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ABSTRACT
In the light of the numerous reported attacks, designing
cryptographic protocols for in-vehicle embedded networks
was a constant preoccupation in the past few years. While
several research proposals appeared, a concrete performance
analysis of such protocols over a realistic network configura-
tion is still absent from the literature. In this work we ad-
dress the performance for various authentication protocols
that were recently proposed for the two most prominent ve-
hicular buses: FlexRay and CAN-FD. While a real-world ve-
hicular network is still out of reach for our work, we achieve
a first step in this direction by using a CANoe based sim-
ulation for these protocols over state-of-the-art automotive
buses. This allows us to draw a more realistic perspective on
the efficiency of existing proposals for bus authentication.
Our results suggest that sharing symmetric keys between
groups of nodes is the most realistic proposal as it creates a
balance between bandwidth efficiency and security level.

Categories and Subject Descriptors
[Security and privacy]: Security in hardware—Embedded
systems security

General Terms
Security

Keywords
broadcast authentication, embedded networks,
CAN-FD, FlexRay

1. INTRODUCTION
Contemporary vehicles are the result of an evolutionary

process that augmented mere mechanical devices with com-
plex electronics and intricate software counterparts. Recent
vehicles have dozens of ECUs (Electronic Control Units)
that implement a plethora of functions dedicated for safety
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critical tasks, e.g., braking and stability control, or mere
informational purposes to make a more pleasurable driving
experience. Of course, behind these miniature computers
called ECUs, a complex network infrastructure needs to be
deployed that connects these ECUs via cables and unavoid-
ably exposes information to the outsiders via various ports,
e.g., OBD (On-Board Diagnostics), or even wireless chan-
nels, e.g., WiFi, Bluetooth, 3G, etc. There are little doubts
that in terms of attacks and defenses vehicular networks will
evolve in a similar manner to computer networks. A solid
proof for this are the countless attacks that were published
in the recent years [9], [2].

The academic research community was quick to react with
various proposals for assuring security on vehicular buses
(these are all surveyed in a forthcoming section). However,
a comprehensive performance analysis of these solutions on
a real-world vehicular network is still missing. The reason
behind this is quite simple, in-vehicle infrastructures are still
subject to many proprietary solutions and architectural de-
tails that are not fully accessible to academic researchers. In
this work we take a first step in this direction by using the in-
dustry standard CANoe tool in order to simulate a realistic
state-of-the-art network based on FlexRay and CAN-FD.

1.1 State-of-the-art in-vehicle buses: FlexRay
and CAN-FD

The reasons for choosing these buses are clear: CAN is the
most common bus inside cars and FlexRay was designed as
its successor. Due to inherent expenses, FlexRay had not
yet entered in all vehicles and a direct successor of CAN
also emerged, i.e., CAN-FD (Controller Area Network with
Flexible Data-rate). We give next a brief description of these
two communication layers.

FlexRay is an automotive communication protocol de-
veloped by the FlexRay Consortium which gathers impor-
tant players in the automotive industry. It was designed as
a faster and more reliable alternative to other automotive
communication protocols existing at that time, e.g., CAN or
LIN. The protocol supports data rates up to 10 Mbit/s and
a data payload length of 254 bytes. The data is transmitted
between ECUs in the form of frames which have the struc-
ture presented in Figure 1. The bit-length of the fields are
displayed below, the only exception being the data field for
which the length is represented in bytes. FlexRay frames can
be either time-triggered (static frames) or event-triggered
(dynamic frames). FlexRay accomplishes the use of both
static and dynamic frames by employing a predefined com-
munication cycle (Figure 1) which defines specific segments
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Figure 1: FlexRay frame and communication cycle

for static and dynamic data. The communication cycle con-
tains an additional Symbol Window which typically holds
network maintenance data and signals for network start-up.
A Network Idle Time is used at the end of each commu-
nication cycle to maintain synchronization. The space for
static and dynamic data is configured during the network
design step. In our experimental FlexRay network, all the
FlexRay frames were configured as static, so they are being
sent cyclically with variable recurrences.

