Development of an AUTOSAR Compliant Cryptographic Library
on State-of-the-Art Automotive Grade Controllers

Pal-Stefan Murvay, Alexandru Matei, Cristina Solomon and Bogdan Groza
Faculty of Automatics and Computers
Politehnica University of Timisoara, Romania
Email: {pal-stefan.murvay, bogdan.groza}@aut.upt.ro, alexandru.matei@msn.com, cristina_solomon@ymail.com

Abstract—In the light of the recently reported attacks on
intra-vehicle networks, it has become clear that cryptography
is vital for assuring the security of in-vehicle communications.
The current preoccupation of industry professionals in this
direction is proved by the inclusion of a comprehensive
cryptographic extension in the recent-most version of the
AUTOSAR (AUTomotive Open System ARchitecture) stan-
dard. In this work we try to give an answer on how
prepared are current state-of-the-art automotive controllers
for implementing cryptographic primitives and what is the
exact cost of software implementations. We take into account
automotive grade controllers that range from some of the
most constrained platforms, e.g., from 8051 based tire sensors
with 8-bit cores, up to 32-bit Infineon TriCore architectures,
as well as devices that lay in between these two. We provide
experimental results on several symmetric cryptographic
primitives, i.e., block ciphers and hash functions, mainly
focusing on the lightest constructions proposed in the lit-
erature, e.g., Speck, Katan, Blake, as well as on past or
current standards, e.g., AES, SHA2 or SHA3. As expected,
the results are sparse, some of the platforms being well pre-
pared, capable to easily handle software implementation or
carrying dedicated hardware, while for others no dedicated
hardware exists while software implementation of current
cryptographic standards cannot be handled, especially with
the overhead incurred by the cohesion to the AUTOSAR
standard.

Keywords-AUTOSAR; automotive; cryptographic primi-
tives library;

I. INTRODUCTION

As cars evolved in a similar manner to modern com-
puters, there is little doubt that cryptography is the only
alternative in assuring the necessary security objectives for
inter and intra vehicular networks. With few exceptions,
all the attacks that are reported so far, e.g., [1], [2], [3]
take advantage of the absence of cryptographic security
(message authentication in particular) on the in-vehicle
communication interfaces.

The automotive industry was quite determined in de-
signing in-vehicle buses and currently there are several
communication buses that compete, persist or can be
simultaneously found in a single vehicle. The traditional
Controller Area Network (CAN) is the most wide spread
in-vehicle bus, which also has a recently updated version,
the CAN-FD (CAN with Flexible Data Rate) that can
accommodate higher data rates and message length. The
low cost Local InterConnect (LIN) is generally used for

connecting peripherals, e.g., doors, windows, etc. Recently
designed, high performance buses such as FlexRay or
BroadR-Reach (an Ethernet based bus) can be found in
high-end vehicles. But regardless of the communication
layer, the same invariant persists: there is no security,
except for standard CRC codes that are required for the
correctness of the transmission. While bandwidth is a
realistic drawback in implementing security for CAN or
LIN, for the newer communication layers, e.g., CAN-FD,
FlexRay and BroadR-Reach, adding security is clearly
possible - if the suitable cryptographic primitives exist.
Here we try to answer this question by determining to
what extent current automotive grade controllers are well
prepared for handling cryptography.

Given the intrinsic challenges in designing and building
vehicle components that rely on software and (inevitably)
originate from distinct manufacturers, the automotive in-
dustry was also open toward standardization. The AU-
TOSAR (AUTomotive Open System ARchitecture) initia-
tive, started in 2003, has the objective of standardizing
software architectures. Recently, AUTOSAR started to
include specifications for cryptographic primitives. The
AUTOSAR CAL (Specification of Crypto Abstraction Li-
brary) [4] and CSM (Specification of Crypto Service Man-
ager) [5] provide basic cryptographic functionalities for
software applications. CAL is designed as an independent
library that relies on software implementations. CSM is
designed as a part of the system services and to be accessed
by the application through the run-time environment, it can
rely on software or hardware implementations. Both CAL
and CSM provide specifications for the following standard
cryptographic primitives:

