
1

Efficient Physical Layer Key Agreement for
FlexRay Networks
Pal-Stefan Murvay and Bogdan Groza

Abstract—The FlexRay protocol provides deterministic and
fault-tolerant communication for automotive applications with
stringent requirements regarding reliability and real-time per-
formance. But the lack of intrinsic security mechanisms makes
FlexRay vulnerable to spoofing and DoS attacks while existing
features are not sufficient to assure reliable communication in the
presence of adversaries. Since adding cryptography mandates for
secret shared keys, providing secure key establishment techniques
is critical in assuring the intended security objectives. In this
paper we propose a backward compatible key agreement scheme
for FlexRay communication based on intrinsic characteristics of
the FlexRay physical layer. In particular, we determine that the
symbol window is suitable for implementing a covert channel
based on physical properties of the bus which allows us to
bootstrap a secure session key between two nodes or to re-enforce
existing shared keys. We evaluate and discuss the performance
of software-based implementations of the proposed mechanism
on two different automotive embedded platforms relying only on
the application level.

Index Terms—FlexRay, physical layer, key agreement.

I. INTRODUCTION

Research on the security of in-vehicle environments was
mostly focused on CAN (Controller Area Network) based
communication. This does not come as a surprise since CAN
is still the most widespread protocol used for in-vehicle
communication. Nevertheless, the in-vehicle ecosystem also
encompasses other communication protocols that should not
be overlooked when considering automotive systems security.
FlexRay is an automotive communication protocol employed
by safety critical systems such as brake-by-wire, drive-by-wire
or more advanced driver assistance systems.

Possible attacks on FlexRay communication were men-
tioned as early as 2004 along with the first concerns on in-
vehicle security in general [1]. A first simulation of attacks on
FlexRay was done by Nilsson et al. [2] while a more recent
work provides a detailed view of the security of the FlexRay
protocol and demonstrates a series of DoS (denial-of-service)
and spoofing attacks on an actual test network [3]. An attacker
that infiltrates the in-vehicle network and compromises a node
of the FlexRay cluster can easily mount DoS and spoofing
attacks on FlexRay communication. Compromising in-vehicle
ECUs (electronic control units) has been proved to be feasible
on modern automobiles by using the diagnostics port [4]
and other on-board attack surfaces [5] or even by remote
connection [6].

Pal-Stefan Murvay and Bogdan Groza are with the Department of Automa-
tion and Applied Informatics, Politehnica University of Timisoara. Email: pal-
stefan.murvay@aut.upt.ro, bogdan.groza@aut.upt.ro

Securing FlexRay communication is important since manip-
ulating it could leave safety critical ECUs unable of fulfilling
their function or even be used to induce unwanted behavior
that can jeopardize human safety. This risk can be circum-
vented by enhancing FlexRay communication with proper
security mechanisms. However, a secure key establishing
mechanism is required for achieving basic security objectives
in a network. To the best of our knowledge the few works
that cover the security of FlexRay networks do not provide a
solution for key agreement or distribution that is specifically
tailored for FlexRay clusters.

Contribution and addressed scenarios. In this paper, we
propose a method for implementing key agreements in a
FlexRay cluster that uses intrinsic characteristics of the physi-
cal layer. The principle that we use in this work is based on a
key sharing mechanism that was previously proposed for CAN
[7]. We adapt this mechanism and map the key agreement
functionality to existing FlexRay specifications. To validate
our proposal we implement the mechanism on two automotive
grade embedded platforms by only using the application
layer and FlexRay transceiver to support immediate software
deployment. We also show that our approach is backwards
compatible with existing FlexRay implementations and does
not disrupt normal communication.

Figure 1 is suggestive for the addressed scenarios. Several
nodes are depicted on the bus sharing two bit-sequences
(from which a secure secret-key can be derived) via a covert
mechanism in the symbol window. There are two obvious
scenarios that can benefit from the proposed mechanism. The
first scenario is regular key exchange between nodes. Current
standards for vehicle on-board communication do require
secret shared keys to communicate between peers, e.g., Section
5.2 in [8]. But the secure exchange of such secret keys requires
the existence of a public-key mechanism, e.g., RSA or Diffie-
Hellman. While function templates for such mechanisms are
already specified in the AUTOSAR standard [9], public-key
cryptography is computational expensive and moreover such a
handshake requires for additional specific slots to be allocated
in the static or dynamic segment of FlexRay. In contrast,
the mechanism that we propose requires little computations,
it is fully transparent and only requires minimum use of
the dynamic segment for protocol bootstrapping. The second
scenario of interest to us, calls for re-enforcing existing
shared keys. Public key mechanisms can be used to exchange
session keys, but rather than refreshing these keys with new
handshakes (which will occupy additional space within the
communication cycle), the covert channel that we create can
achieve this in a transparent manner. Cryptographic ratchets

2

can be used to increase the entropy of existing keys or to
derive new keys between nodes.

Fig. 1. Graphical representation of the addressed scenario with two nodes
performing a key exchange during the symbol window

Paper outline. The remainder of this paper is organized as
follows. Section II presents related work on FlexRay security
and physical layer key agreement mechanisms. Section III
gives a background on the FlexRay protocol while section IV
describes the employed key sharing mechanism and its map-
ping to FlexRay. Next in section V we present the proposed
key agreement protocol before providing implementation de-
tails and evaluation results in sections VI and VII. Finally, in
section VIII, we conclude our work.

II. RELATED WORK

We discuss related work along two distinct lines: existing
solutions for FlexRay security and physical-layer key agree-
ment.

A. FlexRay security

The subject of FlexRay security has attracted less attention
than security on CAN. One of the reasons may be that FlexRay
is not directly exposed through the diagnostics port like CAN
so it is less prone to adversarial interventions. One the other
hand, the FlexRay protocol is more complex and dedicated
development tools are less commonly available than those
targeting CAN.

Still, a number of papers cover various aspects of security in
FlexRay-based networks. Some lines of work were concerned
with efficient scheduling of FlexRay communication in the
presence of security-related transmissions. A security aware
scheduling mechanism is presented in [10]. The authors con-
sider joint scheduling of CPU tasks and FlexRay communica-
tion in the static segment to achieve message authentication
using a TESLA-like scheme. Another more recent work that
discusses optimized scheduling for the adoption of TESLA
schemes for FlexRay can be found in [11]. The performance
of using several broadcast authentication protocols on FlexRay
and CAN-FD (CAN with Flexible Data-rate) is analysed in
[12]. The employed protocols are also classified based on the
key distribution model followed by each but the analysis is
only done by simulation.

The problem of key distribution in FlexRay networks has
minimal coverage in related works. In [13], the authors pro-
pose the use of pre-shared one-way chains as keys for MAC
based authentication of FlexRay traffic. However, aspects
related to key renewal and key storage memory requirements

are not discussed. The authors of [14] discuss porting of a
TESLA [15] based CAN authentication protocol to FlexRay.
Their approach assumes that each network node has a set of
hard-coded pre-shared keys that are employed in subsequent
protocol steps. Another proposed approach is to use security
aware communication controllers to provide device authen-
tication and encrypted communication [16]. However, their
approach is also based on pre-shared keys. A slightly different
approach, described in [17], proposes the use of a central or
master node which generates and distributes session keys to all
other FlexRay nodes. The key distribution process is secured
with one-way key chains pre-shared between the master and
each of the other nodes.

The main disadvantages of the existing proposals on key
management for FlexRay communication consist in the inabil-
ity to refresh keys over the vehicle lifetime or the high memory
requirements for storing one-way chains that ensure sufficient
keys. The approach that we propose in this work alleviates
these two problems as it provides an efficient and secure
way to exchange keys whenever required without the need
of storing long one-way chains. Also, while the key exchange
mechanisms proposed so far rely on algorithms implemented
at the application layer, our current approach is based on
intrinsic properties of the FlexRay physical layer.

B. Physical layer key agreement

Physical layer key agreement was proposed for both wired
and wireless communication protocols. Mueller and Lothspe-
ich [7] are the first to propose such an approach for CAN
by making use of the intrinsic wired-AND behavior of the
CAN physical layer. We use their scheme as a basis for our
work by adapting it to the FlexRay specification. This main
scheme is extended in [18] to support group key agreement for
CAN. The authors later show that this approach is vulnerabile
to physical layer probing attacks and provide several efficient
solutions to alleviate these vulnerabilites [19]. The use of a
similar principle of two devices transmitting simultaneously
was proposed and implemented for Near Field Communication
(NFC) in [20]. The basic approach for this type of NFC
key agreement suffers from the same vulnerability to probing
attacks as the CAN mechanism. Hence, the authors of [20]
use a similar solution as proposed for the case of CAN by
introducing randomness in physical signaling characteristics.

