
Integrating Adversary Models and Intrusion Detection
Systems for In-Vehicle Networks in CANoe

Camil Jichici, Bogdan Groza, and Pal-Stefan Murvay

Faculty of Automatics and Computers,
Politehnica University of Timisoara, Romania

Email: jichicicamil93@gmail.com, bogdan.groza@aut.upt.ro, pal-stefan.murvay@aut.upt.ro

Abstract. In-vehicle buses and the Controller Area Network (CAN) in particu-
lar have been shown to be vulnerable to adversarial actions. We embed adversary
models and intrusion detection systems (IDS) inside a CANoe based application.
Based on real-world CAN traces collected from several vehicles we build at-
tack traces that are subject to intrusion detection algorithms. We also take benefit
from existing machine-learning support in MATLAB that is ported via C++ code
in CANoe in order to integrate intrusion detection functionality. A unified frame-
work for attacks and intrusion detection has the benefit of providing a testbed for
various intrusion detection algorithms. CANoe integration makes the use of these
functionalities ready for realistic testing as CANoe is an industry-standard tool in
the automotive domain.

Keywords: CAN bus · vehicle security · intrusion detection

1 Introduction and Related Work

Contemporary vehicles incorporate dozens of Electronic Control Units (ECUs), sensor
networks and actuators interconnected through in-vehicle networks such as: Local In-
terconnect Network (LIN), Controller Area Network (CAN), FlexRay, etc. Access to
these in-vehicle networks is mediated by several interfaces, more commonly the On-
Board Diagnostic (OBD) port which is used by our work as well (more details in a later
section). However, the high complexity and connectivity of modern vehicles leads to
cyber security risks which might undermine the privacy of the vehicle and endanger the
life of passengers. This was well proved by a strong body of research in [3], [13]. Re-
cent advances regarding autonomous driving, enhanced technologies for infotainment
systems and vehicle-to vehicle communications (V2V) will transform vehicles into de-
vices that interact with each other over the Internet and can be remotely controlled. This
trend opens even more attack surfaces that were well exploited by recent works [10],
[18].

Most of the reported attacks on in-vehicle communication employ the CAN proto-
col. This is natural as CAN is the most widely used bus in the automotive domain and
is often exposed through the diagnostic port. Details on the CAN bus topology, bit rates
and the frame format are deferred to Appendix 1.

As vulnerabilities on the CAN bus are easy exploitable by adversaries, the develop-
ment of intrusion detection systems (IDS) is an immediate necessity in order to quickly



detect such attacks. A comprehensive survey on IDSs for in-vehicle buses can be found
in [1]. The authors in [1] provide a hierarchical and structured picture of IDS proposed
in the literature for passenger cars. There are many relevant proposals, we outline some
of them next. Binary distance, i.e., Hamming distance, is proposed in [19]. Their ap-
proach includes two stages: a preliminary stage and a detection phase. In the first stage,
for each CAN ID the authors calculate the Hamming distances between consecutive
CAN frames on 20% of the trace and build message validity ranges bounded by the
minimum and maximum distance computed for each ID. The rest of the frames (80%
of the recorded trace) are used in the detection phase. An anomaly is detected when
the Hamming distance is outside the validity range. In a similar vein, entropy has also
been used to detect intrusions in [12] and [15]. Groza et al. proposed an IDSs based
on Bloom filtering in [7]. Their detection mechanism filters the transmission frequency
and the data field of the frames for each identifier in order to detect replay and modifi-
cation attacks and takes advantage regarding low consumption of resources which are
compulsory in deployment of a real-world IDS.

On the other hand, there are several machine learning and statistic based approaches
for in-vehicle networks intrusion detection. Narayanan et al. create a Hidden Markov
Model based on CAN data collected through the OBD port in order to detect intrusion
on CAN bus in [16]. Their model describes vehicle states and possible transitions be-
tween them. The intrusion is detected when an unexpected transition occurs. Support
vector machine and k-Nearest Neighbor (k-NN) classifier were proposed in [2]. The
authors from [2] build a classifier model that is not able to detect replay attacks since
they do not use the frequency of the messages in the training phase. In our work, we
also use the periodicity of messages to enable identifying replay attacks since, in such
attacks, the timestamp of the CAN messages is the single attack indicator. Another pro-
posed approach [9] is the use of deep neural networks. The result of this work is not
based on a real-world CAN traffic, instead the authors use CAN traffic generated by a
software tool OCTANE [6]. The authors of [9] do not account for message transmis-
sion frequency in the training phase which leads to the inability to detect replay attacks.
Decisions tree having as inputs entropy-based characteristics extracted from CAN IDs
and timestamps were used in [21].

The idea of using CANoe (i.e. an industry-standard tool in the automotive domain),
for evaluating security is not new and has been explored by previous works. Some of the
first simulation-based attacks on the CAN [8] and FlexRay [17] examine vulnerabilities
of simulated in-vehicle networks based on the CAN and FlexRay protocol respectively
to spoofing and replay attacks. We complement these ideas by integrating intrusion
detection along with the adversarial model in CANoe. Thus, our work aims to provide
a more complex framework based on the support from two widely-used tools in the
automotive-industry, CANoe and Matlab, in order to simulate adversarial actions and
detect them in real-world scenarios.

