytes
11 0xC000-0xFFFF 16K bytes

Table 8.2 Setting flash protection for the higher address range

• FPLDIS (Flash Protection Lower address range Disable) - a 0 in this bit activates the protection
on the lower space of the flash address map (0x4000-0x7FFF);

• FPLSx (Flash Protection Lower address Size) – these bits determine the size of the protected
sector in the lower Flash address space according to Table 8.3 also illustrated in Figure 8.2.

FPHS Address range Size

00 0x4000-0x41FF 512 bytes
01 0x4000-0x43FF 1K bytes
10 0x4000-0x47FF 2K bytes
11 0x4000-0x4FFF 4K bytes

Table 8.3 Setting flash protection for the lower address range

The command status of the Flash state machine and flash array access, protection, and bank verify
status are defined by the FSTAT (Flash status) banked register.

FSTAT

7 6 5 4 3 2 1 0
CBEIF CCIF PVIOL ACCERR - BLANK - -

• CBEIF (Command Buffer Empty Interrupt Flag) – reading 1 from this bit indicates that the

buffers are ready for a new command while a 0 indicates that the buffers are full. This flag is
cleared by writing the CBEIF bit with 1;

• CCIF (Command Complete Interrupt Flag) – this flag indicates whether a command is in
progress (value is 0) or all previous commands are completed (value is 1). Writing this flag has
no effect as it will be cleared automatically when CBEIF is cleared;

94 Internal memory - 8

• PVIOL (Protection Violation) – this flag is set to 1 by an attempt to write or to program a
protected Flash memory area. This flag is cleared by writing 1 the PVIOL bit;

• ACCERR (Flash Access Error) – when read as 1 this flag indicates an illegal access to the
selected Flash block and is cleared by writing it to 1;

• BLANK (Array verified as erased) – this flag indicates that an erase verify command has
checked a Flash blocked and found that it was erased. If after issuing an erase verify command,
the BLANK bit is 0 and the CCIF bit indicates a completed command the Flash block is not
erased. Writing to this bit has no effect.

The Flash commands are given by writing the FCMD (Flash Command) register. This register is also

banked so commands written to it will only affect the associated Flash block.

FCMD

7 6 5 4 3 2 1 0
- CMDB6 CMDB5 - - CMDB2 - CMDB0

Valid commands are formed by setting the CMDBx bits according to Table 8.4. Writing any other
commands other than these will cause an access error and the setting of the ACCERR flag.

Command Meaning

0x05 Erase verify
0x20 Word program
0x40 Sector erase
0x41 Mass erase

Table 8.4 Valid Flash commands

Addressing of the Flash memory locations on which the commands are performed is done by using
the 16-bit FADDR (Flash Address) banked register. FADDR consists of two 8-bit registers: FADDRHI and
FADDRLO. Bit 15 of FADDR (bit 7 of FADDRHI) is tied to 0. In normal modes reading the FADDR returns
zero.

Data to be written with Flash commands is written in the 16-bit FDATA (Flash Data) register.
FDATA is also a banked register composed of two 8-bit registers: FDATAHI and FDATALO. In normal
modes FDATA is not writable and reads to zero. In special modes, FDATA is readable and writable
when writing to an address in Flash.

EXAMPLE 8.1 Write a function that receives a flash address as a parameter and erases the Flash sector
containing it.
Solution: The function implementing the erase should follow the operation sequence described next.
First the CBEIF flag should be tested to ensure that the address, data and command buffers are empty.
If they are, write an address inside the sector to be erased in the FADDR register and then write the
sector erase command (0x40) to the FCMD register. To start the command execution write the CBEIF
bit to 1. To ensure no errors have occurred check the ACCERR and PVIOL bits. The CCIF flag will indicate
the end of the command execution. The following code snipped illustrates the C implementation of
the sector erase function.

8.2 The S12 memory system 95

8.2.2 S12 EEPROM memory

The amount of EEPROM available on S12 chips also varies from none to 8KB. The EEPROM is
organized as an array of 2 byte words. The 4K EEPROM of the S12D256 chip has 2048 rows. The size
of the erase sector is 2 words or 2 rows (4 bytes). Erased bits will be read as 1 while a programmed bit
reads 0. The operations that can be performed on the EEPROM are similar to the ones available for
Flash. Figure 8.3 shows the memory layout of the on-chip EEPROM of the S12D256 microcontroller,
for other family derivative refer to their corresponding datasheets or user manuals.