In wireless communication, physical layer key agreement,
also known as channel-based key agreement, uses reciprocity
of random fading wireless channels [21]. The principle is
based on correlated wireless channel measurements that an
eavesdropper cannot obtain due to its relative position to the
two legitimate nodes. As presented in [21], implementing
this mechanism in wireless networks also faces a series of
challenges that need to be addressed.

III. THE FLEXRAY PROTOCOL

The introduction of advanced control and safety systems
in cars came with increasing demands on data rate and
reliability provided by in-vehicle communication channels. As
a result, a new protocol was needed due to the inability of

3

Fig. 2. The FlexRay communication cycle timing hierachy defined as sections
that offer different levels of granularity. Following notations employed in the
figure: static slot (SS), minislot (MS), macrotick(MT) and microtick (µT)

existing ones to fulfill these requirements. The solution came
in the form of the FlexRay protocol developed to provide
for deterministic and fault-tolerant communication. The last
protocol specification is version 3.0.1 which was released in
2010 and has since been standardized in the form of ISO
17458. The core specification is separated in two main parts
defining the data link layer [22] and the electrical physical
layer [23].

FlexRay follows a time-triggered communication model
based on TDMA (Time-Division Multiple Access). This means
that all nodes follow a clearly defined communication schedule
in which slots are assigned in each communication cycle
for the transmission of specific messages. Fault-tolerance is
assured through channel redundancy with two communication
channels on each FlexRay node that can provide a data rate
of up to 10 Mbit/s. If redundancy is not required, the two
channels can be used in parallel to increase the data rate up
to 20 Mbit/s. In terms of topology, FlexRay offers flexibility
as it can be employed in any physical topology, e.g., bus,
active/passive star or hybrid topologies.

The main body of the FlexRay protocol is described at the
data link layer and is implemented by the FlexRay communi-
cation controller which can be implemented as a stand-alone
chip or integrated as a microcontroller communication module.
The electrical physical layer is implemented by the transceiver.

A. Communication cycle

The communication schedule in a FlexRay cluster is ful-
filled based on a periodical fixed length communication cycle
which is structured into four main segments as depicted in
Figure 2: static segment, dynamic segment, symbol window
and network idle time. Out of these only the static segment
and the network idle time are mandatory in any FlexRay con-
figuration while the remaining two can be added depending on
communication requirements. Each segment has a predefined
length which remains fixed in all communication cycles.

A static segment is comprised of a fixed number of static
slots equal in length. Each static slot is statically allocated to
a single node for the transmission of a frame with a given
ID. A frame must always be transmitted in allocated static
slots. Therefore, if the sender of a specific frame has no data
available for transmission a frame with a ’0’-padded payload,
called a null frame, will be sent.

The dynamic segment was designed to support event-driven
message transmission. The communication schedule must also
pre-define the frames that could be transmitted in this segment.
However, in contrast with static segment rules, these frames

Fig. 3. The FlexRay physical bus levels

will only be transmitted if required. To accommodate this
behavior the dynamic segment is subdivided into smaller
equally sized slices called minislots. A number of minislots
is allocated for each frame that needs to be transmitted in the
dynamic segment of a particular communication cycle until no
further frames can be accommodated in the current cycle.

The symbol window is dedicated for simpler communication
elements in the form of specific bit patterns. These bit patterns
are called symbols and are used for tasks related to communi-
cation startup and network management. A network idle time
segment is required at the end of any communication cycle to
allow nodes to perform synchronization and communication
cycle related tasks.

B. Time representation

FlexRay employs a layered timing hierarchy to describe
the communication cycle and achieve synchronization. The
communication cycle, as depicted in Figure 2, is composed
of a fixed integer number of macroticks. All nodes in a
FlexRay cluster have the same understanding of macrotick
duration. Although some small variations are tolerated, greater
mismatches in macrotick duration will lead to synchronization
errors and can cause cluster-wide communication halt. A
macrotick is represented as an integer number of microtics.
Microticks are derived directly from local oscillator of each
FlexRay node. Therefore, a distinct microtick duration may be
employed by different network nodes which will also lead to
a different number of microticks per macrotick.

An additional timing hierarchy level is used for the def-
inition of the static and dynamic segments. The length of
each of these segments is defined as an integer number of
slots (static slots for the static segment and minislots for
the dynamic segments). This level of abstraction is employed
in the arbitration process which does not cover the symbol
window and network idle time segments.

The nominal bit time is identical cluster-wide and defined
as gdBit which can take one of three values depending on
the employed bit rate. Hence, gdBit can be either 100, 200
or 400 ns corresponding to bit rates of 10, 5 and 2.5 Mbit/s
respectively. gdBit is also derived from the local clock and
is a multiple of microticks, i.e. either 4 or 8 microticks per
gdBit.

C. Physical layer signaling

The physical layer of FlexRay is implemented using a two
wire transmission medium for differential signaling. The two
physical lines are denoted as BP (bus plus) and BM (bus
minus). Figure 3 presents the four physical line levels defined

4

by the FlexRay electrical physical layer specification. Two of
these levels are recessive while the other two are dominant.
The two recessive levels are used to indicate a line in the idle
state either during normal or low power mode. In contrast, the
two dominant levels referred to as Data 0 and Data 1 are used
to signal logical ’0’ and ’1’ respectively. FlexRay is designed
for communication without collisions. Since these may happen
during the startup phase, the specification provides a means to
resolve some collision types. Table I lists the possible collision
types and the resulting bus signal in each case. An important
aspect on which we base our key agreement mechanism is
that dominant signals (i.e. Data 0 or Data 1) will always
overwrite any recessive level (i.e. Idle).

For data transmission and reception the communication
controller interfaces with the transceiver through four lines:
TxD, TxEN, RxD and the optional RxEN. Therefore, there is
a clear correlation between bus signals and the values produced
on these lines as shown in Table II. The TxD and TxEN lines
are used to control the signals generated on the bus while the
RxD and RxEN are generated on the receive side according
to existing bus signals. Table II illustrates the two transmit
lines and resulting bus signal. While TxEN is set to high, the
transceiver will output an Idle signal regardless of the value of
TxD. The two dominant signals are generated by controlling
the TxD line while keeping TxEN to low. On the receive
side, the RxEN line indicates if the bus signal is recessive
or dominant. However, this line is optional and absent in most
of the FlexRay transceiver available on the market. For this
reason we do not consider this line when building our key
agreement scheme. The RxD transceiver line is high as long
as the bus is Idle while in the dominant state it is set to low
for Data 0 and high for Data 1 as indicated in Table II.

D. Frames and symbols

The bulk of communication in a FlexRay cluster is achieved
by transmitting frames in the static or dynamic segments. A
FlexRay frame, depicted in Figure 4, consists of three main
segments: header, payload and trailer. A set of indicator bits
at the begining of the header segment are used to specify in-
formation on the frame type and content. The frame identifier
comes next followed by the payload length which indicates the
number of 2 byte words contained in the payload field. The
header also contains the counter of the current communication

TABLE I
OUTCOME OF FLEXRAY COLLISION TYPES.

Node 1 Data 0 Data 0 Data 0 Data 1 Data 1 Idle
Node 2 Data 0 Data 1 Idle Data 1 Idle Idle
Bus signal Data 0 Unpredictable Data 0 Data 1 Data 1 Idle

TABLE II
BUS DRIVER TRANSMIT/RECEIVE BEHAVIOR

Transmit Receive
TxEN TxD Bus signal RxD RxEN
high X → Idle → high high
low low → Data 0 → low low
low high → Data 1 → high low

Fig. 4. The format of a FlexRay frame

cycle and a cyclic redundancy code (CRC) computed over part
of the indicator bits, ID and payload length. The payload field
contains the transmitted data bytes while the trailer holds the
CRC computed over the header and payload segments.

Besides frames FlexRay also uses simpler communication
elements called symbols which take the form of specific bit
patterns. FlexRay defines four symbols: collision avoidance
symbol (CAS), media access test symbol (MTS), wakeup sym-
bol (WUS) and wakeup during operation pattern (WUDOP).
Only three patterns are defined to describe these symbols
since CAS and MTS share the same pattern and can be
distinguished by the communication state in which they are
transmitted. CAS is used only for communication startup
before the communication cycle is established while MTS
is used during normal communication. Additionally, WUS is
used for in cluster wakeup process before restarting normal
communication. Therefore, only an MTS or WUDOP can be
sent during a symbol window. The corresponding pattern for
each symbol is illustrated in Figure 5. As depicted by the
figure, each symbol has several configurable features such as
high/low/idle pulse duration or number of pattern repetitions.
Pattern parametrization should be the same on all network
nodes to allow for correct symbol decoding.