2 Data Collection and Experimental Setup

In this section we first discuss how data collection was performed and then how we use
it in CANoe simulation.



2.1 Data Extraction from OBD

In order to develop an intrusion detection mechanism based on real-world CAN traces,
we first collect data from the CAN bus via the OBD port of several cars. The OBD
port aims to collect diagnostic data from all ECUs. Consequently, in most cases, it is
connected directly to the main CAN bus of the vehicle. For enhancing the in-vehicle
security, the OBD port should be directly connected only to an ECU gateway which
then collects the diagnostic information from all other ECUs in order. In such case,
only diagnostic messages corresponding to request-response protocol would be visible
through the OBD port. However, in order to reduce costs, many vehicles do not have
such a gateway ECU and the OBD port is connected to the main CAN bus. For the cars
employed in our experiments we determined that in-vehicle traffic is indeed exposed
over the OBD port.

As a first step, to enable data collection, we determined if there is any traffic exposed
to the CAN pins of the OBD port and what is the employed bit rate. We achieved this
with the help of an oscilloscope revealing that CAN traffic is indeed available and that
one of the vehicles uses a baud rate of 250 Kbit/s while the other uses 500 Kbit/s.
Then, we proceeded to logging the traffic from CAN bus for about 20 minutes with
the car stationary and 20 minutes with the car in motion. During this interval, several
driver-specific actions were performed, e.g., toggling low beam and long beam, sudden
accelerations and brakes, etc. This was done for both the cars that we used, a sedan and
an SUV.

Figure 1 depicts our experimental setup based on the Vector VN1630 USB-to-CAN
interface, the OBD plug, the CAN cable and an application based on the Vector XL
Driver Library running on the laptop. The VN1630 device is a part of the VN1600
family developed by Vector, a provider of solutions for automotive networking devel-
opment. Support for the VN1630 exists in a number of software tools such as CANoe
and CANape along with support for building dedicated applications through the XL
Driver Library. The XL Driver Library is an Application Programming Interface (API)
compatible with Vector’s devices. The library provides access to device functionalities
(e.g., message reception and transmission, various configuration settings) and handles
interfacing with protocols such as CAN, CAN-FD, LIN, FlexRay, etc. An example of
messages intercepted from the vehicle CAN bus (via the OBD port) with a small ap-
plication using this library is shown in Figure 2. Each message consists of the VN1630
channel number on which the message is received, the timestamp (in nanoseconds), the
message identifier, the length (in bytes) of the data field and the actual data field. In our
work, we run an application that only receives messages from the vehicles and did not
try to inject frames in the car to avoid potential damage to the vehicle. Consequently,
the injections will be performed in the CANoe simulation.

2.2 CANoe Environment

We integrate the attacker model and intrusion detection capabilities in a CANoe simu-
lation. CANoe is an unified integrated software used for designing, simulating, testing
and analyzing real-time communication between ECUs. In the automotive domain, CA-
Noe is the most wide-spread tool used by automotive manufacturers in the development
process of in-vehicle networks.



Fig. 1: Setup for data collection inside car Fig. 2: Recorded CAN messages

Fig. 3: CAN network architecture

CANoe provides us with all the building blocks for simulating and detecting real-
world attacks on the CAN bus. The designed CAN analysis network from CANoe is
depicted in Figure 3. This structure includes three blocks: a replay node, an adversary
model node and the IDS node. The real traffic recorded from the vehicles is replayed in
the simulation through a specialized type of node called a Replay block. For on-line at-
tacks and analysis of vehicle traffic, the replay block can be simply disabled while con-
necting the CANoe simulated bus to the in-vehicle bus through a VN interfacing device.
The adversary model node is implemented as a CAPL (CAN Application Programming
Language) network node that mimics the behaviour of a real-world adversary. CAPL is
a C-based language and provides additional CANoe specific functionalities, e.g., events,
system variables, message structures and message databases. Finally, the overall traffic
will be evaluated by an IDS node that is also programmed through CAPL.



3 Adversary Models

In this section we discuss the adversarial model that we account for and give a brief
overview of its integration in CANoe.

3.1 Types of Attacks

In general, adversary models are based on the Dolev-Yao adversary which has full con-
trol over the network [5]. That is, the adversary can record, block, replay, modify or
inject messages in the network. If any security mechanisms are in place, they are con-
sidered to be secure and the adversary can manipulate them only if he has the corre-
sponding keys. In our work, we do not address security mechanisms since these are
generally absent on the CAN traffic that we recorded and even if they are present we
would not have access to manufacturer specifications (e.g., in case of authentication
protocols over the CAN bus) since these are in general considered confidential infor-
mation.