As a downside, FlexRay is more expensive and complex.
Therefore, it is mainly used in the safety critical applications
of an automobile where strict message transmission timings
are enforced such as the power train domain.

CAN-FD (CAN with Flexible Data Rate) [16] is a proto-
col designed by Robert Bosch GmbH to extend the stan-
dard CAN protocol [15]. It was developed as a result of
the increasing demand for higher bandwidth. Figure 2 illus-
trates the differences between a standard CAN frame and a
CAN-FD frame. The length in bits of each field is indicated
below the frame representation. While the standard CAN
only supports payloads of maximum 8 bytes, CAN-FD can
accommodate up to 64 bytes of data. For achieving data
rates higher than the 1Mbit/s limit in standard CAN, the
CAN-FD specification introduces the possibility to switch
the baudrate of the data field by setting the BRS (Bit Rate
Switch) bit. Speeds of up to 8 MBit/s can be obtained for
the data phase, resulting in an average speed for the en-
tire frame of 2.5 MBit/s [7]. For backward compatibility
CAN-FD allows the transmission of standard CAN frames.
This is controlled by the EDL (Extended Data Length) bit
which should be set to a dominant state for CAN. Recently,
CAN-FD received the ISO status [8] and was subject to small
changes in order to increase its reliability, i.e., the CRC field
was extended for improved detection of communication er-
rors [12]. These modifications do not affect the results from
this work. In our experimental network, all the CAN-FD
messages are configured to be sent cyclically with a recur-
rence of 5 up to 80 ms.

2. PROPOSED PROTOCOLS, A SYNTHETIC
COMPARISON

This section contains an overview of recently proposed
protocols for assuring authentication in automotive networks.
A synthetic performance comparison of the presented pro-
tocols follows, we then take this comparison to the experi-
mental level on our experimental network topology with the
help of the CANoe simulation.
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Figure 2: CAN frame versus CAN-FD frame

2.1 Brief overview of recent proposals
We now enumerate some of the recent proposals, subse-

quently, they are revisited from a key allocation perspective
which is decisive for the performance evaluation that follows.

1. Voting schemes [17], [18], [19] require nodes to be
present and vote on the authenticity of messages. This
does not only require nodes to be present on the bus
but also for a message to accumulate a sufficient num-
ber of votes which introduces additional delays. More-
over, the receive history of the nodes has to match.
These restrictions seem not to be appropriate for in-
vehicle networks, a reason for which we do not consider
the scheme for our analysis.

2. TESLA [14] is an efficient broadcast protocol employed
in wireless sensor networks [13]. Implementing this
protocol on the CAN bus was considered in [4]. There
is a significant drawback in adopting it for in-vehicle
networks and this is the authentication delay which is
always present in such protocols. The problem is not
only that messages can be authenticated with some de-
lay, e.g., usually 1–10 ms, but the node has to buffer all
messages and authentication tags received in this time
slot for subsequent authentication (this raises mem-
ory concerns). However, insofar TESLA is the only
way for assuring full broadcast authentication without
more expensive public-key cryptographic primitives,
e.g., digital signatures. For this reason, we consider
this protocol as a candidate for our analysis.

3. CANAuth is a scheme that proposes the use of an ID-
oriented key allocation [20]. The drawback behind this
scheme is that the IDs which are broadcast on a CAN
bus are generally too numerous to allow the allocation
of a key for each ID. Moreover, sharing the key with
nodes that are allowed to receive a particular ID (in
order to be able to authenticate the messages) exposes
the security key to nodes that can be potentially ma-
licious (e.g., a corrupted diagnosis tool). However, the
ID-oriented allocation nicely fits the specification of
CAN. Moreover, by adding a single authentication tag
to each of the broadcast message this scheme provides
a baseline for efficiency as it leads to a simple one-tag-
per-message authentication. As proposed in [20] the
protocol was intended for CAN+, a variation of CAN
that currently does not exist in practice. But the pro-
tocol can be ported as is on any other layer, e.g., CAN
or CAN-FD.