(i) Hash functions, which can be used for integrity
checks,

(i) MAC (Message Authentication Codes), which are
used for checking authenticity,

(iii) Symmetric encryptions, in particular via block-
ciphers, which are mainly used for protecting infor-
mation against eavesdroppers,

(iv) Asymmetric encryptions, i.e., public-key encryptions,
having the main utility of exchanging symmetric
session keys,

(v) Digital signatures, which are needed to test authen-

ticity of messages based on a public (non-secret) key.

In addition to these, there are a number of building
blocks that are required for key management. Randomness
is also addressed as it is needed for generating fresh
cryptographic keys. Key generation, key derivation, key
exchange and wrapping interfaces are also specified by
the standard.

Due to intrinsic limitations in terms of computational
power and storage space on the devices that we use here, as
well as due to the more limited scope of our work, here we
focus on symmetric cryptographic techniques alone. We do
target two classes of symmetric primitives: block ciphers
and hash functions. While Message Authentication Codes
(MACs) are of relevance they are not addressed since
these are built on the previous two primitives, e.g., the
CBC-MAC or the HMAC, and the computational results
can be easily derived. AUTOSAR does not specify which
primitives should be used for each type of service leaving
the task of choosing the appropriate algorithms to the
system design phase. We now enumerate our choices for
block ciphers as well as hash functions along with the
motivation behind our choice:

(i) AES - the Advanced Encryption Standard is the
current standard in symmetric cryptography [6] and
neglecting it is not an option for any realistic deploy-
ment. AES supports keys of 128, 192 or 256 bits and
a 128 bit block,

(i) SPECK - is a recent proposal from NSA [7] and so
far it is the lightest block cipher available for software
implementations, block size is of 2 words of 16, 24,
32, 48 or 64 bits while the key is 2, 3 or 4 words.
We choose it as a baseline for performance,

(iii) PRESENT - is another lightweight block cipher with
64 bit blocks and keys of 80 or 128 bits [8]. We
chose it since it proved to be the maximum that can
be handled by our most constrained platform, i.e., an
8051 based TPM sensor,

(iv) KATAN - is a lightweight block cipher with blocks
of 32, 48 or 64 bits and keys of 80 bits [9]. We chose
it for being a popular choice in many research works.

(v) MDS5 - while insecure and recommended for modern
applications, it is one of the lightest designs for hash
functions and we use it as a baseline in performance.
It outputs digests of 128 bits,

(vi) SHAT - is also considered insecure for today needs,
but it is lighter than the standard SHA2 which is not
suitable for many of our platforms,

(vii) SHA2 - was the standard cryptographic hash until
2015 but it is quite demanding from a computational
point of view. It outputs digests on 256, 384 or 512
bits,

(viii) SHA3 - is the standard released by NIST in 2015. It
is based on Keccak [10], the winner of the SHA-3
competition and outputs digests of 224, 256, 384 or
512 bits,

Table 1
ToOP 10 AUTOMOTIVE SUPPLIERS ACCORDING TO [12]

Rank Company Market Share
1 Renesas Electronics Corporation 10,4%
2 Infineon Technologies 9,3%
3 STMicroelectronics 7,4%
4 Freescale Semiconductor 7,2%
5 NXP 6,4%
6 Robert Bosch 5,6%
7 Texas Instruments 5,5%
8 On Semiconductor 3,7%
9 Toshiba 2,5%
10 Micron Technology 2,4%

(ix) Blake2 - is based on Blake, one of the SHA3 finalists
[11], and we chose it for being the lightest modern
design. It outputs digests of 224, 256, 384 or 512
bits.