Our adversary has access to the entire traffic that was logged inside the vehicle.
Based on existing literature on adversarial models for the CAN bus, our work considers
the following types of attacks which we also integrate in the CANoe application:

1. Replay of regular CAN frames is the attack in which the adversary intercepts
genuine frames and then replays them on the CAN bus. In this case the malicious
frames are identical to genuine frames having the same identifier and data field.
The only indicator for this type of attack is the frequency of the CAN messages
(i.e., more frames with the same ID will be visible on the bus). The identifier of the
attacked frame and the delay at which the attack frame is sent can be configured
from the interface. The replay attacks can increase the busload which delays other
frames or even aborts their transmission.

2. Injection attacks which consist in the insertion of adversarial frames on the bus
and which we refine across the following lines:
– Injection of random data, also referred in other works as fuzzy attacks [11], is
an attack in which the adversary intercepts genuine frames and then injects the ma-
licious frames on the CAN bus at a chosen delay after interception. The malicious
frames have the same identifier as a genuine frame, but the data field is randomly
generated. The delay is the time measured from the interception of the genuine
frame event to triggering injection event of the attack frame. As in the previously
described attack, our graphical user interface (GUI) allows for selecting the identi-
fier of the targeted message. The transmission delay can be configured within 1 µs
increments.
– Injection with scalar addition/multiplication of the datafield - the data re-
trieved from in-vehicle sensors, e.g., speed sensor, engine temperature, steering
angle, fuel pressure, brake pressure, are transmitted by network nodes via the CAN
bus. Since sensors may have a linear transfer function, the slope of the function is a
constant. This leads to attacks in which bytes of the CAN frames are incremented
or multiplied by some constant values. Delays to the injected frames can be added
as well.



– Arbitrary injections is the case in which the adversary can inject frames at
will with the specified data or randomly generated data field and ID. In contrast to
the previously defined attacks, the transmission of the injected frame will be done
cyclically according to the configured cycle time.

Other attacks have been also considered in the literature but are not included in
our interface. In what follows, we explain why, at least for the moment, we did not
considered them.

DoS attacks are trivial to mount on the CAN bus. Since the CAN ID is used in the
arbitration mechanism to provide collision avoidance, continuously injecting messages
with the highest priority ID, i.e., 0x000, leads to unavailability of the bus and the gen-
uine frames are unable to transmit due to the loaded bus. However, detecting such an
attack in which the ID 0x000 is sent in order to lock the bus would be trivial. For this,
one can simply look for the consecutive occurrence of messages with this ID which
does not show up in regular traces. A more sophisticated variant would be to send a low
priority ID which is not null, but still has higher priority than regular IDs. This again can
be detected trivially since the values of the genuine IDs are known by the manufacturer.
Such attacks are accessible from the interface that we designed as arbitrary injections
which allows to edit both the ID and data field but we do not view them separately as
DoS attacks (which may be a consequence). The attack can be detected by the IDS, but
the problem still remains since such attacks cannot be circumvented as high-priority
IDs will win the bus anyway.

Bus off attacks are the adversarial action after which genuine nodes are placed
in bus-off state. This can be done due to the error management system of CAN and
such attacks are proved to be feasible by the works in [4] and [14]. Modeling such
attacks may be of interest but our network is simulated based on existing traces and we
don’t have the specific behavior of the ECU implemented in the model. Moreover, such
attacks can be circumvented only by modifying the error-handling mechanisms of CAN
which is out of scope for the current work.

3.2 Application Interface

The application interface implemented in CANoe for allowing the configuration of the
adversary node and IDS node is shown in Figure 4. We employ common controls, e.g.,
radio buttons, combo box, to provide an user friendly interface. The relationship be-
tween the graphical interface and CAPL is made through system variables since they
can be retrieved by specific CAPL functions and events. Consequently, our adversary
model has the benefit of providing various types of attacks and can perform the follow-
ing actions: read, modify and replay messages. In the first step, the user must select the
type of attack that will be used. Another option allows the user to select if the attack
should target a single specified ID or all messages in the trace. For each type of attack,
specific parameters can be configured. On the other hand, during the simulation run,
the detection algorithm is running on the IDS node to classify frames. The indicator led
will switch to either green or red depending on genuine or malicious received frame.
Moreover, at the end of the simulation the results of the detection rates and the number
of the targeted messages are presented.



Fig. 4: Graphical interface for the designed application

4 Intrusion Detection Algorithms

In this section we discuss about the tools used in our evaluation and the Matlab-CANoe
integration. We also discuss some background on the k-NN algorithm which we use for
intrusion detection.

4.1 Statistics and Machine Learning Toolbox

For implementing the intrusion detection mechanism we employ Matlab, namely, the
statistics and machine learning toolbox made available by the framework. This toolbox
provides a range of machine learning algorithms for solving regression or classification
problems. These algorithms are based on either supervised or unsupervised learning
and we choose k-NN since it is a commonly employed solution when little is known
about the input data. Indeed, in our case the data comes from traces that were logged
inside vehicles and we don’t have any access to the manufacturer’s requirements. Con-
sequently, there is no prior knowledge on the data, but we can label the malicious CAN
frames that we inject for the training trace. In the training phase, the supervised learning
(employed also by the k-NN algorithm) has as observation samples, a collection of n
pairs

{
(i0, o0), (i1, o1), ... (in−1, on−1)

}
, which consists of the inputs and the desired

outputs. The output of the training phase is a model (a trained function) responsible for
predictions over new data that will be given in the test phase.