4. MaCAN is proposed in [6]. The protocol has the merit



of being a realistic proposal, it employs shared keys
between nodes and CBC-MAC based authentication
tags. There are not enough details on how to share
the keys between the nodes, except for the fact that
these should be shared in a pair-wise manner (this is
not suitable for higher number of nodes). The authors
of MaCAN [6] suggest that nodes can be grouped un-
der the same key if they share the same trust level
which will lead to a reasonable number of keys, but no
practical insights are given on how to decide the trust
level.

5. LiBrA-CAN [5] proposes a more demanding key allo-
cation procedure which mixes keys between groups of
nodes (rather then sharing keys pair-wisely). The pro-
posal is more demanding from a computational point
of view, but it offers a higher security level in case
when adversaries are in minority (a likely scenario for
in-vehicle networks).

6. CaCAN [10] introduces a centralized view over the au-
thentication process. In this protocol a central node
verifies the authentication tag of each frame and if
authentication fails, the frame is discarded with er-
ror flags. This procedure has the merit of requiring a
single monitor node with higher computational power.
However, an adversary that removes this node from
the bus can take full control of the bus since there
is no way for the other nodes to decide if a frame is
authentic or not.

7. Other symmetric key schemes were discussed in [22],
[21], [1], [11] but the way in which keys and tags are
allocated seems to fit in one of the previous paradigms
and thus we do not consider them as separate cases for
our simulation.

2.2 Revisiting protocols from a keying perspec-
tive

While in the previous subsection we encountered several
proposals, the crux of the problem (and the difference be-
tween the previous schemes) comes from the way in which
the keys are distributed between the nodes. It is clear that
only symmetric key primitives can be used, due to restric-
tions on computational power and bandwidth, and thus the
number of authentication tags (which determines the bus-
load) comes from the way in which keys are allocated. We
now revisit the previous proposals and classify them based
on the keying procedure they employ. Mutatis mutandis,
all of the previous schemes fit in one of the following four
paradigms:

1. Single authentication key is the simplest keying pro-
cedure in which all frames are authenticated with a
single key. In this case, all senders and receivers must
be in possession of the authentication key and if one
of them is corrupted all security is lost. Since each
frame carries a single tag, this protocol provides a base-
line for the bus-load (from this perspective both CA-
NAuth [20] and CaCAN [10] fit into this paradigm).
ID-oriented keying is a variation of this in which each
frame carries a single authentication tag, but the key
to compute this tag is unique for each of the IDs. This
procedure is explored in CANAuth [20]. As already

noted in previous work, usually there are too many
IDs to have a unique key for each of them, but this
requirement can be relaxed by having a unique key
for each group of frames that is selected based on a
predefined mask. From the bus-load perspective this
protocol has identical requirements to the previous (a
single tag again) and thus it matches the baseline for
the bus-load when a single authentication key is used.

2. Pairwise keying is the rather natural way in which
unique authentication keys are shared by each dis-
tinct pair of nodes. This procedure is also employed
in MaCAN [6]. However, in case of n nodes this leads

to n(n−1)
2

keys and n − 1 authentication tags. For
higher number of nodes, the overhead is unlikely to be
handled by the available bandwidth and computation
power available in automotive networks. For this rea-
son, in related work, e.g., [6], it was already suggested
that nodes that share the same trust level can use the
same secret key for authentication. In some sense, this
opens door for the next procedure.