II. TARGET DEVICES

For a comprehensive evaluation of the chosen cryp-
tographic primitives, we made a mixed selection of au-
tomotive grade platforms (with 8, 16 and 32-bit cores).
While not exhaustive, this selection of automotive grade
microcontrollers was made with the intent of covering
a wide range of ECUs from all in-vehicle domains and
market areas (i.e. devices ranging from the low-end to
the high-end sector). Since the architecture of the core is
the prime factor that influences the performance of code
across platforms we mainly selected one representative of
each microcontroller family included in our study. The
sole exceptions are the TriCore and RH850 platforms
for which we selected two representatives to illustrate
performance similarity between microcontrollers driven by
the same core type. The manufacturer was also taken into
consideration as we picked only microcontrollers from the
top suppliers of the automotive industry [12] which are
presented in Table L.

Our target devices and the microcontroller families of
which they are part of are presented in what follows while
Table II summarises this presentation.

(i) Freescale SO8 (8bit). The SO8 family from Freescale'
is an 8-bit platform with several members designed
for various automotive applications such as HVAC
(Heating Ventilation and Air Conditioning), lighting,
doors, window lift, seat control, instrument cluster
and airbags. SO8 family members can offer between
2 and 128KB of Flash, up to 8KB of RAM and
maximum operating frequencies of 8, 20 and 40MHz.
We selected the SOSACI128 as the representative of
the SO8 family for our tests. It comes with the top
options of the family: 128KB Flash, 8KB RAM and
40MHz operating frequency.

!Freescale has been recently merged under the NXP name, we will
refer to Freescale as the manufacturer for the devices known under this
brand

(ii)

(iii)

(iv)

)

(vi)

(vii)

Infineon SP37 (8bit, 8051 based). On the 8-bit
architecture side we also looked at devices designed
for very specific applications. Such is the case of
the Infineon SP37 tire pressure monitoring sensor
(TPMS) which is built around an 8051 compatible
8-bit microcontroller. The SP37 is a very constrained
platform, having 6 KB Flash memory and only 256
bytes of RAM of which the upper 63 bytes are used
by the TPMS specific ROM function library. The
Flash memory also has further restrictions as it allows
only 2 KB for the user program.

Freescale S12 (16bit). Our first choice for 16-bit
devices is the Freescale S/2 and S/2X family which
covers a broad array of mid-range vehicle body
applications. The S12X range extends the S12 core
with the integration of the XGATE coprocessor to
bring higher performances. Up to 1M of Flash and
64KB of RAM are available with the S12(X) family
members that operate at 16 to 80MHz. We selected
S12XDT512 which can operate at 80MHz and is
equipped with 512KB of Flash and 20KB of RAM.
Freescale S12Z (16bit). Built on the S12 technol-
ogy, the S12Z 16-bit microcontrollers are employed
for implementing entry level instrument clusters or
sensors and actuators for body, chassis and safety.
S127 devices come with 16-192KB Flash, 1-12KB
RAM and operating frequencies up to 64MHz. For
our tests we used the S12ZVH64 derivative which
has 64KB Flash, 4KB RAM and runs at 64MHz.
Renesas RL78/DI1x (16bit). The RL78/DIx is a 16-
bit low power microcontroller produced by Renesas
for low-end instrument clusters. Members of this
group operate at 32MHz and provide 24-512KB
of Flash and 2-24KB of RAM. The RL78/DI1A,
equipped with 512KB of Flash and 24KB of RAM
was included in our study.

Texas Instruments MSP430 (16bit). Another 16-
bit platform on our list is the MSP430 from Texas
Instruments. The MSP430 family includes several
members that target various body and infotainment
applications offering up to 120KB of Flash, 8KB
RAM and 16MHz operating frequency. We used an
MSP430F2274, with 32KB Flash and 1KB RAM, as
a representative of this family.