We also took advantage of Matlab’s capability to generate C/C++ code with the
trained model and prediction function. We build a dynamic library (dll) based on this



Fig. 5: The flowcart of the data exchanged between Matlab and CANoe through dll

code and integrate the functionality in CANoe through CAPL code. The integration of
a custom library into CANoe provides the advantage of accessing system resources,
e.g, CPU, memory [22], which are otherwise not direclty available in CANoe. Figure
5 illustrates the interaction between CANoe and the Matlab-based library for analyzing
CAN messages.

4.2 k-NN Algorithm

We use the k-NN algorithm as a basis for our evaluation. This algorithm is commonly
employed in classification problems and even in network IDS [20]. The k-NN uses a
distance metric, e.g., the Euclidean, Hamming, Minkowski, Jaccard distances, etc. For
most of our analysis we choose the Euclidean distance but it is easy to switch to any of
the previously mentioned.

In general, a machine-learning algorithm has two stages: the training stage and the
testing stage. Consequently, we split the CAN trace into a training and a testing part.
In our experiments, the first stage is performed offline with the purpose of training the
classifier based on inputs-output pairs. In this stage, each input is mapped to the true
class c (genuine or malicious frame). The end of this stage outputs the k-NN model.
The second stage is the real-time detection based on the trained model. In this stage,
each input is mapped to the predicted class ĉ based on the decision rule. The decision
rule depends on the number of neighbors k as follows:

1. Decision rule when k=1: let mt be a test frame and mi a training frame, then mn

is nearest neighbor to mt if and only if the Euclidean distance: de(mt,mn) =
mini

{
de(mt,mi)

}
, where i covers the range of training frames. The predicted

response of ĉ from the trained model will be equal with the true class c of the mi

which has the minimum Euclidean distance to mt.
2. Decision rule when k>1: The predicted response ĉ of themt from the trained model

will be equal with the most encountered c, through the k nearest training messages.



The k-NN input observation is a vector that accounts for the data field and the
delay between consecutive timestamps of the same ID. In such case, the input sample
I ∈ {0, 1}9 is described mathematically as follows: I =

{
i0, i1, i2, ..., i8

}
, where i0

represents the delay and i1...i8 represent each byte from the data field. We choose an
odd number of neighbors (e.g. 1, 3, 15) in order to avoid an equal number of votes and
select a majority.

5 Experimental Results

We first discuss the metrics employed for evaluating the intrusion detection algorithms,
then we proceed to presenting the experimental results.

5.1 Metrics for Evaluating the Performance of the IDS

Since our evaluation performs a binary classification of the CAN frames, we measure
the performance of the IDS based on the most commonly four metrics:

1. the sensitivity or the true positive rate - measures the percentage of the CAN frames
that are correctly classified as malicious, i.e., TPR = TP/(TP + FN ).

2. the false negative rate- measures the percentage of the CAN frames that are reported
as genuine frames but are actually malicious frames, i.e., FNR = FN /(FN+TP).

3. the specificity or the true negative rate - measures the percentage of the CAN frames
that are correctly classified as genuine, i.e., TNR = TN /(TN + FP).

4. fall-out or the false positive rate - measures the percentage of the CAN frames that
are reported as malicious, but the true class of the frames is genuine, i.e., FPR =
FP/(FP + TN ).

5.2 Results on Detection Accuracy

We devise our experiments to cover the previously defined adversarial models. For each
type of attack, we have different scenarios depending on the delay of the attack frame.
Multiplication or addition coefficients may be also applied to the data field. Since the
traces we obtained from vehicles did not contain extended frames, we experiment only
with standard frames. We build our datasets using the CANoe simulation by injecting
malicious frames on a single targeted CAN ID or over the full trace, i.e., all CAN IDs.
The results obtained for detecting attacks on a single CAN ID are based on portions of
traces containing 500 frames used for training and 19500 frames for the actual tests.
We choose only a small percent for training to cover the more realistic scenario where
the IDS is trained for a limited time, e.g., during production, and then runs for a longer
period. In the current experiments (on a single CAN ID) we have only attacked frames
that have a cycle time of 10 ms since this is a very common periodicity, but similar
results will be likely obtained for other delays. For the full trace attacks we employ
5000 training frames and 45000 test frames.

We now discuss the results on replay attacks which are presented in Table 1. Ex-
tended results for this scenario are deferred to Table 2 from Appendix 2. In this case the



Table 1: Detection rates for various types of attacks
Attack params. No. messages k-NN Parameters Detection rates

No. Att.
type

Operand Delay ms training testing No.
neigh.