IV. SHARING SECRETS OVER FLEXRAY

In this section we describe the proposed approach for
sharing secrets in a FlexRay cluster which relies on the
inherent property of the physical layer that allows dominant
levels to overwrite recessive ones. We begin by describing the
underlying principle and then present how to employ it for
key agreement in FlexRay clusters.

A. Basic key sharing principle

To simplify the presentation we consider that a logical
’1’ is recessive while logical ’0’ is dominant and defer the
discussion on the actual logical interpretation of recessive and
dominant levels for the next section. In a similar fashion with
the CAN protocol, the FlexRay physical layer implementation
uses a wired-AND mechanism to resolve the bus level when
dominant and recessive levels are generated at the same time
by distinct nodes. Therefore, the resulting bus level will only
be recessive if all nodes generate a recessive output, otherwise
the resulting level will be dominant as long as at least one node
generates a dominant output. This physical layer property was
previously used to build a key agreement scheme for CAN
[7]. We make use of the same underlying principle which we
describe in what follows.

Let Alice and Bob be two network nodes that have to share
a secret by taking advantage of the bus wired-AND behavior.
Each of them independently generates a random bit sequence

5

Fig. 5. FlexRay symbols: Collision Avoidance Symbol (CAS)/Media Access Test Symbol (MTS), Wakeup Symbol (WUS) and Wakeup During Operation
Pattern (WUDOP)

of predefined length n. They want to exploit the physical layer
behavior by simultaneously transmitting their bit sequences in
a manner that would allow each of them to identify the value of
the bit transmitted by its counterpart. Additionally, it should
not be possible for an eavesdropper node Eve to determine
the bit sequences sent by Alice and Bob by observing bus
traffic. Clearly, for the information exchange to be successful
it is also required that no other node, besides Alice and Bob,
is transmitting during this interval. However, there are several
issues in achieving these requirements. First, if both Alice and
Bob transmit a ’1’ bit this will be evident to Eve since the
resulting bus value is ’1’ only in this case. Secondly, if one
of the nodes transmits a ’0’ it would be impossible for it to
determine the value sent by its counterpart since the resulting
bus value will be ’0’ regardless of the value transmitted by
the second node.

According to the original scheme proposed by Mueller and
Lothspeich [7] Alice and Bob overcome these difficulties by
taking two steps. The first step, intended to enable each legit
node to determine what its counterpart transmits, is to modify
the generated random bit sequences by replacing each bit in
the sequence by a bit pair containing the original bit followed
by its inverse. These modified sequences are then transmitted
as initially described. The second step is required to eliminate
any leaked bits from the sequence. As a consequence of the
first step, besides the case when both nodes transmit a ’1’,
Eve can now also determine when both nodes transmit a ’0’.
To solve this issue, after the bit transfer is complete Alice and
Bob will drop all bits in their original sequence that correspond
to a received bit pair containing a ’1’. To better illustrate
the previously described key sharing mechanism we give an
example of operation for a 10 bit random input sequence in
Figure 6.

B. FlexRay signaling for secret key sharing

Implementing the secret key sharing mechanism described
in the previous section on CAN is straightforward since the
CAN physical layer encodes a recessive level as logical ’1’
and a dominant level as logical ’0’. To implement the mecha-
nism based on FlexRay communication the same wired-AND
functionality must be provided. FlexRay uses the recessive
level to denote an idle bus and the dominant level for one
of the two active bus levels. As a transmitter, a node can
switch between dominant and recessive output by means of

Fig. 6. Example of bus key sharing process for 10 bit random input sequences

the TxEN line (as shown in Table II). However, on the
receive side a node cannot distinguish between the recessive
state and the dominant Data 1 state unless its transceiver
provides the RxEN line which is optional (first vs. third line in
Table II). Moreover, according to the FlexRay physical layer
specification [23] and Table I, the outcome of different network
nodes generating distinct dominant levels at the same tame (i.e.
Data 0 vs. Data 1) is undefined and depends on transceiver
characteristics.

Even under these circumstances, a FlexRay node can still ef-
fectively generate recognizable dominant and recessive levels
that can be used to implement the previously described key
sharing scheme. To define a generic mechanism we assume
that the RxEN line is not available. For key sharing, nodes
shall consider a recessive Idle level as a logical ’1’ and a
dominant Data 0 level as a logical ’0’. This can be translated
into signaling at the communication controller interface lines
(i.e. TxEN, TxD and RxD) according to Table II. Therefore,
transmission can be implemented by always keeping the TxD
line low and only toggling the TxEN line. Setting TxEN to low
will result in a dominant bus level which is received as a low
level on the receiver’s RxD line. Similarly, a high level on the
TxEN line results in a recessive bus level which is interpreted
as a high level on the receiver side. This encoding effectively
implements the desired wired-AND behavior as illustrated in
Figure 7 which shows the resulting RxD signal obtained when

6

Fig. 7. RxD line levels of a FlexRay transceiver resulted from the toggling
of the TxEN lines of two transmitter nodes which keep their TxD lines low.

two FlexRay nodes toggle their TxEN lines. Both nodes hold
a constant low level on the TxD line (TxD lines and actual bus
signals and not shown to avoid cluttering the plot). The RxD
output clearly provides the result of the AND operation applied
to the TxEN input lines of the two sending transceivers.

C. Fitting key agreement in the FlexRay communication cycle

To assure backward compatibility with existing FlexRay
protocol implementations (i.e., FlexRay controllers and
transceivers), transmissions related to key agreement should be
made in a manner that does not disrupt the normal operation of
nodes that do not implement this mechanism. First off, since a
key agreement service is used on a request basis it can only be
accommodated by the dynamic segment or symbol window.

The dynamic segment relays event-triggered communication
according to application-specific requirements. The communi-
cation load on the dynamic segment varies within a FlexRay
cluster depending on the occurrence of message-triggering
events and will also differ from one FlexRay cluster setup
to another. Moreover, the communication controller expects
correct frames to be transmitted within the dynamic segment
or will otherwise report errors upon reception. However, using
the FlexRay frame format to implement the proposed key
exchange mechanism would not be possible since a correct
frame is a sequence of Data 0 and Data 1 signals while the
proposed key sharing mechanism generates a sequence of Idle
and Data 0 signals.

Transmissions in the Symbol window are less frequent than
transmissions in the dynamic segment. The MTS was defined
to serve as a means of testing the proper functioning of the
FlexRay bus guardian which in turn was intended to detect
and confine errors generated by a network node. However,
the FlexRay specification for the bus guardian is still in its
preliminary form (since December 2005) [24] and, to the best
of our knowledge, there exists no bus guardian implementation
in use. Even if the bus guardian will be implemented in the
future, the transmission of the MTS would be rare. WUDOP,
the second symbol that can appear in a symbol window, is
transmitted when the remote wakeup of a network node is
required which also makes it an infrequent occurrence.

We propose to use the symbol window for the key sharing
mechanism transmissions due to its usually sporadic use and
the fact that symbols are not expected to have complex frame-
like structures. FlexRay clusters functioning inside existing
vehicles may not include the optional symbol window in their
communication schedule. Retrofitting any existing clusters

DECODING

TSS ok

TSS too long

WAIT_FOR_TRANSMISSION

CAS/MTS
too short

CAS_MTS_DECODING

decoding
error

KEY_SHARE_DECODING

TSS_DECODING

FRAME_DECODING

Set decoding error

decoding
error

decoding error

END
decoding ok

decoding
ok

decoding ok

Fig. 8. Adaption of the FlexRay decoding procedure to include support for
secret sharing (white background for original blocks and gray background for
added block).

with the proposed key agreement mechanism can be done
by firmware updates of network nodes. Therefore, the new
firmware can include an updated communication cycle which
supports the symbol window. Communication cycle changes
should be minimal to avoid affecting communication reliability
(e.g. a small part of the dynamic segment could be reallocated
to the symbol window). If symbol window inclusion in the
communication cycle is not possible, the unused minislots at
the end of the dynamic segment could be used as an alternative
space for special transmissions required to implement key
agreement. From the backward compatibility perspective, the
effects of using this alternative approach are similar to the use
of the symbol window as we show in Section VII-B.