Freescale Qorivva MPCS56xx (32bit). We switch
to 32-bit architectures with the Freescale Qorivva
MPC56xx family designed for applications in engine
management, powertrain, ADAS (Advanced Driver
Assistance Systems), BCM (Body Control Module),
gateways, chassis and safety and instrument clusters
from low up to high-end projects. This family is
equipped with the €200 Power Architecture core and
can operate at 32-270MHz. Some family members
have two €200 cores while the MPC564xB-C has
an €200z4 and comes with an integrated security
module that offers functionalities for generating ran-

dom numbers and using AES-based encryption and
authentication. Given the wide range of target appli-
cations the memory options in this family also has
a considerable coverage with up to 6000KB Flash
and 1088KB RAM. As a member of this family, the
MPC5606B, which comes with 1MB Flash, 80KB
RAM and a top operating frequency of 64MHz, was
employed in our tests.

(viii) Freescale iMX6 (32bit, ARM based). Another 32-

bit platform from the same manufacturer is the iMX
application processor family. The .MX6DualLite is
a 32-bit application processor that features two ARM
Cortex-A9 cores which are operating at speeds of up
to 800MHz. In terms of memory it has an 128KB
RAM and only 96KB of internal Flash destined for
bootloader functionality as this architecture mainly
relies on external Flash. This processor is designed
to be used in applications such as: automotive nav-
igation and entertainment, graphics rendering for
Human Machine Interfaces (HMI), high-performance
speech processing with large databases, audio play-
back, video processing and display. It also features
hardware enabled security functionalities that can
be used in e-commerce, digital rights management,
information encryption, secure boot and secure soft-
ware downloads.

(ix) Infineon Tricore TC1797 & TC1782 (32bit). Infi-

neon’s solution for computationaly demanding ap-
plications is the TriCore architecture. The AUDO
family offers a variety of microcontrollers with 1-
4MB of Flash, 48-288KB RAM and operating fre-
quencies between 80 and 300MHz for mid- to high-
end powertrain, chasis and safety applications. We
considered 2 members of this family, TC1797 and
TC1782, each from a different subcategory, AUDO
Future and AUDO MAX respectively. Both are based
on the same core version (TriCore V1.3.1), can work
at 180MHz and have 176KB of RAM, therefore
we expected to obtain similar performance results.
TC1797 has 4MB of Flash , while TC1782 comes
with 2.5MB of Flash. As with most of the members
of the AUDO family, our 2 choices come with an
additional coprocessor called PCP (Peripheral Con-
trol Processor) designed to manage on-chip modules
decreasing the load of the main core.

(X) Renesas RHS850 (32bit). Our last selections come

from the Renesas RHS850 32-bit family which offers
a wide array of single and multi core devices in-
tended for virtually all in-vehicle functionalities of
the high-end sector: powertrain, instrument cluster,
body, safety, ADAS and other. The cores of the
RHS850 family members come in two flavours, G3M
for improved data processing and G3K with a sim-
plified design and improved low power behaviour.
Given the variety of target applications the options
available in this family are also very diversified: up to

8MB Flash, 512KB RAM and maximum, frequencies
of 320MHz. We used two members of this family to
represent each of the two core architectures available.
The first one is RH850/F1L, equipped with a G3K
core running at 80MHz, 2MB of Flash and 192KB of
RAM. RH850/E1x-FCC1, the second one, is powered
by a G3M core running at 320MHz with 4MB of
Flash and 352KB of RAM.

III. IMPLEMENTATION DETAILS

We first give a brief overview on the general structure
of an AUTOSAR compliant deployment. Then we give
concrete details on our specific implementations.

A. AUTOSAR generic system structure

According to the specification [13] an AUTOSAR
compliant system follows a layered software architecture
comprised of three main software layers: Application,
Runtime Environment (RTE) and Basic Software (BSW).
The BSW layer contains drivers and services needed by
the application. The RTE is an interfacing layer providing
application access to BSW functionality. An additional
Libraries layer (LIB) provides a container for various
functions that are needed by system modules. LIB modules
can be accessed by all other AUTOSAR layers but can
only call functions residing within LIB. Figure 1 presents a
simplified representation of the AUTOSAR layer structure
and the positioning of the CAL and CSM modules in this
architecture.