Distance TNR TPR FPR FNR

1. r n/a 9.750 500 19500 1 Euclidean 99.00% 99.65% 1.00% 0.35%
2. r n/a 0.001 500 19500 1 Euclidean 100% 100% 0% 0%
3. r n/a 0.001 500 19500 1 Euclidean 88.86% 100% 11.14% 0%
4. r n/a 5 500 19500 1 Euclidean 88.88% 100% 11.12% 0%
5. r n/a 9 500 19500 1 Euclidean 90.33% 83.47% 9.67% 16.53%
6. r n/a 9.750 500 19500 1 Euclidean 87.98% 51.88% 12.02% 48.12%
7. r n/a 50 500 19500 1 Euclidean 88.31% 84.66% 11.69% 15.34%
8. ir n/a 0.001 500 19500 1 Euclidean 99.87% 100% 0.13% 0%
9. ir n/a 9.750 500 19500 1 Euclidean 99.87% 100% 0.13% 0%
10. isa α = 2 0.001 500 19500 1 Euclidean 89.63% 100% 10.37% 0%
11. isa α = 2 9.750 500 19500 1 Euclidean 91.34% 53.98% 8.66% 46.02%
12. ism α = 2 0.001 500 19500 1 Euclidean 89.65% 100% 10.35% 0%
13. ism α = 2 9.750 500 19500 1 Euclidean 91.38% 67.74% 8.62% 32.26%
14. isa α = 2 9.750 500 19500 1 E(∆t), H(data) 90.72% 100% 9.28% 0%
15. ism α = 2 9.750 500 19500 1 E(∆t), H(data) 90.75% 85.87% 9.25% 14.13%
16. r n/a 0.001 5000 45000 1 Euclidean 95.21% 100% 4.79% 0%
17. r n/a 5 5000 45000 1 Euclidean 95.45% 100% 4.55% 0%
18. r n/a 9.750 5000 45000 1 Euclidean 95.23% 66.58% 4.77% 33.42%
19. r n/a

{
9.75, 19.75, 39.75, 99.75

}
5000 45000 1 Euclidean 94.76% 50.06% 5.24% 49.94%

20. ir n/a 0.001 5000 45000 1 Euclidean 99.53% 100% 0.47% 0%
21. ir n/a 5 5000 45000 1 Euclidean 99.40% 100% 0.6% 0%
22. ir n/a 9.750 5000 45000 1 Euclidean 99.57% 91.52% 0.43% 8.48%

training phase was performed on traces that contain regular frames and replay attack
frames sent at a 9.750 ms (row 1 from Table 1, rows 1-2 from Table 2) and 0.001 ms
(row 2 from Table 1, rows 3-4 from Table 2) delay after the genuine frame. The first de-
lay is chosen specifically for the attack frame to arrive just before the genuine frame on
the bus (the genuine frame will arrive periodically at 10 ms and ≈ 250µs is the phys-
ical time of the frame on the bus) while the second is to assure that the attack frame
arrives immediately after the genuine frame. We use both the content of the datafield
and the delay between consecutive timestamps of the targeted CAN ID (∆t) as inputs
for the training phase. The detection rates were 100% in case of 0.001 ms delay and
around 99% in case of 9.750 ms while the false positive rate is 0% in the first scenario
and around 1% in the second. There is a slight increase of false positive rate in the first
scenario since in case of the 9.750 ms delay, the injected frames are sent very close to
the transmission time of genuine frames. Consequently, in some cases the legit frame
is mismatched for the attack frame. The good detection result is also due to the less
realistic assumption that an attacker will send all its frames with the fixed delay that
was used in the training phase.

Thus the next step in our evaluation, was to train the classifier based on one delay,
i.e., 9.750 ms while the evaluation frames were built with other delay, i.e., 9 ms. As
expected, the detection rate drops under 20%. Consequently, to overcome this problem,
we chose to train the classifier based on traces built with replay injections at a random
delay covering the whole range between 0 and the cycle time of the frame, since the IDS
must be able to detect attacks frames sent with any delay. All the results that follow are
based on such randomized delays. We present the results for this scenario in Table 1
(rows 3-7) and their extension is deferred to Table 2 (rows 5-14) from Appendix 2. In



case of 0.001 ms and 5 ms delays, the true positive rate is close to 100% while the false
positive rate is around 10%. The false positive rates are caused by the identical data
field of regular and injected frames.

In the next two attack scenarios (rows 5-6 from Table 1, rows 9-12 from Table 2) the
adversarial actions are more refined and well thought out. These actions are designed
so that the injected message is sent on the bus shortly before, i.e., 9ms delay, or even
close enough to overlap with the genuine message in some cases, i.e., 9.750 ms delay.
The detection rate degrades to the point that the TPR drops to below 80% for the first
case and around 50% for the second. What can also be observed, from the majority of
the results, is that with the growth in the number of neighbors comes a slight increase
in specificity and a decrease in sensitivity, which is sometimes more pronounced, i.e.,
from 83% (row 5 from Table 1) to 52% (row 9 from Table 2).

The results obtained on injections with random data are shown in Table 1 (rows 8-9)
while the extension of the results is presented in Table 2 (rows 15-18) from Appendix
2. In this case we obtained detection rates close to 100% percents for both of the tested
delay scenarios. We also observe a negligible amount of false positives. The high de-
tection rate is justified by the high entropy of the injected frames data field that differs
from the authentic messages. In general, this type of attacks is much easier to detect
than replay attacks.