D. Shared key sequence encoding/decoding

The existing FlexRay encoding/decoding mechanism must
be considered when introducing an additional transmission
format. This is required to allow correct decoding of the
new transmission type and avoid collisions with existing
frame and symbol formats. In Figure 8 we depict the basic
FlexRay transmission decoding process, which is applied in
all communication segments, along with the changes required
for full support of the new shared key sequence. Original
processing blocks are presented as specified by the FlexRay
standard [22] and marked with a white background while the
required addition for key sequence decoding is marked with
gray.

Upon detecting the start of a transmission the FlexRay de-
coding mechanism starts by interpreting the preamble known
as the transmission start sequence (TSS) which consists of
a series of bits set to Data 0. If the transmission is a frame
it is expected that the number of bits in the TSS is equal
to gdTSSTransmitter, a parameter specified when defining
the FlexRay communication parameters. If the number of
consecutive bits set to Data 0 reaches gdTSSTransmitter+2
the transmission is considered to be a symbol and following
bits are passed through the CAS/MTS symbol decoding block
since this is the only symbol type that can be sent while the
network is active. As shown in Figure 5, for a successful
decoding of the CAS/MTS symbol gdTSSTransmitter+ 30

7

Fig. 9. Encoding of the key sharing sequence.

consecutive Data 0 bits have to be received otherwise a
decoding error is reported. Note that the decoding error is
only reported to the application layer and no automatic action
is taken upon such an event as we discuss in the experimental
section. With this in mind, we propose to set the TSS of the
shared key bit sequence to gdTSSTransmitter+ 3 followed
by a transition to the Idle state to clearly differentiate it from
a known frame or symbol transmission. This design choice
also prevents unwanted collisions in case a MTS symbol is
transmitted at the same time as the key sharing sequence. This
is because the greater number of consecutive dominant bits in
the MTS symbol will overwrite the recessive Idle bits from the
key sharing sequence leading to postponing the key agreement
procedure until the next cycle.

If the key agreement mechanism implementation is done
at the FlexRay communication controller level, the additional
KEY SHARE DECODING block should be included. This
block will implement decoding of key bits along with the
required arbitration mechanism to avoid collisions with other
symbol transmissions. This eliminates unnecessary error re-
ports caused by behavior undefined at the FlexRay communi-
cation controller level.

To define a format for encoding the shared key sequence
transmission, we consider that length of the bit sequences is
always a multiple of 8 bits so that it contains an integer number
of bytes. Figure 9 illustrates our proposal for encoding the bit
sequence transmitted in the symbol window. The transmission
starts with a TSS of gdTSSTransmitter+ 3 bits set to
Data 0. Next, a sequence of Idle bits indicates the start of
the sharing sequence (SSS). We define a new global protocol
parameter named gdSecretSS to specify the length of the
SSS which should be at least 1 bit. Its upper bound can be
calculated depending on the employed bit rate, length of the
shared bit sequence and number of usable bits in the symbol
window. The bytes in the sequence are transmitted next, each
preceded by a byte start sequence (BSS) that consists of
one Idle bit followed by a Data 0 bit. The Idle level is re-
established at the end of the transmission.

E. Shared secret sequence length considerations

Some implementation constraints have to be considered
when calculating the maximum number of bits that can be
transmitted in the symbol window. These constraints are
mainly due to FlexRay specification parameters which we
indicate as we enumerate these constraints in what follows:

• The symbol window can hold at most one symbol per
communication cycle.

Fig. 10. Timing within the FlexRay symbol window.

• The length of the symbol window, upper bounded by
transmission medium characteristics, is specified by a
global cluster parameter called gdSymbolWindow (MT).

• For clock synchronization purposes an idle time in-
terval is required between the start of a segment
and the transmission start within the segment. This
interval is given as the global cluster parameter
gdSymbolWindowActionPointOffset (MT).

• A channel idle time of at least 11 bits
(cChannelIdleDelimiter bits) is required to signal
the end of the symbol transmission.

• The format of the shared secret sequence, should be
distinct from frames and other symbols in order to
avoid collisions and correctly trigger the proper decoder
element on the receiver side. As explained in Section
IV-D, this is achieved by setting the length of the TSS
preamble to gdTSSTransmitter+ 3 bits.

• Since long sequences of Idle or Data 0 bits can be
generated, a mechanism is required to maintain synchro-
nization and prevent misidentifying long Idle sequences
as channel idle time (symbol end). We employ a bit
stuffing mechanism which we discuss later in this section.

Figure 10 illustrates basic timing elements in a
symbol window which limit the size of the symbol.
By considering all previously mentioned restrictions
(besides bit stuffing) the usable length of the symbol
window can be calculated as (gdSymbolWindow −
gdSymbolWindowActionPointOffset) × (gdBit/MT) −
cChannelIdleDelimiter − (gdTSSTransmitter+ 3) −
gdSecretSS.

The effective number of usable bits will differ depending on
various cluster settings and the employed bit stuffing scheme.
Table III illustrates the number of usable bit space considering
the maximum allowed symbol window length and the three

TABLE III
NUMBER OF USABLE BITS IN SYMBOL WINDOW.

Bit rate (Mbit/s) 2.5 5 10
gdSymbolWindowMax (MT) 145 162 161
gdSymbolWindowActionPointOffsetMax (MT) 63
cChannelIdleDelimiter (bits) 11
gdTSSTransmitterMax (bits) 5 8 15
gdSecretSS (bits) 1
gdBit/MT 5 10
Number of usable bits (no stuffing) 390 472 950∗
Number of usable bits (CAN-like stuffing) 347 420 845∗
Number of usable bits (FlexRay-like stuffing) 312 376 760∗

∗ Actual usable values are half of those shown due to constraints discussed in the
following section IV-F

8

possible FlexRay bit rates. All other protocol parameters are
also considered at their maximum values for determining a
lower bound for usable bit space. Bit stuffing usage impact is
illustrated by presenting results both for bit-stuffed and non
bit-stuffed sequences. We examine two bit stuffing approaches.
The first is inspired by CAN and consists of the insertion
of an opposite value bit after each 8 consecutive bits of the
same value. The second approach uses the same mechanism
as the FlexRay frame encoding which is to precede each 8 bit
sequence by a bit pair formed by an Idle bit followed by a
Data 0 bit called BSS (byte start sequence). Thus, depending
on the scheme, at most 1 or 2 bits are consumed for each 8 that
have to be transmitted. While it needs fewer additional bits,
the CAN-like bit stuffing is more difficult to implement as it
requires nodes to monitor incoming bit sequences to decide
on the polarity of the stuffing bit. The FlexRay approach is
easier to implement and only requires nodes to expand the
bit sequences with one BSS per byte. For the remainder of
the paper we consider that FlexRay-like bit stuffing is used to
augment the bit sequence of the shared key.

These calculations are made on a per-channel basis. Since
each FlexRay node is equipped with two channels, the number
of usable bits could be doubled by parallel transmissions of
different bit sequences as long as redundancy is not required
for the key sharing process. Also note that the actual space
available for the original random bit sequences is half of the
available usable bit space presented in Table III because of the
need to send one inverted bit for each original one.

The size of the Action Point Offset (APO) parameter has
a considerable influence on the number of available bits.
Note that, when set to its maximum, the APO can span over
more than one third of the symbol window. A different APO
size can be configured for each transmission slot type (i.e.
static, dynamic and symbol window) and represents the time
between the start of a transmission slot and the actual start
of the transmission within the slot. This offset is provided
to accommodate imperfect synchronization caused by clock
deviation between nodes and comes at the cost of reduction
in bandwidth. While we use the maximum specified value
of gdSymbolWindowActionPointOffset for establishing an
upper bound on bandwidth reduction, values of APOs em-
ployed in FlexRay network configurations are smaller (e.g. 5
MT used for static slot APO in [25] while in [26] an APO of
3 MT is used for both static slots and minislots).

F. Bit-rate during the key exchange

An important aspect to consider is the ability to sustain the
configured bit rate for transmitting the secret shared sequence.
Some implementations of the mechanism, especially those
not employing a dedicated FlexRay controller supporting the
key agreement mechanism, may not be capable of matching
the configured FlexRay cluster bit rate. Since the symbol
window is used for transmitting the proposed key agreement
mechanism, the encoding of the shared sequence can be
adapted to use a different bit duration than the one used in
frame transmission as long as it is a multiple of the cluster bit
rate. The bit duration to be used can be either pre-defined or

established during the protocol initiation phase in which each
node should transmit its maximum supported bit rate for key
exchange. The two nodes will use the lowest of the two bit
rates.