Registers associated with the EEPROM module offer similar functionalities as the ones provided
for the Flash module. The available EEPROM registers are presented next.

The EEPROM Clock Divider (ECLKDIV) register is dedicated for the configuration of timings in the
EEPROM program and erase process.

ECLKDIV

7 6 5 4 3 2 1 0
EDIVLD PRDIV8 EDIV5 EDIV4 EDIV3 EDIV2 EDIV1 EDIV0

• EDIVLD (Clock Divider Loaded) – when this flag is set to 1 it indicates that the ECLKDIV register

has been written to since the last reset. This bit is read-only;
• PRDIV8 (Enable Prescaler by 8) – enables (when set to 1) a prescaling by 8 of the EEPROM

module input clock before feeding it into the ECLKDIV divider;
• EDIVx (Clock Bivider Bus) – The EEPROM module clock will be divided by (1 + EDIV). In

conjuction with PRDIV8 this field is used to divide the EEPROM module input clock to a
frequency of 150-200kHz with a maximum divide ratio of 512. For more details on the
sequence to be followed when setting these fields refer to [19].

The ECNFG (EEPROM Configuration) register provides additional interrupt configuration options.

ECNFG

7 6 5 4 3 2 1 0
CBEIE CCIE - - - - - -

int EraseSector(unsigned int addr)
{
 if (!(FSTAT & CBEIF))
 return 1; /* Command buffer not empty, return error */

 FADDR = addr; /* Write address location from the sector */
 FCMD = 0x40; /* Write sector erase command */
 FSTAT = CBEIF; /* Clear CBEIF to start the erase command */

/* Check if command was successfully issued*/
 if (FSTAT & (ACCERR | PVIOL))
 return 1; /* Access error or protection violation detected, return error */

 while(!(FSTAT & CCIF)); /* Wait until the erase command is completed */

 return 0; /* Return success */
}

96 Internal memory - 8

• CBEIE (Command Buffer Empty Interrupt Enable) – when set to 1 this bit enables interrupts
in case of empty command buffers in the EEPROM module;

• CCIE (Command Complete Interrupt Enable) – this bit should be set to 1 to enable interrupts
when all commands are being completed in the EEPROM module.

Figure 8.3 S12D256 4K EEPROM memory layout according to [19]

The EPROT (EEPROM Protection) register specifies which sectors are protected against program
or erase. The upper sector of EEPROM has to be unprotected and the EEPROM protect byte located
at address 0x0FFD must be written to for changing the EEPROM protection settings loaded on reset.

EPROT

7 6 5 4 3 2 1 0
EPOPEN NV6 NV5 NV4 EPDIS EP2 EP1 EP0

• EPOPEN (Open EEPROM for Program or Erase) – writing this bit to 1 removes protection and

enables programming or erasing on the EEPROM sector. When this bit is set to 0 protection is
enabled and all the other register field are ignored;

• NVx (Non Volatile Flags) – these read only bits are used for non-volatile flags;
• EPDIS (EEPROM Protection address range Disable) – a 0 in this bit activates the protection on

higher addres space of the EEPROM address map (0x0E00-0x0FFF);
• EPx (EEPROM Protection address Size) – these bits determine the size of the protected sector

in the higher EEPROM address space according to Table 8.5 also illustrated in Figure 8.3.

8.2 The S12 memory system 97

EP Address range Size

000 0x0FC0-0x0FFF 64 bytes
001 0x0F80-0x0FFF 128 bytes
010 0x0F40-0x0FFF 192 bytes
011 0x0F00-0x0FFF 256 bytes
100 0x0EC0-0x0FFF 320 bytes
101 0x0E80-0x0FFF 384 bytes
110 0x0E40-0x0FFF 448 bytes
111 0x0E00-0x0FFF 512 bytes

Table 8.5 Setting EEPROM protected address range

The command status of the EEPROM state machine and EEPROM array access, protection, and
bank verify status are defined by the ESTAT (EEPROM status) register. Some bytes of this register
(marked with a grey background) are only available in special mode

ESTAT

7 6 5 4 3 2 1 0
CBEIF CCIF PVIOL ACCERR - BLANK FAIL DONE

• CBEIF (Command Buffer Empty Interrupt Flag) – reading 1 from this bit indicates that the

buffers are ready for a new command while a 0 indicates that the buffers are full. This flag is
cleared by writing the CBEIF bit with 1;