As expected, results for injection attacks using scalar addition or multiplication,
presented in Table 1 (rows 10-15) and the extension in Table 2 from Appendix 2 (rows
19-30), exhibit a lower detection rate especially as we used a very low value for the
scalar (thus modifications of the datafield are small). At a first view, the results are very
similar to those obtained for replay attacks for the same delays: 0.001 ms (row 3 from
Table 1 and rows 5-6 from Table 2) and 9.750 ms (row 6 from Table 1 and rows 11-
12 from Table 2). This can be explained by the message periodicity having a greater
influence on the result of the prediction function than the data field. This happens since
the operation of adding α = 2 to each byte of the data field does not have a considerable
effect on the Euclidean distance. We chose α = 2 to assure only a small change in the
message (obviously, a larger α will lead to more modifications and will be easier to
detect). In case of scalar multiplication the detection rate increases to around 67% (row
13 from the Table 1) since the operation of scalar multiplication with α = 2 has a
greater impact on the resulting Euclidean distance.

A better approach to improve the detection results, is the use of two trained models:
the first trained with ∆t based on the Euclidean distance and the second trained based
on the data field using the Hamming distance. In this case, each model classifier predicts
a class for each message. Denoting the predicted class for the first model as ĉ1 and the
second one as ĉ2, the final predicted class ĉ is : ĉ ∈ ĉ1 ∨ ĉ2. This approach improves the
sensitivity to 100% in case of scalar addition and at 85% in case of multiplication while
the false positive rate remains around the 10% level as can be seen in Table 1 (rows
14-15). By E(∆t) and H(data) we denote the Euclidean and Hamming distances on the
delay and data respectively.

The next step in improving detection capabilities consists in covering the full trace
since monitoring a single ID would involve one trained model for each CAN ID and
leads to the need for large computational/memory resources which may not be available.



The full trace contains frames having 10 ms, 20 ms, 40 ms, and 100 ms cycle times.
The full attack trace was build as following. We define the attack probability for each
frame as a constant Pr(A). A variable ε ∈

[
0, 100

]
is randomly generated and if ε is

less than or equal to Pr(A), then the frame is attacked otherwise it is left unaltered.
For our experiments we configured Pr(A) = 30. Therefore, the input in our classifier
accounts for the CAN ID before the ∆t and data field.

The results over the full trace for replay attacks, are presented in Table 1 (rows 16-
19), Table 2 from Appendix 2 (rows 31-38), and rows 20-22 from Table 1, rows 39-44
from Table 2, for fuzzy attacks. Even if for an extended evaluation, with a single trained
model, the results remain satisfactory. In case of replay attacks, the detection rates are
similar (for 0.001 ms and 5 ms delays) or even better (for 9.750 ms delays) than those
obtained for a single ID. This happens since the attack frame that has 9.750 ms delay
is sent on the bus ahead or even overlaps with the authentic frame just in case of 10 ms
cycle, while the full trace contains more cycle times values for which the attack frame
is even more conspicuous. A cleverer adversary may of course choose delays that are
closer to the cycle time of each frame. This scenario is presented in the row 18 of Table
1 and rows 37-38 of Table 2. The detection rate is approximately two percents lower
than monitoring for a single ID in case of the directed replay attacks (around 50%). For
random attacks, the sensitivity is most of the part close to 100%, except for the 9.750
ms delay, where it drops to around to 90% in case of using one neighbor and to 60%
when more neighbors are employed.

6 Conclusion

Our work explores the integration of adversary models and intrusion detection systems
in CANoe. Since adversarial actions are modeled over real-world in-vehicle traces, the
results offer a more realistic testbed for in-vehicle network attacks. As future work it
would be of interest to allocate specific parts of the traffic to a particular ECU which
would allow targeted attacks toward specific ECUs. A complete simulation for the be-
havior of each ECU is a more complex goal but perhaps achievable in the future. Ad-
versarial actions are easier to test inside a simulation environment and the risk for dam-
aging the actual car is removed. Adding MATLAB functionalities for machine-learning
in order to classify CAN packets is a convenient way for designing and testing such
an IDS due to the rich machine learning toolset offered by MATLAB. Adding other
algorithms for intrusion detection is an immediate goal for extending our framework.

Acknowledgement. This work was supported by a grant of the Romanian Ministry
of Research and Innovation, CNCS - UEFISCDI, project number PN-III-P1-1.1-PD-
2016-1198, within PNCDI III.

References

1. O. Y. Al-Jarrah, C. Maple, M. Dianati, D. Oxtoby, and A. Mouzakitis. Intrusion Detection
Systems for Intra-Vehicle Networks: A Review. IEEE Access, 7:21266–21289, 2019.



2. A. Alshammari, M. A. Zohdy, D. Debnath, and G. Corser. Classification Approach for In-
trusion Detection in Vehicle Systems. 2018.

3. S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,
A. Czeskis, F. Roesner, T. Kohno, et al. Comprehensive experimental analyses of automotive
attack surfaces. In USENIX Security Symposium, volume 4, pages 447–462. San Francisco,
2011.