Using a lower bit rate for key exchange reduces the number
of bits that can be transmitted in one communication cycle.
An improvement can be made by not encoding fields in
the preamble of the key exchange sequence (TSS and SSS
fields) based on the lower bit rate. These fields can span for
several bits and their duration is only restricted by their lower
boundaries. Therefore, their length can be set to the smallest
multiple of the shared sequence bit length which is greater
than or equal to their lower boundary according to the cluster
bit duration.

Limitation by specification. The timing requirements for
the receiver-side detection of transitions between the Idle
and active (Data 0 or Data 1) bus levels are different than
the timings used for transitions between the two active bus
levels. The FlexRay electrical physical layer specification [23]
specifies a bus driver idle detection time (transitions from
active to Idle) of 50-205 ns and an activity detection time
(transitions from Idle to active) of 100-250 ns. These timings
are longer than the maximum 22.5 ns required to detect
transitions between Data 0 and Data 1. Hence, the bus driver
specification introduces an inherent limitation in the bit rate
achievable by our proposed mechanism as we show in the
evaluation section. As a consequence, at 10 Mbit/s, the actual
number of usable bits is half of the calculated values from
Table III

V. KEY SHARING PROTOCOL

We apply the process describing how secrets can be shared
over FlexRay to build a key agreement protocol. This section
presents the envisioned protocol and discusses its security in
front of adversarial actions.

A. Protocol description

Key-exchange protocol. The proposed protocol for secure
key agreement over FlexRay consists of the following set
of actions that are run by any pair of initiator-target nodes
(Ni, Nt):

1) Req-KA(Ni, Nt) in which the initiator of the key agree-
ment Ni sends a request marked by a predefined con-
stant reqKa to the target node Nt for starting the key
agreement,

2) Ack-KA(Nt, Ni) in which the target node Nt acknowl-
edges the acceptance of the key agreement request sent
by the initiator by replying with a predefined constant
reqAck,

3) Gen(`) in which each node generates Rid , id ∈ {i, t},
a sequence of |Rid | = 4` random bits (where ` is a
predefined constant) then each node expands his random
bit sequence by inserting a complement of each bit
from the original sequence either after each original bit
or grouped at the end of the original sequence based
on a common encoding format on both nodes, let the
expanded sequence be R̃id (note that |R̃id | = 8`),

9

4) Exch(R̃i, R̃t) in which the initiator and target nodes Ni,
Nt transmit their extended bit sequences and read out
the resulting value from the bus R̃∗ = R̃i ∧ R̃t, where
∧ represents the bitwise AND operation,

5) ExtractKey(R̃∗) in which the usable bits which re-
mained secret after the Exch operation are counted and
if they are less than 2` − ε then the key agreement
is restarted or else the common secret is obtained by
passing the extracted bits from the bus trough some key
derivation function KD (the key derivation function can
be a simple keyed hash-based message authentication
code which uses the common shared secret as key
and the message set to a predefined, publicly-known
constant)

6) Ver in which nodes check the correctness of their
version of the shared key by computing and sending
the encryption of the default request message reqKa
followed by the identity of the node or some other fixed
constant for the initiator and target nodes.

In step ExtractKey(R̃∗) it can be easily seen that the initia-
tor’s extracted sequence is the exact inverse of the sequence
obtained by the target node. Therefore the agreement initiator
uses extracted bits as the shared secret key while the target
node uses the inverse of its extracted usable bits so that the
shared key is identical.

We requested that the number of generated bits is 4` on each
node, which later expands to 8`, to comply with the stuffing
procedure (which works at multiples of 8 bits). On average,
half of the 4` bits are lost which results in a session key that
has an average size of 2` bits. The probability of extracting
exactly k bits out of the 4` bits is given by the success rate of
a random variable X describing a set of Bernoulli trials with
p = 0.5, i.e., the probability of exactly k successes is:

Pr[X = k] =

(
4`

k

)
0.5k0.54`−k

The probability of extracting less than k bits can be computed
as cumulative distribution function of random variable X , i.e.,

Pr[X ≤ k] =
∑
i=0,k

(
4`

i

)
0.5i0.54`−i

We now consider a more practical example based on the
number of usable bits in the symbol window as presented in
Table III. For a practical bitrate of 5 Mbit/s, there are 376
bits available which leads to ` = 47 (the number of bits in
the symbol window is divided by 8 according to step 3 of
the protocol description). Figure 11 shows the probability of
extracting exactly k bits (left) and of extracting less than k
bits (right) for ` = 47 and k ∈ [0..4`]. On average, 94 bits
can be extracted from each symbol window. Extracting 128
bits for an AES key may be set as reference point, a case in
which 2 symbol windows will be needed. The probability of
extracting less than 64 bits in one window is very small, i.e.,
0.7×10−5. On the other hand, the probability of extracting at
least 64 bits in each window is greater than 0.9999 which is
sufficiently high. In step 5 of the protocol we check that the
number of extracted bits are at least 2`− ε where ε is used as
a tolerance margin (this bound is due to the fact that half of

Fig. 11. Probability of extracting exactly k bits (left) and extracting less than
k bits (right) for ` = 47, k ∈ [0..188]

the 4` bits are lost, i.e., leaked values). As a practical value,
for ` = 47 we can set ε = 30 which results in keys that are at
least 64 bits in length from each symbol window. The success
probability of the key exchange, i.e., extracting at least 128
bits in two symbol windows, would be 1−3.03×10−10 which
is close to 1. In the highly unlikely event that less than 128 bits
are extracted, the protocol will continue with a new symbol
window until the expected number of bits are obtained.

B. Protocol instantiation

We envision two main concepts for actual protocol im-
plementation: one that does not involve the host in the key
agreement process and a second one in which the host
participates in the process. The first approach requires the
communication controller to autonomously perform all steps
of the key agreement and obtain the shared secret key. This
key can be either provided to the host application to be used
in host based security mechanisms or these operations can be
implemented directly as part of the communication controller
functionality to reduce host load. The approach of minimizing
host load by implementing various communication-related
tasks as custom extensions of the FlexRay communication
controller was previously employed in by Shreejith et al. in
[27]. The second concept assumes that the host application
controls or performs all or some steps of the key agreement
protocols.

While the actual key agreement mechanism was detailed in
the previous section, we still have to account for the protocol
initiation and key verification steps. The protocol is initiated by
a request (reqKa) and response (reqAck) operation pair. This
can be achieved by frame transmission in the dynamic segment
since the key agreement operation is not performed often
enough to justify slot allocation in the static slot. Moreover,
both request and response can be transmitted in the same
cycle by careful scheduling to allow the start of the actual
key sharing operation in the nearest available symbol window.
Several consecutive symbol window transmissions can be used
if a single transmission does not provide enough entropy.
We impose a limitation on the frequency of key agreement
requests to restrict attacker capabilities. Therefore, a node
should only accept a limited number of key agreement requests
from another node in a short period of time. Exact values
are to be defined according to application requirements. As
a simple key verification mechanism we propose that each
node uses a predefined symmetric key algorithm (e.g. AES) to
encrypt verification information and sends it to its counterpart.

10

The key is declared valid only if both nodes are successful in
decrypting the verification message.

C. Attacker model and protocol security

We consider two types of attackers that could target the
proposed key agreement mechanism both having the same
common goal of obtaining the key shared between two net-
work nodes: eavesdropper and active attacker.

Eavesdropper. An eavesdropper is an attacker device that is
plugged into the network with the ability to probe the physical
network lines and extract timing or voltage characteristics of
the signals without actively participating in communication.
As discussed in related work on CAN [19], physical layer key
agreement schemes are vulnerable to probing attacks. This is
possible due to differences in propagation times and unique
signal characteristics which may reveal the original random bit
sequences sent by the two legit nodes. Fortunately, as proposed
by the authors of the same paper [19], a series of countermea-
sures are available for this type of attacks. These consist in
inducing slight random variations in the characteristics of each
transmission to impede node identification.

Active attacker. The second type of adversary is an active
attacker consisting in either a compromised or a plugged-
in node. Such an attacker is capable of monitoring FlexRay
traffic and generate transmissions on the communication line.
While the scheme is securein front of this type of adversary
for passive topologies this is not true in an active star topology
if the active star node behaves like a man in the middle.
Such a man-in-the-middle attack is feasible since the FlexRay
specification does not impose any rules on the implementation
of communication forwarding between different active star
branches. Similarly, if an adversarial node is able to physically
interpose himself between two nodes in the network, the effect
will be the same. The proposals from [7] are also vulnerable
to such an adversary. Such attacks can be circumvented if the
nodes that exchange the key have a previous shared secret.
Then this secret can be used via a key-derivation function to
authenticate the bits that are exchanged during the symbol
window. An adversary which is not in possession of the key
will fail to do so.

