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Starting from practical scenarios we underline that the most relevant security vulnerabilities in 
practice come from weak protocol design or implementation flaws rather than from weak or flawed 
cryptography. In particular, we outline security vulnerabilities in several kinds of scenarios starting 
from well explored fields such as computer networks to less explored ones from the automotive 
industry and control systems. Some of the security flaws that we discuss are already known while 
others are new and have been subject of our previous research. Finally, we emphasize that to assure 
good security, focus should be on assuring correct implementations and proper tools for automatic 
verification of services. 
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1. MOTIVATION 

Security relies intimately on cryptography. But cryptography alone cannot assure security in practice 
since cryptography relies on software or hardware for implementation, on networking for data transport, on 
usability insights (since solutions have to be exploited by humans educated or not), etc. This point of view is 
not new and is confirmed frequently by practical incidents, some of them even of international level, that 
show vulnerabilities despite the use of strong cryptography (e.g., in the case of Stuxnet valid digital 
certificates were used to sign corrupted drivers). Recently, this has been also underlined by top 
cryptographers Koblitz and Menezes along with strong criticism on some flamboyant cryptographic 
assumptions from the last decade [12].  

Cryptography is built having adversaries in mind, but this does not generally hold for hardware or 
software and may be one of the reasons why cryptography has reached maturity faster than its software or 
hardware counterparts. For example, hardware implementations (for now classical cryptosystems) were 
ready as early as the late 80's but side channel attacks, such as timing attacks or differential power analysis, 
were considered only in '96 by Kocher et al. [13, 14] showing clearly that nobody devoted attention to the 
security of the implementation itself for more than a decade. The lack of preoccupation for security is 
pervasive in many areas. For example, industrial systems security came into attention only in the last decade 
and there are still many uncovered issues, as Stuxnet showed. The situation is apparently even worse in 
automotive security where cryptography is almost absent; several spectacular attacks are discussed in [15, 7]. 

In Fig. 1 we outline a view over the development flow of security solutions from theory to practice. We 
also point out some moments that we consider relevant for the development of each stage. For modern 
cryptography we consider the late 70's, although indeed its history can be traced earlier, i.e., the birth of 
public-key cryptography [8, 19], mainly because this moment marks somehow the move of cryptography 
from the secret (military) domain to public (academia) domain. Cryptographic algorithms were quickly 
adopted in protocols, e.g., the famous key distribution protocol by Needham and Schroeder [18], but only 
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much later did these protocols reach practical implementations and were subject to formal analysis and 
penetration testing. For practical implementations we point at Netscape's SSL since we consider this to be the 
first major security suite present in practice. As important points in formal verification of security protocols 
we highlight Meadows [17] and Lowe [16] for the first use and development of dedicated tools. An even 
more recent trend shows interest in the automatic generation of proofs for cryptosystems, the CryptoVerif 
tool developed by Blanchet and Pointcheval [5] is probably the first of this kind. But using formal methods 
to verify protocols (or even prove cryptosystems) and the existence of such tools does not necessarily make 
things easier since in order to use formal methods one has to build formal models that can express properties 
in an abstract way. This is not a trivial task, and sometimes it is hard to define certain notions. Consider for 
example trust or freshness for which there are several formal definitions that do not necessarily match.  

 It is easy to see the age difference between cryptographic theory and the actual deployment in practice 
of these solutions as well as their verification through model checking, penetration testing, etc. Thus if one 
wants to find a vulnerability in practice, it may be more effective to look at the less mature steps, e.g., 
implementation, rather than at the cryptographic design. We outline this idea in what follows using a 
practical case study. 
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Fig. 1 – Development flow: from theoretical foundations to practice. 

We continue with a motivating example. Siemens PLCs (Programmable Logic Controllers) came to 
widespread attention in the security community after the Stuxnet attack. To communicate over wireless 
networks, which are present in industry where cables are not an alternative, e.g., moving objects, 
SCALANCE routers are connected to the PLCs. These routers are the result of careful engineering work. In 
particular they use state-of-the-art cryptography that comes with SSL/TLS and WPA2. This includes modern 
algorithms such as: AES, RSA, DSA, ECDH, ECDSA, etc. 