4. K.-T. Cho and K. G. Shin. Error handling of in-vehicle networks makes them vulnerable.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 1044–1055. ACM, 2016.

5. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on
information theory, 29(2):198–208, 1983.

6. C. E. Everett and D. McCoy. {OCTANE}(Open Car Testbed and Network Experiments):
Bringing Cyber-Physical Security Research to Researchers and Students. In Presented as
part of the 6th Workshop on Cyber Security Experimentation and Test, 2013.

7. B. Groza and P.-S. Murvay. Efficient Intrusion Detection With Bloom Filtering in Controller
Area Networks. IEEE Transactions on Information Forensics and Security, 14(4):1037–
1051, 2019.

8. T. Hoppe, S. Kiltz, and J. Dittmann. Security threats to automotive CAN networks—Practical
examples and selected short-term countermeasures. Reliability Engineering & System Safety,
96(1):11–25, 2011.

9. M.-J. Kang and J.-W. Kang. Intrusion detection system using deep neural network for in-
vehicle network security. PloS one, 11(6):e0155781, 2016.

10. P. Kleberger, T. Olovsson, and E. Jonsson. Security aspects of the in-vehicle network in the
connected car. In 2011 IEEE Intelligent Vehicles Symposium (IV), pages 528–533. IEEE,
2011.

11. H. Lee, S. H. Jeong, and H. K. Kim. Otids: A novel intrusion detection system for in-vehicle
network by using remote frame. Privacy, Security and Trust (PST) 2017, 2017.

12. M. Marchetti, D. Stabili, A. Guido, and M. Colajanni. Evaluation of anomaly detection for
in-vehicle networks through information-theoretic algorithms. In Research and Technologies
for Society and Industry Leveraging a better tomorrow (RTSI), pages 1–6. IEEE, 2016.

13. C. Miller and C. Valasek. Adventures in automotive networks and control units. Def Con,
21:260–264, 2013.

14. P.-S. Murvay and B. Groza. DoS Attacks on Controller Area Networks by Fault Injections
from the Software Layer. In Proceedings of the 12th International Conference on Availabil-
ity, Reliability and Security, ARES ’17, pages 71:1–71:10, 2017.

15. M. Müter and N. Asaj. Entropy-based anomaly detection for in-vehicle networks. In Intelli-
gent Vehicles Symposium (IV), 2011 IEEE, pages 1110–1115. IEEE, 2011.

16. S. N. Narayanan, S. Mittal, and A. Joshi. OBD SecureAlert: An Anomaly Detection System
for Vehicles. In Smart Computing (SMARTCOMP), 2016 IEEE International Conference
on, pages 1–6. IEEE, 2016.

17. D. K. Nilsson, U. E. Larson, F. Picasso, and E. Jonsson. A first simulation of attacks
in the automotive network communications protocol flexray. In Proceedings of the Inter-
national Workshop on Computational Intelligence in Security for Information Systems CI-
SIS’08, pages 84–91. Springer, 2009.

18. J. Petit and S. E. Shladover. Potential cyberattacks on automated vehicles. IEEE Transactions
on Intelligent Transportation Systems, 16(2):546–556, 2014.

19. D. Stabili, M. Marchetti, and M. Colajanni. Detecting attacks to internal vehicle networks
through Hamming distance. In 2017 AEIT International Annual Conference, pages 1–6.
IEEE, 2017.

20. M.-Y. Su. Real-time anomaly detection systems for denial-of-service attacks by weighted
k-nearest-neighbor classifiers. Expert Systems with Applications, 38(4):3492–3498, 2011.



21. D. Tian, Y. Li, Y. Wang, X. Duan, C. Wang, W. Wang, R. Hui, and P. Guo. An intrusion
detection system based on machine learning for CAN-bus. In International Conference on
Industrial Networks and Intelligent Systems, pages 285–294. Springer, 2017.

22. Vector. CAPL DLL Description, 2007.

Appendix 1 - Brief Description of the CAN bus

CAN provides bit rates of up to 125 kbit/s for low-speed CAN and up to 1 Mbit/s on
high-speed CAN while carrying up to 8 bytes of payload. Increased communication
speeds and payloads of up to 64 bytes are possible by using the CAN-FD (CAN- Flex-
ible Data) protocol extension.

At the physical layer, CAN is implemented as a two wire (CAN-high and CAN-low)
differential bus. A common CAN network topology is shown in Figure 6 a). The main
communication element used by CAN is the data frame with a structure as presented
in Figure 6 b). The data frame is received by all ECUs but it is only used by ECUs
interested in its content for processing purposes. This frame filtering is usually done
based on the CAN ID (identifier). The ID also serves for assuring packet arbitration as
part of the collision avoidance mechanism which gives higher priority to frames with
lower ID values in the case two frames are simultaneously transmitted. The CAN ID
can be either 11 bits long (in standard frames), or 29 bits (in extended format).