VI. IMPLEMENTATION

Using a modified communication controller would clearly
be the more efficient approach from the computational point
of view. Nevertheless, this will not only bring increased short-
term costs, until new communication controllers are produced
and made widely available, but will also delay integration in
actual applications due to the time-to-market usually involved
in new integrated circuit designs. For this reason we propose
an approach that does not require the use of a communication
controller by only employing the FlexRay transceiver directly
interfaced with the microcontroller through general purpose
I/O pins.

For our implementation we selected two automotive micro-
controller families as representatives of different microcon-
troller classes. The employed microcontrollers are designed
for FlexRay communication and come equipped with on-chip

Fig. 12. Experimental setup comprised of EVB9S12XF512E and TriBoard
development boards together with a PicoScope used for monitoring FlexRay
signals

FlexRay controller modules. The first family is the NXP S12X
representing the low to mid-end performance class, while the
second is the Infineon TriCore AUDO family designed for
high performance applications especially in the power train
and chassis domains. Figure 12 illustrates our experimental
setup which consists of 2 S12X nodes and two TriCore AUDO
FlexRay nodes.

A. NXP S12

1) Platform description: Each of the employed
EVB9S12XF512E development boards is equipped with
a S12XF512 16-bit microcontroller from NXP and two
TJA1080 FlexRay transceivers suitable for the implementation
of a FlexRay node.

The S12XF512 microcontroller is equipped with an XGATE
co-processor, 512 KByte of Flash and 32 KByte of RAM offer-
ing a low to medium performance level among the automotive
platforms. The XGATE co-processor is intended for improving
performance by reducing the interrupt load of the main S12
CPU. Both the main CPU and the XGATE co-processor can
be clocked at up to 100 MHz while other peripheral modules
are provided clock signal with a frequency half that employed
by the cores. The S12XF512 also features a FlexRay module
capable of implementing communication at bit rates up to 10
Mbit/s.

2) Implementation details: Given the limited performance
of the S12 CPU an entirely software-based control of the
FlexRay transceiver pins to implement the key agreement
mechanism would not be feasible. Therefore, we make use
of the on chip timer module for both encoding and decoding
symbol window transmissions related to key sharing. Since
each node has to simultaneously transmit and receive, we
implemented the encoding on the main CPU while letting the
XGATE co-processor in charge with decoding.

For transmitting the secretly shared sequence we use the
timer in the output compare mode which toggles the associated
channel pin once the timer counter reaches the configured
value. The sequence to be transmitted is first transformed
into an array representing time intervals between output level
transitions. With the start of the sequence the time intervals in

11

the array are programmed into the output compare register to
generate the appropriate signal on the transceiver TxEN line.

For decoding the shared transmissions we employ another
timer channel in the input capture mode which implements the
opposite of the actions used for encoding. An input capture
channel records the current value of the timer counter when
triggered by a change of the associated pin state. We use
this feature to buffer the time of all transitions of the Rx
transceiver pin for the duration of the key exchange trans-
missions. Consecutive buffered values are then subtracted to
obtain the time intervals between transitions. This information
is further processed starting from the initial line level and the
known bit rate to obtain the actual received bits.

B. Infineon TriCore AUDO

1) Platform description: Two similar TriBoard develop-
ment boards were used in our implementation each equipped
with a different member of the Tricore AUDO family and dif-
ferent FlexRay transceiver circuits. The first is equipped with
a TC1797 microcontroller and TJA1080 transceivers while the
second uses a TC1782 microcontroller and AS8221 FlexRay
transceivers. The two microcontrollers are built arround the
same TriCore V1.3.1 core that can runt at up to 180Mhz. In
terms of memory, the TC1782 offers 176 KByte of RAM and
2.5 MByte of Flash while the TC1797 is equipped with 156
KByte of RAM and 4 MByte of Flash.

2) Implementation details: While the TriCore AUDO mi-
crocontrollers offer a considerably higher performance level
compared to the S12X platform. Implementing the key ex-
change by only toggling the I/O pins from the application level
is also not a viable solution for the TriCore when maximum
transmission rates are required and when the CPU is also
responsible for other tasks. Therefore we employed a similar
approach as the one used on the S12X platform based on using
the General Purpose Timer Array (GPTA) module.

The GPTA features a number of Local Timer Cells (LTC)
intended for the generation or measurement of simple or
complex digital signals. Each LTC can be used in one of
four modes: freeruning timer, reset timer, capure and compare.
Inter-cell communication capabilites makes it possible to im-
plement complex functionalities such as coding and decoding
for various communication protocols. One such example is the
application note presenting the implementation of a receiver
for the SENT protocol as described in [28].

We employed two groups of LTCs, one implementing the
transmission and one for the reception. Cells in the transmis-
sion group were configured to function in compare mode.
Cells toggle the configured transmit pin, one by one, at
predefined time intervals which are pre-computed as based
on the transmit sequence. Once half of the transmitting cells
have performed their action they are reprogrammed with the
next time intervals until the other half keeps generating output
levels. The transmission stops when the entire sequence has
been sent. For reception we employed a capture cell, connected
to the receive pin, that triggers the DMA module to buffer
the time elapsed between pin toggles. An additional compare
cell is configured to implement a timeout functionality for

detecting the transmission end. The buffered data is then
processed as described in the S12X implementation.

VII. EVALUATION

We evaluated our implementations both in terms of perfor-
mance and compatibility with nodes not implementing the key
agreement mechanism.

A. Achievable key agreement bit rate

1) NXP S12X: Aiming to achieve the highest possible
bit rate for implementing the key exchange, we configured
the maximum clock frequency for the timer module (50Mhz
in the case of the S12XF512). With this setting we were
able to successfully encode and decode shared transmissions
at a maximum bit rate of 1 Mbit/s using the S12XF215
platform. Figure 13 illustrates the transmission of a shared
sequence consisting of two bytes using 1 Mbit/s within a
cluster communicating at 10Mbit/s. Note that, in this case, the
inverses of the generated random bits are sent separately (as
bytes 3 and 4) instead of interleaving them with original bits.
Node A is designated as the initiator and node B uses the TSS
and SSS to synchronize before starting the transmission of its
own sequence. The TSS (14 bits) and SSS (10 bits) sequences
were sized to their closest representations at 1 Mbit/s (i.e. 2
and 1 bits respectively). As expected, the RxD line displays
the result of applying the bitwise AND operation over the two
receiving sequences with a slight delay caused by bus and
transceivers propagation timings.

Our implementation on the S12XF512 platform is unable to
sustain faster bit rates since operations required between pin
toggles exceed the bit time. The required operations involve
loading timer registers with the time interval to the next output
level toggle or buffering the incoming toggle timings.

2) Infineon TriCore AUDO: Our TriCore implementation
is capable of generating the digital secret bit sequences at
higher bit rates compared to the S12X implementation. Bit
rates of 10 Mbit/s (or even higher) can be obtained for
generating the shared bit sequences on the digital outputs
of the timer module. However, we were only able to obtain
correct sequence transmissions at bit rates up to 5 Mbit/s, as
illustrated in Figure 14 for a test using the same bit sequences
previously used in Figure 13. This is caused by the time
required by transceivers to detect transitions between Idle
and active bus levels which is longer than the detection time
of transitions between Data 0 and Data 1. The transmission
of the secret sequences at bit rates higher than 5 Mbit/s is
possible. However, the receiver circuitry in the transceiver is
unable to detect levels with duration below the detection time
thresholds. The TJA1080 specifies a time between 100 and
205ns for both idle and activity detection while the AS8221
has an idle detection time of 50 to 200ns and an activity
detection time of 100 to 250ns.

B. Backward compatibility

We built a setup for evaluating backward compatibility of
FlexRay traffic that includes key sharing sequences in the

12

Fig. 13. Signaling during key exchange between the S12X nodes at 1Mbps

Fig. 14. Signaling during key exchange between the TriCore nodes at 5Mbps

Fig. 15. FlexRay communication cycles including key sharing traffic

symbol window within a network with nodes that do not
implement this mechanism. Two EVB9S12XF512E develop-
ment boards were used as standard nodes to implement classic
FlexRay communication at 10 Mbit/s. The communication
cycle was configured to include all FlexRay segments (static,
dynamic, symbol window and network idle time). The key
sharing sequence was generated and sent from the TriBoard
environment using a bit rate of 5 Mbit/s. We monitored
the overall communication as well as the status returned by
communication controllers from the S12XF microcontrollers
for protocol error detection.