Consider a simple scenario in which one wants to cut down the wireless communication. A first 
impression is that, to achieve this, a wireless signal jammer will be needed. But after careful inspection of the 
802.11 standard, it turns out that even if wireless security is assured via WPA2 (the strongest security level 
of the WiFi suite), de-authentication packets can be sent and they will cause the client to abort the 
connection. This can be done from any wireless device that allows cloning the MAC of the access point and 
there are lots of tools that can be used for this purpose.  

Things get even worse on careful analysis of the configuration protocol as it turns out that there is a 
bug in the authentication protocol which allows the reuse of a previous response in the login stage. More, 
HTTP still works even if HTTPS is disabled after an attack caused by the injection of a wrong SSL/TLS 
packet (this can actually tempt users to place their password on HTTP which will allow an adversary to 
capture it). And, less relevant, the authentication protocol is a weak password based protocol while there is 
no obfuscation in the JavaScript code of the web interface, making it straightforward to determine how 
authentication is done. Relevant to note, password based protocols resilient to guessing attacks are known for 
almost two decades but they are still somewhat absent from practical implementations. 
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Table 1 

Security features and vulnerabilities in an industrial WiFi AP 

Security Features Security Vulnerabilities 
  
Embeds state-of-the-art crypto (RSA, ECC, ECDH, 
AES, etc.) 

Accepts (forged) de-authentication packets 

WPA2 WiFi Security Bug in the authentication protocol 

HTTPS Web Security (SSL/TLS)  HTTP still active after HTTPS locks 

 No obfuscation in the Javascript code 

2. PROTOCOL VULNERARBILITIES 

To support the thesis, we outline several flaws in scenarios that cover a larger area from practice. We 
start by outlining some flaws that still persist in computer networking, despite the fact that most of them are 
commonly known. The we proceed to automotive and control systems, two areas which are somewhat newer 
for security incidents but for which practical incidents in the last five years showed that they can not be 
neglected anymore. 

2.1. Computer Networks 

Computer networks depend on protocols that specify the messages that are exchanged at runtime, their 
format and structure. Protocols are linked with different protocol stacks, e.g., TCP/IP, or different models, 
e.g., OSI, and many protocols with underspecified security are still present in practice. We enumerate several 
such issues below. 

The Point-to-Point protocol (PPP) (RFC 1661) is a data link layer protocol used for link establishment 
between two network nodes. This protocol is used by some ISPs when providing Internet services to clients. 
PPP can assure node authentication, encryption and data compression through the PAP and CHAP (RFC 
1994) protocols.  

PAP Authentication requires a simple handshake between two principals denoted in what follows as A 
and B: A→B: usernameA, passwordA; B→A: usernameB, passwordB. It is easy to see that attacks against PPP 
with PAP can be mounted in a straightforward manner because both the username and the password are sent 
in clear text.  

CHAP Authentication is stronger and follows a challenge-response structure in three steps as shown 
below. We use standard notations: A, B are participant’s names, SN is a sequence number and Pwd is the 
password. The nonce is used by CHAP to provide replay protection. To check for correctness, principal B 
will compute an MD5 on his side and if his result matches the one received from principal A then the 
authentication is correct. From time to time one of the nodes can request this process to be repeated. Even if 
CHAP provides a better authentication mechanism that PAP an attack can be also launched against CHAP as 
shown below. At the end of this attack A thinks that it has completed a connection with B, while C thinks that 
it is connected with A. To mount this attack, the same password must be present on all the routers from the 
routing domain - an occurrence that we emphasize is quite frequent in practice. 