3. Group keying is an improvement over pairwise key
sharing that allocates keys over groups of nodes. The
main ideea is to build groups that have an intermediate
size between 2 (which corresponds to pairwise keying)
and n (which corresponds to having a single authen-
tication key in case of n nodes). The security level is
higher if malicious nodes are in minority, the proce-
dure is explored in LiBrA-CAN [5]. Worst than in the
previous case, the number of keys and tags grows ex-
ponentially, but again if more nodes are grouped under
the same key (as in the case of pair-wise keying) then
the number of keys stays low.

4. TESLA-like keying requires authentication keys to be
broadcast in a periodic manner, i.e., at fixed time in-
tervals. This means that besides the regular frames
that are sent over the network a frame containing the
key is released at fixed intervals. However, the prob-
lem of the protocol is not necessarily in the additional
overhead but in buffering the received frames until the
authentication key is received and in the intrinsic au-
thentication delay.

For the case of shared keys, i.e., all protocols except TESLA,
in order to draw a synthetic comparison we need to fix the
following parameters for a setup with n receivers in groups
of size g:

• the total number of keys:

K =

(
n

g

)
,

• the total number of keys stored on a single node which
is also the number of tags computed by the node when
sending a message to all of the other nodes:

Ksend =

(
n− 1

g − 1

)
,



• the total number of tags intended for a single receiver
which is also the computational load on the receiver
side:

Krecv =

(
n− 2

g − 2

)
,

• the fraction of tags intended for a single node out of
the total number of tags:

Frecv =

(
n− 2

g − 2

)(
n− 1

g − 1

)−1

=
Knode

recv

Knode
send

,

• the size of the tag for a security level of ` bits:

S = `

(
n− 2

g − 2

)−1(
n− 1

k − 1

)
= ` · F−1

recv,

• the fraction of uncorrupted tags for a single receiver in
case of m corrupted nodes:

Fcorr
recv =

(
n−2−m

g−2

)(
n−1
g−1

) ,

• the security level in case of m corrupted nodes which
is the fraction of uncorrupted security bits for a single
receiver:

`corr = S · Fcorr
recv.

In this formalism, the case when the size of the subgroup is
g = n corresponds to the case of a single authentication key
while g = 2 corresponds to the case of pair-wise key sharing.
In terms of bandwidth, the ID-oriented keying and TESLA-
like keying overlaps with the case of a single authentication
key. We can now draw a synthetic comparison.

In Figures 3 and 4 we depict the size of the tag as well
as the remaining uncompromised bits in case of 1 corrupted
node with n = 8. It is easy to note that when a single
key is used, i.e., n = 8, g = 8, the size of the resulting au-
thentication tag is kept at a minimum, i.e., 128 bits for a
security level of 128 bits. In the same case however, if a sin-
gle node is corrupted the number of uncorrupted bits drops
to 0; since all nodes share the same key. Sharing the keys
pair-wisely leads to no security loss in case of 1 corrupted
node, as each two nodes share a distinct key, however for a
security level of 128 bits the tag quickly grows to 896 bits
(the plot is truncated at 250 bits since tags larger than this
are clearly not suited for real-time communication on an em-
bedded network). Finally, having groups of size 3 or 4 gives
a nice trade-off between these values.

Figure 5 compares the number of keys on each node, tags
computed by each node and tags verified by each node. For
the extreme case of group size 2 and 8 these values are the
lowest but with the aforementioned disadvantage that either
the tag is too large, i.e., g = 2, or security is lost when one
node is compromised, i.e., g = 8.
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ber of computed tags and number of verified tags
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3. EXPERIMENTAL EVALUATION
We begin by discussing the topology of the network and

some issues regarding the protocol, then we proceed to the
experimental results.