• CCIF (Command Complete Interrupt Flag) – this flag indicates whether a command is in
progress (value is 0) or all previous commands are completed (value is 1). Writing this flag has
no effect as it will be cleared automatically when CBEIF is cleared;

• PVIOL (Protection Violation) – this flag is set to 1 by an attempt to write or to program a
protected EEPROM memory area. This flag is cleared by writing 1 the PVIOL bit;

• ACCERR (Flash Access Error) – when read as 1 this flag indicates an illegal access to the
selected EEPROM block and is cleared by writing it to 1;

• BLANK (Array verified as erased) – this flag indicates that an erase verify command has
checked the EEPROM array and found that it was erased. If after issuing an erase verify
command, the BLANK bit is 0 and the CCIF bit indicates a completed command the EEPROM
block is not erased. Writing to this bit has no effect;

• FAIL (Failed EEPROM operation Flag) – this flag is 1 when an EEPROM erase verify operation
has failed. Writing 1 in this bit erases the flag. This bit is available only in special mode;

• DONE (Complete EEPROM operation flag) – when this flag is 1 it indicates that an EEPROM
operation is completed. This bit is only available in special mode and writing to it has no effect.

The EEPROM commands are given by writing the ECMD (EEPROM Command) register.

ECMD

7 6 5 4 3 2 1 0
- CMDB6 CMDB5 - - CMDB2 - CMDB0

Command Meaning

0x05 Erase verify
0x20 Word program
0x40 Sector erase
0x41 Mass erase
0x60 Sector modify
Table 8.6 Valid EEPROM commands

98 Internal memory - 8

Valid commands are formed by setting the CMDBx bits according to Table 8.6. Writing any other
commands other than these will cause an access error and the setting of the ACCERR flag.

Addressing of the EEPROM memory locations on which the commands are performed is done by
using the 16-bit EADDR (EEPROM Address) register. EADDR consists of two 8-bit registers: EADDRHI
and EADDRLO. Bits 15 through 10 of EADDR (bits 7-3 of EADDRHI) are tied to 0. In normal modes
reading the EADDR returns zero.

Data to be written with EEPROM commands is written in the 16-bit EDATA (EEPROM Data)
register. EDATA is also composed of two 8-bit registers: EDATAHI and EDATALO. In normal modes
EDATA is not writable and reads to zero. In special modes, EDATA is readable and writable when
writing to an address in EEPROM.

8.2.3 Remapping memory sections

The default mapping of the register space, RAM, Flash and EEPROM may be changed by using
module mapping registers of the S12 chip. The register block, RAM and EEPROM can be assigned to
different memory locations by using the INITRG, INITRM and INITEE registers respectively [20]. It is
considered good practice to make this configuration during the program initialization phase. If
conflicts occur due to overlapping module mapping the allocation will be done according to the
priorities in Table 8.7.

The INITRG register initializes the position of the internal register within the available address
space. The registers can occupy 1 or 2 K byte of space depending on the S12 derivative and can be
mapped to any 2KB space within the first 32KB.

INITRG

7 6 5 4 3 2 1 0
- REG14 REG13 REG12 REG11 - - -

• REG1x (Internal Register map position) – these bits preceded by a 0 give the upper 5 bits of
the base address for the system registers.

Priority Resource

1 BDM firmware or register space
2 Internal register space
3 RAM memory block
4 EEPROM memory block
5 Flash memory block
6 Remaining external space

Table 8.7 Memory space allocation priorities

The INITRM register initializes the position of the internal RAM memory inside the system memory
map.

INITRG

7 6 5 4 3 2 1 0
RAM15 RAM14 RAM13 RAM12 RAM11 - - RAMHAL

• RAM1x (Internal RAM map position) – these bits give the upper 5 bits of the base address for

the RAM;
• RAMHAL (RAM High Align) – this bit sets the RAM alignment. Setting it to 0 aligns the RAM to

the lowest address of the mapable space, while setting it to 1 aligns it to the highest address.

The INITEE register initializes the position of the on-chip EEPROM within the system memory map.

8.2 The S12 memory system 99

INITEE

7 6 5 4 3 2 1 0
EE15 EE14 EE13 EE12 EE11 - - EEON

• EE1x (EEPROM map position) – these bits give the upper 5 bits of the base address for the

EEPROM;
• EEON (Enable EEPROM) – this bit enables the RAM in the memory map. Setting it to 0 disables

EEPROM from the memory map, while setting it to 1 enables it.