 
A→B: request 
B→A: B,SN,Nonce 
A→B: A,SN,MD5(SN,Pwd,Nonce) 
 

 
A→B: request 
Adv→C: request 
B→Adv: B,SN,Nonce 
C→Adv: C,SN',Nonce' 
Adv→A: B,SN',Nonce' 
A→Adv: A,SN',MD5(SN',Pwd,Nonce') 

Fig. 2 – CHAP protocol (left) and an impersonation attack (right). 
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The Routing Information Protocol (RIP) (RFC 1058) is a network layer protocol used for path 
establishment by routers on the network. RIP gained popularity because it was deployed on BSD as the 
routed daemon. Since version 2, RIP offers authentication support (RFC 2453). The first authentication 
method, a plaintext authentication, requires again an insecure step: A→B: RP, Pwd. Here RP is the RIP 
packet. If the password that comes together with the routing update message is the same as the one 
configured on router B then the router will accept the routing update, otherwise the routing update is 
discarded. In case of plaintext authentication the password can be easily captured by the attacker using a 
sniffer. Once the attacker obtains the password he can construct false routing updates, by using these false 
routing updates, the routing tables of the whole routing domain can be corrupted, leading to a DoS attack. 
The second method is called cryptographic authentication (RFC 4822) and uses a keyed hash over the update 
packet: A→B: KID, SN, MD5(RP|Pwd). Here: KID is the id of the key that is used. If SN is bigger or equal 
to the last one that was received and if the MAC is correct then B accepts the routing update packet, 
otherwise it will be discarded. When using RIP, with MD5 authentication, the following attack can occur 
(presented in Fig. 2): the attacker captures a packet that was sent to Network 4, with sequence number SN4. 
It monitors the link between A and B to observe when the sequence number of the link becomes smaller than 
SN4. The sequence number is on 32 bits and it eventually cycles since one can force the router to increase 
the counter even by sending packets that will fail the authentication. Now, the attacker sends the captured 
packet to B. In this way B will think that Network 4 is directly connected to A and it will update its routing 
table to send all the packets destined to Network 4 through A, so data will no longer be able to reach 
Network 4. Another attack can be mounted against RIP with MD5 authentication when the split horizon with 
poison reverse rule is used. For example router C learns about Network 4 through router D. Because of the 
split horizon with poison reverse rule router C will send immediately a routing update to router D for 
Network 4 having the metric value 16 (infinite metric). The attacker can capture this packet, alter the source 
as coming from router D and send this packet back to C. Router C will think that Network 4 is no longer 
available and will no longer forward data to this network. This is also a form of DoS attack since router C 
can no longer reach Network 4. 

MS-CHAP and NTLM are application layer protocols developed by Microsoft that are used by 
Windows applications to access remote resources. The security of these protocols is based on the strength of 
the password which is chosen by the user. If the password has low entropy then the protocols can be attacked 
using dictionary attacks. Although password based protocols that are resilient to guessing are known, these 
weak protocols are still in use in Microsoft-based networks. 
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Fig. 3 – Network topology. 

2.2. Automotive Industry  

Embedded software employed in the automotive industry has evolved into complex applications due to 
the great variety of services offered by a modern car. Until recently, the security of such systems has been 
somewhat neglected and, as a result, many vulnerabilities are present in today’s automobiles. Some standards 
that impose the usage of security mechanisms exist and are used by automotive software manufacturers. 
However, these standards do not cover the whole spectrum of applications and often leave some important 
aspects, e.g., the cryptographic functions that should be used in the authentication protocol, up to the 
manufacturers. This is an important issue since it is not clear whether there is sufficient expertise to develop 
security on the manufacturer side. Moreover, almost always security details are hidden. Note that in contrast 
most of the secure solutions from practice, e.g., SSL/TLS, IPSec, are the result of public scrutiny and many 
subsequent versions of the protocol. 
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A continuously increasing interest is found in breaking protocols used for software reprogramming to 
allow tuning or a cheaper way of upgrading different vehicle modules. Software reprogramming is usually 
done using the diagnostics interface and an Internet search will show that the online community provides 
cracked diagnostic software and counterfeited diagnostic connectors for many car makes and models. A 
commonly exploited vulnerability in the case of diagnostics done over controller area networks (CAN) stems 
from the standards [24, 25] which specify that an authentication mechanism called SecurityAccess should be 
implemented for restricted diagnostic services (such as software update). However, no rule is imposed for the 
actual algorithm that should be used for the computation of the security keys. The standard also states that 
the key can be either stored or computed upon each request. Koscher et al. [15] showed that the 16 bit stored 
key could be found in about seven and a half days in their experiments.  