3.1 Network topology
The network topology discussed below stays at the core of

our CANoe based simulation. The networks were designed
to comply with real-world in-vehicle networks used by the
automotive industry, in order to obtain experimental results
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that are as close as possible to the real-world behaviour.
Figure 6 depicts the experimental network topology con-

sisting of 30 ECUs. All nodes are interconnected using the
same bus type, thus, separate simulations were built for each
bus type (FlexRay and CAN-FD) on the same topology.
The number of ECUs was chosen to represent the maximum
number of ECUs specified by the High Speed ISO 11898
Standard for a CAN network having a maximum signalling
rate of 1Mbps and a bus length of 40 m [3]. By relying on
the same topology for both FlexRay and CAN-FD, we want
to give a crisp image on the difference in performance for
each bus type under the same authentication protocol. This
of course complements the image over the protocols perfor-
mance that can be individually drawn for each bus type.
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Figure 7: Grouping of ECUs into clusters

Protocols relying on group keying require special attention
as nodes need to be further grouped. The 30 ECUs forming
the network presented in Figure 6 are organized in 5 clusters.
Each group should gather nodes that share the same trust
level as they will be in possession of the same key. Since
there are not many hints on how this decision should be
taken (in the absence of manufacturer specifications), the
allocation scheme that we opted for was to obtain a balanced
number of frames transmited by each group (this can be seen
at least as a secondary, more practical criteria). The bus-

load based grouping is depicted in Table 1. Thus, each of
the 5 clusters generates approximately the same load on the
bus. Figure 7 shows the way in which we now group the
ECUs on our network.

Group ECU Frames/
second/
ECU

Frames/ second/ Group

1 ECU 29 600
ECU 27 500
ECU 30 425
ECU 26 200
ECU 1 412.5 2137.5

2 ECU 10 625
ECU 11 325
ECU 12 425
ECU 5 200
ECU 8 403.125
ECU 14 200 2178.125

3 ECU 15 406.25
ECU 17 225
ECU 18 362.5
ECU 6 425
ECU 19 206.25
ECU 2 500 2125

4 ECU 7 206.25
ECU 16 350
ECU 22 106.25
ECU 13 350
ECU 9 400
ECU 28 750 2162.5

5 ECU 20 206.25
ECU 21 325
ECU 4 200
ECU 23 425
ECU 24 362.5
ECU 25 212.5
ECU 3 400 2131.25

Table 1: Busloads for each group of ECUs

3.2 Comparative results
The comparative evaluation of the protocols can account

for two distinct characteristics: the bandwidth (which de-
pends on the number and size of the authentication tags)
and the computational load on each ECU (which depends
on the number of tags that each sender/receiver has to com-
pute/verify each second). Our bus simulation is of course
focused on the first aspect. The computational load is not
to be neglected, however since hardware implementations
are available for cryptographic primitives, e.g., AES, and
message authentication primitives, e.g., CBC-MAC, can be
straight-forwardly derived, the concerns on computational
power are little. As a rough baseline, a hardware implemen-
tation will allow for an authentication tag to be computed in
several micro-seconds, while even a software implementation
on a high-grade ECU, e.g., Infineon TriCore, will cost in the
order of a dozen micro-seconds, allowing each node to pro-
cess tens of thousands of authentication tags each second.
This quantity however, cannot be handled by the available
bandwidth if each node is assumed to send the maximum
number of tags it can compute. If needed, computational
concerns can be subject of future work for us, for the mo-
ment the maximum computational load seems to stay below
10.000 tags/second as will be further shown.



In what follows, we briefly discuss characteristics of each
protocol in the context set by our experiments.

1. Single authentication key implies a single key and tag
to be added to each frame. The simulation was per-
formed by adding three different tag sizes: 32, 64 and
128 bit tags. This results in at most 128 bits/frame
increase in the payload which is in fact the minimum
load for performing authentication. The computational
load of a receiving ECU increases proportionally with
the number of sent/received frames per second.