As previously mentioned the on-chip Flash memory that cannot be directly addressed due to its
size is accessed through the 16K byte page window. The PPAGE (Program Page Index) register is used
to select which flash block to be loaded in this window.

PPAGE

7 6 5 4 3 2 1 0
- - PIX5 PIX4 PIX3 PIX2 PIX1 PIX0

• PIXx (Program Page Index) – these bits give the number of the 16K Flash page to be loaded in

the page window.

EXAMPLE 8.2 Select Flash page 3 to be accessible in the flash page window.
Solution: The PIX bits of the PPAGE register have to be set to point at Flash page 3. Therefore the
PPAGE register has to be written with the value 0x03. The following code snippet give the solution.

EXERCISE 8.1 Write functions that provides an easy to use interface to all Flash operations.

EXERCISE 8.2 Write functions that provides an easy to use interface to all EEPROM operations.

EXERCISE 8.3 Write a program that remaps the internal registers, RAM and EEPROM so that they start
at the same base address. Read values from that address space and explain the content. Choose
different addresses and repeat the experiment.

PPAGE = 0x03; // set flash page register value

 REFERENCES

[1] Han-Way Huang, The HCS12/9S12: An Introduction to Software and Hardware Interfacing, Cengage
Learning, 2009.

[2] Daniel J. Pack and Steven F. Barrett, Microcontroller theory and applications: HC12 and S12,
Prentice Hall Press, 2007.

[3] Freescale Semiconductor, MC9S12C, MC9S12GC Family Reference Manual, MC9S12C128, Rev.
01.24, May 2010, http://www.nxp.com/files/microcontrollers/doc/data_sheet/MC9S12C128V1.pdf

[4] Freescale Semiconductor, MC9S12DT256 Data Sheet and Reference Manual, 08 Jul 2010,
cache.freescale.com/files/microcontrollers/doc/data_sheet/9S12DT256_ZIP.zip

[5] Freescale Semiconductor, MC9S12XDP512 Data Sheet, MC9S12XDP512RMV2, Rev. 2.21, Oct 2009,
http://www.nxp.com/files/microcontrollers/doc/data_sheet/MC9S12XDP512RMV2.pdf

[6] SofTec Microsystems, ZK-S12-B Starter Kit for Freescale HCS12(X) Family (80-Pin QFP ZIF Socket) –

User’s Manual, 2005.

[7] SofTec Microsystems, ZK-S12-B Schematic and Bill of Material, 2005.

[8] Freescale Semiconductor, HCS12 V1.5 Core user guide, Version 1.2, Original Release Date: 12 May
2000, Revised: 17 August 2000.

[9] Paul Atkinson, AN2434, Input/Output (I/O) Pin Drivers on HCS12 Family MCUs, Revised September
2004, Freescale Semiconductor, Inc., 2004.

[10] Freescale Semiconductor, Inc., S12 CPU Reference Manual, April, 2002, Revised: March 2006.

[11] Motorola Inc., HCS12 Microcontrollers Interrupt (INT) Module V1, 01 May 2003.

[12] Motorola Inc., CRG Block User Guide V02.07, Original Release Date: 29 Feb 2000, Revised: 11 Mar
2002.

[13] Motorola Inc., TIM_16B8C Block User Guide, Original Release Date: 28 Jul 2000, Revised: 11 Oct
2001.

[14] Freescale Semiconductor Inc., ECT_16B8C Block User Guide V01.06, Original Release Date: 2-Sep-
1999, Revised: 30-Apr-2010

[15] Freescale Semiconductor Inc., PWM_8B8C Block User Guide V01.17, Aug, 2004.

[16] Motorola, Inc., ADC Block User Guide, Version V02.10, DOCUMENT NUMBER S12ATD10B8CV2/D,
Original Release Date: 27 OCT 2000, Revised: 21 Feb. 2003.

[17] Martyn Gallop, AN2428/D, An Overview of the HCS12 ATD, Revised: January 2003, Freescale
Semiconductor, Inc., 2004

9 References 101

[18] Motorola Inc., FTS256K Block User Guide V03.01, Original Release Date: 8-Feb-2001, Revised: 8-
Apr-2003.

[19] Freescale Semiconductor, EETS4K Block User Guide V02.08

[20] Motorola Inc. HCS12 Microcontrollers, Module Mapping Control (MMC) V4, February, 2003.