(a) (b)

Fig. 6: CAN network topology (a) and data frame format (b)



Appendix 2 - Results for Various Number of Neighbors over a
Single ID and over Full Trace

Table 2: Detection rates for various types of attacks (k-NN with 3 or 15 neighbors)
Attack params. No. messages k-NN Parameters Detection rates

No. Att.
type

Operand Delay ms training testing No.
neigh.

Distance TNR TPR FPR FNR

1. r n/a 9.750 500 19500 3 Euclidean 98.55% 99.31% 1.45% 0.69%
2. r n/a 9.750 500 19500 15 Euclidean 97.55% 97.83% 2.45% 2.17%
3. r n/a 0.001 500 19500 3 Euclidean 100% 100% 0% 0%
4. r n/a 0.001 500 19500 15 Euclidean 100% 100% 0% 0%
5. r n/a 0.001 500 19500 3 Euclidean 90.02% 100% 9.98% 0%
6. r n/a 0.001 500 19500 15 Euclidean 91.32% 100% 8.68% 0%
7. r n/a 5 500 19500 3 Euclidean 89.99% 100% 10.01% 0%
8. r n/a 5 500 19500 15 Euclidean 91.30% 100% 8.70% 0%
9. r n/a 9 500 19500 3 Euclidean 91.61% 52.53% 8.39% 47.47%
10. r n/a 9 500 19500 15 Euclidean 91.33% 31.11% 8.67% 68.89%
11. r n/a 9.750 500 19500 3 Euclidean 89.33% 50.67% 10.67% 49.33%
12. r n/a 9.750 500 19500 15 Euclidean 91.26% 50.67% 8.74% 49.33%
13. r n/a 50 500 19500 3 Euclidean 89.96% 83.75% 10.04% 16.25%
14. r n/a 50 500 19500 15 Euclidean 91.40% 83.75% 8.60% 16.25%
15. ir n/a 0.001 500 19500 3 Euclidean 99.70% 100% 0.30% 0%
16. ir n/a 0.001 500 19500 15 Euclidean 98.63% 100% 1.37% 0%
17. ir n/a 9.750 500 19500 3 Euclidean 99.70% 100% 0.30% 0%
18. ir n/a 9.750 500 19500 15 Euclidean 98.63% 100% 1.37% 0%
19. isa α = 2 0.001 500 19500 3 Euclidean 91.37% 100% 8.63% 0%
20. isa α = 2 0.001 500 19500 15 Euclidean 91.13% 100% 8.87% 0%
21. isa α = 2 9.750 500 19500 3 Euclidean 92.15% 51.01% 7.85% 48.99%
22. isa α = 2 9.750 500 19500 15 Euclidean 91.09% 50.40% 8.91% 46.60%
23. ism α = 2 0.001 500 19500 3 Euclidean 91.39% 100% 8.61% 0%
24. ism α = 2 0.001 500 19500 15 Euclidean 91.12% 100% 8.88% 0%
25. ism α = 2 9.750 500 19500 3 Euclidean 92.16% 60.70% 7.84% 39.30%
26. ism α = 2 9.750 500 19500 15 Euclidean 91.11% 50.59% 8.89% 49.41%
27. isa α = 2 9.750 500 19500 3 E(∆t), H(data) 91.07% 100% 8.93% 0%
28. isa α = 2 9.750 500 19500 15 E(∆t), H(data) 91.06% 100% 8.94% 0%
29. ism α = 2 9.750 500 19500 3 E(∆t), H(data) 91.06% 85.52% 8.94% 14.48%
30. ism α = 2 9.750 500 19500 15 E(∆t), H(data) 91.09% 85.17% 8.91% 14.83%
31. r n/a 0.001 5000 45000 3 Euclidean 96.74% 100% 3.26% 0%
32. r n/a 0.001 5000 45000 15 Euclidean 98.77% 100% 1.23% 0%
33. r n/a 5 5000 45000 3 Euclidean 96.75% 100% 3.25% 0%
34. r n/a 5 5000 45000 15 Euclidean 98.70% 100% 1.30% 0%
35. r n/a 9.750 5000 45000 3 Euclidean 96.79% 65.33% 3.21% 34.67%
36. r n/a 9.750 5000 45000 15 Euclidean 98.83% 35.95% 1.17% 64.05%
37. r n/a

{
9.75, 19.75, 39.75, 99.75

}
5000 45000 3 Euclidean 96.40% 48.94% 3.60% 51.06%

38. r n/a
{

9.75, 19.75, 39.75, 99.75
}

5000 45000 15 Euclidean 98.68% 47.41% 1.32% 52.59%
39. ir n/a 0.001 5000 45000 3 Euclidean 99.47% 100% 0.53% 0%
40. ir n/a 0.001 5000 45000 15 Euclidean 99.57% 100% 0.43% 0%
41. ir n/a 5 5000 45000 3 Euclidean 99.31% 100% 0.69% 0%
42. ir n/a 5 5000 45000 15 Euclidean 99.49% 100% 0.51% 0%
43. ir n/a 9.750 5000 45000 3 Euclidean 99.53% 86.46% 0.47% 13.54%
44. ir n/a 9.750 5000 45000 15 Euclidean 99.63% 60.97% 0.37% 39.03%