CAL Application ‘

| | RTE |
CSM

LIB BSW

‘ HSM Microcontroller

Figure 1. AUTOSAR layered architecture

Both CAL and CSM consist of a wrapper layer acting
as the interface for the calling modules to the primitive
implementation layers. The implementation layer of CAL
is called CPL (Cryptographic Primitive Library) while
the corresponding layer of CSM is named CRY (Cryp-
tographic Library Module). CPL and CRY modules can
directly provide the implementation of a certain primitive
or an interface to a cryptographic library component.
The second alternative is particularly required by the
AUTOSAR specification when both CRY and CPL use the
same building blocks for avoiding duplicate code. In our
particular case both CAL and CSM provide their services
by calling the same set of primitive implementations

through corresponding CPL and CRY interfaces. Obvi-
ously, it is hard to find a practical scenario which would
require the access to the same software implementations of
cryptographic primitives through 2 types of interfaces but
keeping with the configurable nature of AUTOSAR this
allows the system designers to chose between using CAL
and CSM.

While in the case of software implementations there are
few differences between using CAL and CSM, a significant
distinction comes in that the CSM can use cryptographic
HW if available on the microcontroller. The CRY accesses
the functionality of the HSM (Hardware Security Mod-
ule) through a dedicated driver. From the upper layers
perspective, choosing between a software implementation
and one based on an HSM is the same as selecting
between different software implemented algorithms for the
same type of cryptographic service and only requires the
calling of the wrapper functions with the corresponding
configuration identifier.

Most of the cryptographic primitives which can be
accessed through CAL and CSM are implemented for
usage in streaming mode (hash functions and block ciphers
fit in this category). This means that their interface consists
of:

o a Start function used for initialising the algorithm

context,

o an Update function which is called repeatedly to

process smaller blocks of data from a larger segment,

o a Finish function which is called to finalise the

processing before getting the result.
Some services (e.g. random number generation) are devi-
ating from this rule and are to be used through a single
function call.

B. Specifics of primitive implementations

The implementations for the cryptographic primitives
included in our library are based on the reference source
codes (in the case of hash functions) and on the open-
source BLOC library [14] (in the case of block ciphers).
For the moment, it was not in our focus to make platform
dependent optimizations for these implementations as the
main goal was to provide baseline results for a platform
independent cryptographic library. Mostly we had to adapt
code due to specific compiler needs (e.g. some compilers
cannot handle 64-bit variables). For SHA2 and SHA3 we
only implemented their 256 bit block versions while for
Blake2 we used the Blake2s implementation, which is
optimised for 8 to 32-bit platforms, with the same digest
size of 256 bit. For block ciphers, we used AES with 128-
bit key, the bit-sliced implementation with 32 slices of
Katan32, Present for both 80 and 128-bit keys and Speck
with 128-bit block and key.

From our list of target devices only the iMX6 platform
provides hardware support for implementing cryptography.
We therefore made use of the hardware based AES imple-
mentation by using the Cryptographic Acceleration and

Table 11
PLATFORMS TARGETED IN OUR WORK

Device Core Flash size RAM size Frequency Manufacturer
SO08AC128 S08 128KB 8KB 40MHz NXP(Freescale)
SP37 8051 6B 256B 12MHz Infineon
S16XDT512 S12(X) 512KB 20KB 80MHz NXP(Freescale)
S16ZVH64 S12Z 64KB 4KB 64MHz NXP(Freescale)
RL78/D1A RL78 512KB 24KB 32MHz Renesas
MSP430F2274 MSP430 32KB 1KB 16MHz Texas Instruments
MPC5606B €200 1MB 80KB 64MHz NXP(Freescale)
iMX6 Cortex-A9 96KB 128KB 800MHz NXP(Freescale)
TC1782 TriCore 1.3.1 2.5MB 176KB 180MHz Infineon
TC1797 TriCore 1.3.1 4MB 176KB 180MHz Infineon
RH850/FIL RH850 G3K 2MB 192KB 80MHz Renesas
RH850/E1x-FCC1 RH850 M3K 4MB 352KB 320MHz Renesas

Assurance Module (CAAM). CAAM can be programmed
through a ring interface which works as follows: the pro-
cessing requests are given as entries in the input ring while
results are taken from the output ring. This mechanism
allows multiple jobs to be queued for hardware execution
enabling the CPU to execute other tasks until the CAAM
signals the end of each job by means of dedicated flags.