There are several use cases to consider for key sharing
sequence transmission. First, we evaluated the case of sending
the key sharing sequence in the symbol window segment
without collisions with symbols sent by standard nodes, as
illustrated in Figure 15. This generates a symbol window
syntax error on the receiving nodes since the key sharing
sequence does not fit any of the specification defied sym-
bols. This error is not used in the FlexRay automatic error
confinement mechanism and does not generate message loss
or communication halt. It is reported to the application layer
where specific measures can be implemented. So the actual
behavior of detecting such errors is application-specific.

A standard node sending one of the two predefined symbols

TABLE IV
COMMUNICATION PARAMETERS AND CHARACTERISTICS OF THE BMW 7

SERIES FLEXRAY NETWORK [29].

Node count: 15 | Bit rate: 10 Mbit/s | Cycle duration: 5 ms

Static segment Dynamic segment
Duration 3.003 ms Duration 1.987 ms
Frame 16 bytes Frame 2-254 bytes
Static slot count 91 Minislot count 289
Static slot duration 33 µs Minislot duration 6.875 µs

allowed in the symbol window (MTS or WUDOP) while
the key sharing operation is ongoing will lead to collisions
and will also generate to a symbol window syntax error
being reported by the communication controller. Additionally
the key sharing operation will fail due to the unsuccessful
execution of the protocol verification step. In such cases
nodes implementing the key exchange can retry the operation
after waiting for several cycles in which standard nodes can
complete their symbol transmissions.

We also investigated the possibility of transmitting the key
exchange sequence starting from the unused space at the end of
the dynamic segment. Since correctly formed FlexRay frames
are expected in this segment, the result is the communication
controller reporting a syntax error for the minislots in the
dynamic that contain the key sharing sequence. Like the syntax
errors in the symbol window this error is also not used in
the FlexRay error confinement mechanism. This error will
not affect normal FlexRay communication unless any of the
standard network nodes implements such a measure as an
application layer mechanism in response to the reported error.
The benefit of using empty minislots at the end of the dynamic
segment is the possibility of sending longer sequences in one
communication cycle beyond the bounds set by the maximum
size of the symbol window.

C. Performance analysis

We use the FlexRay network found in BMW 7 series vehi-
cles [29] as an industrial use case to analyze the performance
of the proposed FlexRay key agreement mechanism and to
illustrate the impact of its introduction on the communication
cycle.

The communication parameters of the FlexRay network
designed for BMW 7 series vehicles are presented in Table IV.
For the purpose of our analysis we consider that a portion of

13

TABLE V
EXECUTION TIME OF ELLIPTIC CURVE OPERATIONS ON THE TRICORE

PLATFORM.

Algorithm ECDH ECDSA ECDH ECDSA
Curve SECP192R1 SECP256R1
Key size 192 256
Operation Generate Extract Sign Verify Generate Extract Sign Verify
Duration 84 ms 82 ms 84 ms 164 ms 136 ms 134 ms 142 ms 284 ms

TABLE VI
DURATION OF PHYSICAL LAYER AND ECDH KEY EXCHANGE ON THE

TRICORE PLATFORM.

ECDH Our approachSECP192R1 SECP256R1
128 bit key 128 bit key 192 bit key 256 bit key

MAPO = 31 414.24 ms 696.25 ms 5.107 ms 10.091 ms 10.123 ms
SWAPO = 63
MAPO = 31 414.24 ms 696.25 ms 5.047 ms 5.079 ms 10.047 ms
SWAPO = 31
MAPO = 20 414.21 ms 696.22 ms 0.095 ms 5.058 ms 5.090 ms
SWAPO = 20
MAPO = 10 414.18 ms 696.19 ms 0.081 ms 5.039 ms 5.071 ms
SWAPO = 10
MAPO = 5 414.16 ms 696.18 ms 0.073 ms 5.030 ms 5.062 ms
SWAPO = 5

MAPO - gdMinislotActionPointOffset
SWAPO - gdSymbolWindowActionPointOffset

the communication cycle allocated to minislots in the dynamic
segment is reallocated to provide space for a maximum sized
symbol window. According to the parameters listed in Table
III, for a 10 Mbit/s network, this would require reallocating a
time space corresponding to approximately 33 minislots. This
roughly corresponds to reducing the transmission capacity of
the dynamic segment by three 20 byte frames or two frames
with a payload of 56 bytes. The same assumption of the max-
imum APO (i.e. offset between the start of a transmission slot
and the actual transmission time discussed in section IV-E) was
considered for the symbol window and the dynamic segment
to provide an upper bound on protocol-related transmission
overhead and a lower bound on transmission performance.
A smaller APO reduces transmission overhead and enables
higher transmission throughput in all communication cycle
segments including the symbol window.

We now compare the performance of our approach to
a classical key-exchange based on the widely used Diffie-
Hellman protocol [30] implemented on a FlexRay network.
We opt for an implementation based on elliptic curves to
minimize the communication overhead. Table V shows the
time required to perform the basic computational operations
of the elliptic curve Diffie-Hellman key exchange (ECDH) and
the elliptical curve DSA (ECDSA) as measured on the TriCore
platform using implementations from the WolfCrypt [31]
library. The signature is required in order to authenticate the
Diffie-Hellman key exchange which is otherwise vulnerable
to a man-in-the-middle attack. We were unable to run the
same operations on the S12X platform due to limited amount
of available RAM. This failure to port expensive public-key
operations on low-end controllers is also an argument in favour
to the proposed solution.

Table VI illustrates the time required to perform the key

exchange operation, on 192 and 256 bit curves, then compares
these to the time required for extracting a key of 128, 192 and
256 bits using the proposed approach. The 128 bit security
level is selected as a baseline for our protocol since a 256
bit curve offers a security level that is equivalent to a 128 bit
symmetric key, according to NIST recommendations [32]. We
also keep the larger 192 and 256 bit keys to provide hints
on scalability over distinct key sizes. The duration covers
both the computational and communication overheads. The
transmissions required for the Diffie-Hellman key exchange
will be done in the dynamic segment and we assume that
the key exchange messages are sent within the same com-
munication cycle. This is indeed feasible since the Diffie-
Hellman key shares will require one point of the elliptic curve,
i.e. 192 or 256 bits plus one bit for the sign if compressed
coordinates are used, while the DSA signature will be 320
bits in its smallest instantiation. The first row of the table
considers maximum values of APOs for minislots and symbol
window to establish a lower bound for performance. Following
rows correspond to shorter APOs to illustrate performance
changes due to improvement of communication throughput.
In the case of ECDH, the duration of the key agreement
mostly consist of the computational time required to perform
elliptic curve operations. The time spent transmitting the
frames required by the protocol is less than 200 µs for both
key sizes. The durations listed for the physical layer approach
are obtained by considering that, on average, half of the bits
in the initially generated random sequence are leaked bits.
Therefore, if one cycle is not enough to generate sufficient key
bits the process is continued in the following cycles to obtain
remaining bits. For the current proposal, the computational
overhead is insignificant in comparison to the communication
overhead. Reducing APO values brings improvements in both
approaches, however, these improvements are less significant
in the ECDH case. Overall, the physical layer based approach
stands out as being considerably faster than the ECDH.

VIII. CONCLUSION

Our work proposes an approach for achieving key sharing
in a FlexRay cluster by taking advantage of the physical layer
characteristics. We demonstrate its feasibility by implementing
it at the application layer on two different automotive plat-
forms. The proposed key sharing mechanism can be integrated
in existing FlexRay clusters and is compatible with nodes
unaware of it as long as these nodes do not implement strict
measures for handling syntax errors. The main advantage of
the proposed mechanism is that it is transparent for other nodes
on the bus and it takes advantage of the less utilized space
in the symbol window. As future work we consider imple-
menting the functionality as part of a FlexRay communication
controller to improve performance and alleviate the problem
of reported syntax errors during the key sharing operation.

ACKNOWLEDGMENT

We thank prof. Dorina Isar and Sorin Popescu for their help
in solving electronical problems in our experimental setup.

14

This work was supported by a grant of the Romanian
Ministry of Research and Innovation, CNCS - UEFISCDI,
project number PN-III-P1-1.1-PD-2016-1198, within PNCDI
III.

REFERENCES

[1] M. Wolf, A. Weimerskirch, and C. Paar, “Security in automotive bus
systems,” in Workshop on Embedded Security in Cars, 2004.