2. Pairwise keying requires the number of authentication
tags to be equal to the number of ECUs that are receiv-
ing the frame. The worst case scenario is encountered
if an ECU broadcasts a frame to all the other ECUs
on the network. In our experimental network with 30
ECUs, this translates to 29 authentication tags/frame.
Table 2 presents the payload increase for 32, 64, re-
spectively 128 bit tags, for networks with 30, 20 and
10 ECUs. We can immediately rule out any simulation
of pairwise keying on our experimental network since
the necessary overhead, even for 32-bit tags, exceeds
the maximum payload of a CAN-FD (64 bytes) and,
sometimes, of a FlexRay frame (256 bytes). There-
fore, measuring the busload is not of interest in this
case since this option is not feasible for practice.

Tag size No. of
ECUs in
network

Overhead
[bits]

Overhead [bytes]

32 30 928 116
64 30 1856 232
128 30 3712 464

32 20 608 76
64 20 1216 152
128 20 2432 304

32 10 288 36
64 10 576 72
128 10 1152 144

Table 2: Frame overhead in case of pairwise keying

3. TESLA-like keying requires for each sender (ECU on
the network) a new frame containing a 32, 64 or 128
bit authentication tag that is periodically broadcast.
To reduce the overhead, a master oriented scenario can
be imagined where a unique master-node sends the au-
thentication frame, but this approach is not compat-
ible with the CAN standard [4]. We ran simulations
for all tag sizes and key release intervals of 10, 20, 40
and 80 ms. Although there is no significant increase
in the payload of the existing frames, the addition of
new frames leads to a more considerable increase in the
busload (depending on the release interval). In terms
of computational and memory load, it gets worst, as
each ECU needs to store the frames until the authen-
tication keys are released. As expected, this number
increases proportionally with the key release interval
as shown in Figure 8 (the same values also dictate the

computational load measured in computed tags / sec-
ond).
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Figure 8: Dependence of memory load (in terms of
frames waiting for authentication) with key release
interval on each of the 30 ECUs with TESLA

4. Group keying is a general concept which provides a
more realistic deployment method by reducing the num-
ber of keys. For our 30-ECU experimental network, by
grouping the ECUs into 5 clusters the payload increase
is considerably smaller than for pairwise keying. The
5 clusters from Figure 7 can be viewed as 5 ECUs with
that can be grouped in pairs of 2, 3 or 4. Therefore,
the maximum number of authentication tags added to
a frame will be the number of shared keys between
the sending cluster and the receiving clusters. This
is summarized in Table 3. With a maximum number
of 6 authentication tags added to a frame, group key-
ing can be successfully simulated on our experimental
network using authentication tags of 32 and 64 bits.
The additional payload seems not to be significant for
the network’s overall busload. The multiple authenti-
cation tags lead to an increase in the computational
load, one ECU having to compute even 6 tags for the
same frame, but this can be alleviated by hardware
implementation. Table 3 indicates that gathering clus-
ters with 4 nodes that share the same key brings the
optimal compromise between provided security, pay-
load and computational load out of all the considered
authentication methods.

Tables 4, 5 and 6 summarize the performance data for the
4 authentication paradigms in terms of authentication pay-
load (Table 4), computational load (Table 5) and recorded
busload (Table 6), the latter being measured by the CANoe
simulation tool, separately for the FlexRay and CAN-FD
experimental networks.

The payload of each frame increases from several bytes (4–
16) per frame in case of TESLA or single keys up to several
dozens bytes in case of group keying (24–96). This increase
can be handled by the network at a busload between 43.36%
and 71.61% as shown in Table 6. The computational load
varies from a little more than 1.000 tags/second up to almost
10.000 tags/second but these loads should be easily handled
by hardware implementation on modern ECUs.