In the case of the SP37 we could not use all of the library
implementations due to the major memory constraints.
However, we tried to make target-specific implementations
considering also the device basic scope and functionality.
In contrast to the other platforms used in this paper, this
device is designed for a specific application - tire sensors.
The AUTOSAR architecture was not used for this platform
due to the aforementioned constraints. From the selected
hash functions we attempted to fit an MDS5 implementation
on the chip as it is on the lightweight side. In spite of our
efforts of manually optimizing the code for size and the
additional compiler optimizations we were unable to fit
MDS5 in the SP37 Flash memory. Our best implementation
still exceeded Flash capacity by 290 bytes (14%). Similar
unsuccessful attempts were made for implementing the
other hash functions in our study. For block ciphers we
were able to use the same implementation of Present
as on the other platforms. For Speck platform specific
optimizations were needed to fit implementations with a
block size larger than 32 bits, this allowed us to fit Speck
with a 64 bit block and 128 bit keys.

IV. EXPERIMENTAL RESULTS

We used our AUTOSAR CAL implementation to test
the capabilities of each target platform. Only the SP37
had to be treated separately as we could only test it
with specific implementations and not with the generic
AUTOSAR compliant source code.

We focused on two performance metrics which are
important in the development of embedded systems in
general and for the automotive grade software in particu-
lar: execution speed and memory consumption. Execution
speed is important as it can affect the speed at which one
device can send messages containing authentication data
or cipher texts. The Flash memory available on a certain

device may not be enough to hold the application and
the cryptographic library, therefore it is essential to have
an image on the memory requirements for using such a
library.

A. Execution speed

Evaluation methodology. For the majority of platforms,
the code was deployed and executed on the actual device.
In the case of the S08, RL78 and RH850 platforms a
simulator was used for evaluating execution speeds. For
fairness in comparison, basic compiler settings were used
in all cases without enabling specific optimisations for
speed or size. For the block ciphers, besides Katan which
had 80 bits keys for all variants, we used 128-bit keys for
all input sizes.

Measurement for execution speed was done using an
oscilloscope for the platforms for which we had the
corresponding hardware. For the other platforms, simulator
capabilities for clock cycle counting were used.

Results. Table I1I shows the execution speed of all prim-
itives in our CAL implementation on the selected target
platforms (besides SP37 which is discussed separatelly)
for various input sizes. For the block ciphers, the values
represent the time for encryption of the input block. The
approximation for very long inputs was calculated as the
difference in cycles/bytes between the result for 4096 byte
inputs and 2048 byte inputs divided by 2048.

It can be noticed that the ranking of the cryptographic
primitives may differ depending on the platform. This is
caused by the fact that the same code is used on all
platforms without any specific improvements. Therefore,
the implementation may prove to be better suited on some
platforms than for others. One clear example for this is
Speck which will outperform the other ciphers in most
cases but proves to be slower on SO8 and S12 devices.