[2] D. K. Nilsson, U. E. Larson, F. Picasso, and E. Jonsson, “A First
Simulation of Attacks in the Automotive Network Communications
Protocol FlexRay,” in Proceedings of the International Workshop on
Computational Intelligence in Security for Information Systems CI-
SIS’08. Springer Berlin Heidelberg, 2009, pp. 84–91.

[3] P.-S. Murvay and B. Groza, “Practical security exploits of the FlexRay
in-vehicle communication protocol,” in Proceedings of the 13th Inter-
national Conference on Risks and Security of Internet and Systems
(CRISIS), 2018.

[4] J. Van den Herrewegen and F. D. Garcia, “Beneath the Bonnet: A Break-
down of Diagnostic Security,” in European Symposium on Research in
Computer Security. Springer, 2018, pp. 305–324.

[5] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in USENIX Security Symposium. San Francisco, 2011, pp. 77–92.

[6] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA, vol. 2015, p. 91, 2015.

[7] A. Mueller and T. Lothspeich, “Plug-and-secure communication for
CAN,” CAN Newsletter, pp. 10–14, 2015.

[8] Specification of Secure Onboard Communication, 4th ed., AUTOSAR,
2017.

[9] Specification of Crypto Abstraction Library, 4th ed., AUTOSAR, 2015.
[10] Z. Gu, G. Han, H. Zeng, and Q. Zhao, “Security-aware mapping and

scheduling with hardware co-processors for FlexRay-based distributed
embedded systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 10, pp. 3044–3057, 2016.

[11] R. Zhao, G. H. Qin, H. P. Chen, J. Qin, and J. Yan, “Security-aware
scheduling for flexray-based real-time automotive systems,” Mathemat-
ical Problems in Engineering, 2019.

[12] P. Vasile, B. Groza, and S. Murvay, “Performance Analysis of Broadcast
Authentication Protocols on CAN-FD and FlexRay,” in Proceedings of
the WESS’15: Workshop on Embedded Systems Security, ser. WESS’15.
New York, NY, USA: ACM, 2015, pp. 7:1–7:8.

[13] D. Püllen, N. A. Anagnostopoulos, T. Arul, and S. Katzenbeisser,
“Security and Safety Co-Engineering of the FlexRay Bus in Vehicular
Networks,” in Proceedings of the International Conference on Omni-
Layer Intelligent Systems, ser. COINS ’19. New York, NY, USA: ACM,
2019, pp. 31–37.

[14] A. R. Mousa, P. NourElDeen, M. Azer, and M. Allam, “Lightweight
Authentication Protocol Deployment over FlexRay,” in Proceedings of
the 10th International Conference on Informatics and Systems. ACM,
2016, pp. 233–239.

[15] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “The tesla broadcast
authentication protocol,” Rsa Cryptobytes, vol. 5, 2005.

[16] S. Shreejith and S. A. Fahmy, “Security aware network controllers for
next generation automotive embedded systems,” in Proceedings of the
52nd Annual Design Automation Conference. ACM, 2015, p. 39.

[17] P.-S. Murvay, L. Popa, and B. Groza, “Accommodating time-triggered
authentication to flexray demands,” in Proceedings of the Third Central
European Cybersecurity Conference, ser. CECC 2019. New York, NY,
USA: Association for Computing Machinery, 2019.

[18] S. Jain and J. Guajardo, “Physical layer group key agreement for
automotive controller area networks,” in International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 2016, pp.
85–105.

[19] S. Jain, Q. Wang, M. T. Arafin, and J. Guajardo, “Probing Attacks
on Physical Layer Key Agreement for Automotive Controller Area
Networks (Extended Version),” arXiv preprint arXiv:1810.07305, 2018.

[20] R. Jin, X. Du, Z. Deng, K. Zeng, and J. Xu, “Practical Secret Key Agree-
ment for Full-Duplex Near Field Communications,” IEEE Transactions
on Mobile Computing, vol. 15, no. 4, pp. 938–951, April 2016.

[21] K. Zeng, “Physical layer key generation in wireless networks: challenges
and opportunities,” IEEE Communications Magazine, vol. 53, no. 6, pp.
33–39, 2015.

[22] ISO, “17458-2, Road vehicles – FlexRay communications system – Part
2: Data link layer specification,” Standard, 2013.

[23] ——, “17458-4, Road vehicles – FlexRay communications system –
Part 4: Electrical physical layer specification,” Standard, 2013.

[24] Preliminary Node-Local Bus Guardian Specification, Version 2.0.9,
FlexRay Consortium, 2005.

[25] P. Milbredt, A. Steininger, and M. Horauer, “Automated testing of flexray
clusters for system inconsistencies in automotive networks,” in 4th IEEE
International Symposium on Electronic Design, Test and Applications
(delta 2008). IEEE, 2008, pp. 533–538.

[26] E. Armengaud, D. Watzenig, M. Karner, C. Steger, R. Weiß, C. Net-
zberger, M. Kohl, M. Pistauer, F. Pfister, and H. Gall, “Combining the ad-
vantages of simulation and prototyping for the validation of dependable
communication architectures: the teodacs approach,” SAE International
Journal of Passenger Cars-Electronic and Electrical Systems, vol. 2, no.
2009-01-0763, pp. 309–318, 2009.

[27] S. Shreejith and S. A. Fahmy, “Extensible flexray communication
controller for fpga-based automotive systems,” IEEE Transactions on
Vehicular Technology, vol. 64, no. 2, pp. 453–465, Feb 2015.

[28] TC1796 SENT Receiver (CPU & PCP implementation), Infineon Tech-
nologies AG, 8 2008, rev. 1.2.

[29] J. Berwanger, M. Peteratzinger, and A. Schedl, “Flexray startet durch
- flexray-bordnetz für fahrdynamik und fahrerassistenzsysteme (in
german),” https://www.elektroniknet.de/flexray-startet-durch-1127.html,
November 2008, [Online: accessed 20-Feb-2020].

[30] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theor., vol. 22, no. 6, p. 644–654, Sep. 1976.

[31] wolfSSL Inc., “wolfcrypt embedded crypto engine,” https://www.
wolfssl.com/products/wolfcrypt/, 2020, accessed: 2020-02-20.

[32] E. Barker, “NIST special publication 800-57 part 1, revision 4,” NIST,
Tech. Rep, 2016.

Pal-Stefan Murvay is a Lecturer at Politehnica
University of Timisoara (UPT). He graduated his
B.Sc and M.Sc studies in 2008 and 2010 respectively
and received his Ph.D. degree in 2014, all from
UPT. He has a 10-year background as a software
developer in the automotive industry. He is currently
leading the SEVEN project related to automotive and
industrial systems security funded by the Romanian
National Authority for Scientific Research and In-
novation. He worked as a postdoctoral researcher
in the CSEAMAN project and is currently a senior

researcher in the PRESENCE project. His current research interests are in the
area of automotive and industrial systems security.

Bogdan Groza is Professor at Politehnica Univer-
sity of Timisoara (UPT). He received his Dipl.Ing.
and Ph.D. degree from UPT in 2004 and 2008
respectively. In 2016 he successfully defended his
habilitation thesis having as core subject the design
of cryptographic security for automotive embedded
devices and networks. He has been actively involved
inside UPT with the development of laboratories
by Continental Automotive and Vector Informatik.
Besides regular participation in national and inter-
national research projects in information security, he

lead the CSEAMAN project (2015-2017) and currently leads the PRESENCE
project (2018-2019), two research programs dedicated to automotive security
funded by the Romanian National Authority for Scientific Research and
Innovation.

https://www.elektroniknet.de/flexray-startet-durch-1127.html
https://www.wolfssl.com/products/wolfcrypt/
https://www.wolfssl.com/products/wolfcrypt/

	Introduction
	Related work
	FlexRay security
	Physical layer key agreement

	The FlexRay protocol
	Communication cycle
	Time representation
	Physical layer signaling
	Frames and symbols

	Sharing secrets over FlexRay
	Basic key sharing principle
	FlexRay signaling for secret key sharing
	Fitting key agreement in the FlexRay communication cycle
	Shared key sequence encoding/decoding
	Shared secret sequence length considerations
	Bit-rate during the key exchange

	Key sharing protocol
	Protocol description
	Protocol instantiation
	Attacker model and protocol security

	Implementation
	NXP S12
	Platform description
	Implementation details

	Infineon TriCore AUDO
	Platform description
	Implementation details

	Evaluation
	Achievable key agreement bit rate
	NXP S12X
	Infineon TriCore AUDO

	Backward compatibility
	Performance analysis

	Conclusion
	References
	Biographies
	Pal-Stefan Murvay
	Bogdan Groza