While some security mechanisms are provided for connecting to the interfaces available in vehicles, 
the protocols used for in-vehicle communication do not employ security. Koscher et al. [15] used a packet 
sniffing tool and reverse engineering to find a number of attacks on different vehicle modules. They also 
revealed deviations of the software implementation from the protocol standards, which provided new 
vulnerabilities. Sniffing together with replay attacks were also used by Hoppe et al. [11] on a CAN bus to 
build attacks on an electric window lift system.  

Wireless communication is being used more and more by modern automobiles. Passive keyless entry, 
the immobilizer, the multimedia system and even the tire pressure monitoring system are using wireless 
communication to perform specific tasks. Like in the case of wired buses, vulnerabilities exist especially 
when wireless technology is employed. Rouf et al. [20] investigated the case of a tire pressure monitoring 
system and proved that eavesdropping is possible at a distance of roughly 40 meters. The lack of 
authentication and basic input validation mechanisms enabled them to reverse engineer the communication 
protocol and to trigger the sensors remotely resulting in a false warning being issued to the driver. In some 
cases a secure wireless communication protocol proves to be insufficient for providing security. As an 
example, the strong authentication and encryption used by passive keyless entry and start systems can be 
bypassed using simple relay attacks as proved by Francillon et al. in [10]. They built an inexpensive 
construction that allowed them to relay messages between the car and the smart key. The relaying system 
enabled them to open the car and even start its engine from distances up to 50 meters (maximum tested 
distance) without the need of getting close to the key (the key could be excited from up to 8 meters). 

One way of counteracting attackers in search of protocol vulnerabilities is to use Intrusion Detection 
Systems (IDS). Such systems would monitor the in-vehicle communication in search for specific patterns 
that would indicate the presence of an attacker. Hoppe et al. [11] propose three patterns that may be used by 
an IDS operating on a CAN bus: abnormal message frequency, obvious misuse of CAN IDs and electrical 
signal characteristics. For building an efficient IDS, a comprehensive spectrum of attack patterns has to be 
established as a result of the careful modelling of attacker capabilities and behaviour along with a 
corresponding threat analysis [23]. 

2.3. Control Systems  

In today’s automation world the requirements are high and complex. Each new system has to be better, 
more reliable, more flexible and more user friendly than previous ones. New software technologies have 
emerged due to the need of integrating machines, control and monitoring instruments, field equipments in 
easy-to-use visualization environments and web-based applications. These technologies include: PCS7, 
Step7, WinCC SCADA/Flexible (Siemens), CX-Supervisor/CX-Programmer (Omron), Genesis 32 
(ICONIX), Labview (National Instruments). By merging these concepts and modules, a successful and fully 
functional SCADA, DCS or PLC based system can be obtained. But there is still little attention in assuring 
security with respect to cyber attacks as shown by practical incidents, e.g., Stuxnet. 

To draw a succint image of a modern SCADA/DCS system we outline one brief design in Fig.4. The 
schematics illustrates an actual SCADA topology, with Siemens equipments and software for monitoring and 
control of thermal power plant processes. Functional requirements include a minimum key set of features 
such as: uninterrupted operator control and monitoring, remote and safe operation and monitoring from 
anywhere in the world, suggestive synoptic images, evolution charts with database value storage, archives 
and easy to interpret alarm system, report generation on key parameters of the plant, flexibility, scalability 
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and powerful modular structure. Some of these features respond to clear security objectives such as: 
authorization, availability, traceability, etc. But there are still many security objectives that are not covered 
and this leaves room for attacks.  

From the hardware point of view the system presented in Fig. 4 is built on Siemens modules and 
contains: PLCs, distributed data acquisition slaves (wired or wireless), operator servers, a web-server, human 
machine interfaces (HMI), an engineering system (ES), switches and wireless routers. While the exact 
behavior of this system is not relevant to the subject of our paper, this topology inherits several security 
vulnerabilities which concern us. Flaws in Scalance wireless routers were already outlined  in Table 1 and in 
previous research we showed that these can be exploited to place the controlled process in undesired states. 
The topology also includes standard PCs for clients and servers that all run under the Windows OS and can 
be target to common viruses, trojans and any kind of malware. This was exactly the entry point of Stuxnet. 
Finally, PLCs communicate on ProfiBus which has no cryptographic security whatsoever. Indeed, embeding 
security in ProfiBus was not an objective decades ago when these devices operated in secure perimeters. But 
this is certainly not the case today, so more efforts should be focused on assuring security in such 
environments. 
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Fig. 4 – A possible SCADA schematics for process control and monitoring. 