Finally, from a busload perspective, TESLA and group
keying seem to stay close in terms of performance. The
more efficient single authentication key has only a 10%–30%



No. of
clusters
sharing a

key

No. of
receiver
clusters

No. of added tags

2 1 1
2 2
3 3
4 4
5 4

3 1 3
2 5
3 6
4 6
5 6

4 1 3
2 4
3 4
4 4
5 4

Table 3: Number of tags added to a frame when
applying Group keying

advantage in the busload which is unclear if it can prove
worthy given the fragile security (compromising a single key
lead to complete security loss). We can observe that, for the
FlexRay network, the busload changes only when additional
frames are introduced, the addition of data bytes to the
existing frames has little effect. This is due to the fact that
the FlexRay network has a global payload size - in our case
56 bytes - which is set when configuring the network. Unlike
the CAN-FD, which allows the adjustment of each frame’s
size, the FlexRay frames are all sent with the configured
global payload size, even though part of the payload may not
contain any data. The increase in busload is also suggested
in Table 7.

Authentication
protocol

Tag size
[bits]

Max.
payload
[bits]

Max. pay-
load [bytes]

Single 32 32 4
authentication 64 64 8

key 128 128 16
Pairwise 32 928 116
keying 64 1856 232

128 3712 464
TESLA-like 32 32 4

keying 64 64 8
128 128 16

Group 32 192 24
keying 64 384 48

128 768 96

Table 4: Payload for the considered authentication
protocols on all tag sizes

4. CONCLUSION
The conclusions can be directly drawn from the experi-

mental section. Pairwise keying leads to a minimum compu-
tational load, an ECU having to compute only one authenti-
cation tag for a received frame, but table 2 proves that it is
not a feasible authentication solution for networks with more
than 10 ECUs, especially in case of a CAN-FD network hav-

Authentication
protocol

MIN
comp. load

[tags/s]

MAX
comp. load

[tags/s]

AVG
comp. load
[tags/s]

Single
authentication 1237.5 3290.625 2127.8125

key
TESLA-like 1237.5 3290.625 2127.8125

keying
Group 3712.5 9871.875 6393.4375
keying

Table 5: Computational load for the considered au-
thentication protocols

Authentication protocol Recorded
busload:
CAN-FD
[%]

Recorded
busload:
FlexRay
[%]

Baseline 43.36 58.55

Single
authentication 48.97 58.57
key
TESLA-like 64.97 71.61
keying 10 ms
TESLA-like 57.40 65.89
keying 20 ms
TESLA-like 53.62 61.56
keying 40 ms
TESLA-like 51.73 59.41
keying 80 ms
Group keying 68 58.57
(groups of 2)
Group keying 82.21 58.57
(groups of 3)
Group keying 70.51 58.57
(groups of 4)

Table 6: Recorded busload on CAN-FD and
FlexRay

ing maximum 64 bytes of payload due to the increase pay-
load to each frame. TESLA-like keying, although bringing
a minimum increase in the payload and computational load,
is not a realistic solution for real-time automotive systems
where all the data contained in the frames has to be pro-
cessed immediately when received and cannot wait for the
release of the authentication key (buffering also represents
a significant problem). Single authentication key may seem
a viable solution, with little payload and busload, but its
main drawback is the low level of security it provides. Com-
promising only one node of the network will compromise the
entire network traffic. Group keying, although having the
highest computational load from all the presented protocols,
also ensures a higher security level when compromised nodes
are in minority. Since every frame is authenticated with mul-
tiple tags, compromising only one node of the network does
not compromise the whole network and the malicious node
can be immediately identified.

While choosing a specific protocol depends on standard-
ization that is done by the industry, our results suggest that
group keying should be the method of choice for in-vehicle
networks.



Authentication protocol Increase of
busload:
CAN-FD
[%]

Increase of
busload:
FlexRay
[%]

Single
authentication 13 0.03
key
TESLA-like 50 22.3
keying 10 ms
TESLA-like 32.38 12.46
keying 20 ms
TESLA-like 23.66 5.14
keying 40 ms
TESLA-like 19.3 1.46
keying 80 ms
Group keying 56.82 0.03
(groups of 2)
Group keying 89.59 0.03
(groups of 3)
Group keying 62.61 0.03
(groups of 4)

Table 7: Increase in busload on CAN-FD and
FlexRay
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