3. MODELLING AND AUTOMATIC DETECTION 

Cryptography offers secure blocks for most operations needed in practice: hashing, encryption, 
signature, etc. There are still some areas in which very efficient solutions are not yet known, for example 
deniable encryption or fully homomorphic encryption, but a large majority of security objectives are 
efficiently covered by cryptographic primitives and protocols. Notable, cryptographic theory is well ahead of 
practice and solutions exist even for the time when quantum computers will appear. 
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Significant progress has been also made on the formal verification of security protocols. There are 
many tools capable of verifying protocols: Meadows' NRL [17], Lowe's FDR [9], Blanchet's ProVerif [4], 
the AVANTSSAR tool-set which includes three such tools CL-Atse [22], OFMC [3] and SATMC [2]. 
However it is notable that these model checkers cannot handle all types of attacks. Examples include 
resource exhaustion and guessing attacks which we have addressed in previous work for the AVANTSSAR 
tool-set.  

An uncovered issue is the gap between the formal and computational views over cryptographic 
primitives. The formal view treats cryptographic operations in a symbolic manner while the computational 
one uses mathematical instruments such as complexity theory or probability theory. The first approach is 
more versatile and can be handled even by automatic tools but it can miss subtle aspects of certain 
cryptographic primitives. Bridging this gap has evolved into a very active area since the seminal paper of 
Abadi and Rogaway [1].  

But there is an even bigger gap between formal methods and tools for penetration testing.  Verifying 
implementations is not easy, and in fact can be impossible, since solving such an issue can be equivalent to 
solving the Turing completeness problem. But there is hope. In order to achieve the desired level of 
abstraction, one approach is to model the API of an implementation rather than the code. An interesting 
result is presented in [6] where attacks generated by a model checker are used to test security tokens, 
succeeding in breaking all of them. Two complementary approaches can be used to verify actual protocol 
implementations. Automatic extraction of models that can subsequently be verified formally has been done 
for C, F# and Java. The opposite approach is to construct and verify models, and provide a correct-by-
construction code generation technique, which has the advantage that more discipline can be enforced for 
both model and code. 

For implementations that are not limited to protocols, a different direction concerns static analysis 
techniques to detect or disprove certain classes of attacks. Type-based techniques and taint analysis are used 
for analysis of buffer overflow, code injection and format string and attacks, and other general information 
flow properties are checked using static analysis. 

Formal methods have also been used in lightweight and mixed approaches to verify implementations. 
Security-specific mutation operators can be applied to formal models, with the resulting attack traces used 
for mutation testing. White box fuzz testing uses advances in symbolic execution to direct exploration and 
achieve systematic coverage. Efficient constraint solvers for strings can be used to detect vulnerabilities such 
as buffer overflows and generate actual concrete inputs that exhibit the attacks. 

Many of these techniques have been combined into state-of-the-art implementations, such at the 
BitBlaze binary analysis platform [21] or the commercial Coverity suite that can analyze realistic 
applications, making automatic detection of several classes of security vulnerabilities a practical reality. 

4. CONCLUSION 

Nowadays, if one wants to mount an attack against some principal then implementation flaws should 
offer a bigger success rate than shortcomings in the cryptographic design. It is hard to state a more concise 
conclusion on the security of a system than Koblitz and Menezes did in [12]: "such an evaluation needs to 
incorporate many other disciplines and involve people with hands-on experience and not just theoretical 
knowledge".  Thus security is a mixture between efficient cryptosystems with tight security proofs, well 
investigated mathematical backgrounds, provable (or formally verified) protocols, correct (possibly verified 
or provable) implementations and of course educated users. To this one can add plenty of less understood 
black magic which is the reason why many ground-breaking papers will always appear on this subject. 
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