Current uses of cryptographic primitives in automotive
applications are mainly for device reprogramming func-
tionalities where the amount of data which needs to be
processed is very large, divided into hundreds or thousands
of messages (depending on the size of the firmware that
needs to be signed). We therefore graphically illustrate
the execution times for 4096 byte inputs in Figures 2

Table III

EXECUTION SPEED (CYCLES/BYTE) FOR THE IMPLEMENTED PRIMITIVES ACROSS VARIOUS PLATFORMS

Input size Cryptographic primitive (block size and key length)
Platform (bytes) MD5 SHA1 SHA2 SHA3 Blake2 AES Katan Present Speck
Y 128 160 256 256 256 128-128 32-80 64-128 128-128
8 34177.88 60201.75 135030.38 1952959.50 81942.25 748175 356709.00 94472.63 64011.63
64 8367.11 15421.53 33319.19 253866.42 10255.02 | 2688.56 58850.25 85394.72 20599.17
S08 576 4573.71 8796.18 18295.47 128830.82 9784.00 2377.86 39572.49 84241.97 17213.73
1536 4277.35 8278.58 17121.74 114808.04 9748.71 2353.54 37437.09 84151.91 16949.87
4096 4166.21 8084.48 16681.59 110612.63 9735.48 2344.72 37265.64 84118.14 16518.22
long msgs 4099.53 7968.02 16417.50 106819.63 9727.54 2349.27 37162.77 84097.88 16126.53
8 5052.38 14418.13 31543.63 445194.00 13409.00 | 3821.13 56714.88 33277.13 9054.75
64 1205.66 3679.77 7756.36 58188.17 1683.81 1495.81 10254.45 31001.03 2943.23
S12 576 645.36 2092.81 4247.22 28985.94 1584.79 1373.15 7745.72 30712.00 2463.86
1536 601.59 1968.65 3973.07 25769.49 1577.28 1363.56 7464.92 30754.53 2426.41
4096 585.18 1922.15 3870.26 28391.24 1574.46 1359.97 7446.62 30680.96 2412.36
long msgs 575.33 1894.25 3808.58 31121.57 1572.77 1357.81 7432.13 30675.88 2403.94
8 2076.00 8016.00 12864.00 428000.00 9424.00 9824.00 109760.00 44720.00 5936.00
64 385.50 2070.00 2940.00 54900.00 1204.00 4075.00 16260.00 40050.00 1656.00
S127 576 156.89 1195.56 1522.22 27888.89 934.44 3827.78 9600.00 39500.00 1288.89
1536 138.75 1127.08 1412.50 24791.67 914.58 3808.33 8854.17 39416.67 1260.42
4096 132.03 1101.56 1370.31 23875.00 906.25 3796.88 8812.50 39453.13 1250.00
long msgs 127.97 1087.50 1345.31 23031.25 901.56 3787.50 8781.25 39468.75 1243.75
8 849.75 12274.00 4613.50 461547.87 2876.75 2909.62 40351.12 19021.87 1307.62
64 182.23 3075.38 1099.17 60454.98 362.22 1063.52 7464.80 17963.34 395.55
RL78 D1A 576 87.93 1714.38 587.06 29950.12 284.22 947.78 5985.94 17828.93 323.95
1536 80.56 1608.05 547.05 26609.24 278.27 938.74 5828.97 17818.43 318.36
4096 77.80 1568.18 532.05 25595.80 276.04 935.35 5811.54 17814.49 316.26
long msgs 76.15 1544.26 523.06 24700.48 274.70 933.31 5801.09 17812.13 315.00
8 281.25 1102.50 1327.50 117225.00 1399.50 1287.00 10687.50 7863.75 632.25
64 41.23 271.69 290.81 14821.88 168.75 502.31 1614.38 7228.13 168.47
TC1782 576 16.47 151.88 149.84 8015.63 129.69 465.00 962.50 7109.38 128.13
1536 14.58 142.50 138.75 7183.59 126.80 461.13 888.28 7101.56 124.92
4096 13.84 139.09 13491 6952.15 125.68 459.67 883.30 7110.35 123.71
long msgs 13.43 137.20 132.36 6723.63 124.80 458.79 880.66 7110.35 123.13
8 282.60 1113.75 1332.00 117225.00 1401.75 1284.75 10676.25 7751.25 627.75
64 41.23 271.69 291.38 14821.88 169.31 501.75 1611.56 7059.38 167.91
TC1797 576 16.50 151.88 150.63 8015.63 129.84 464.38 962.50 6984.38 127.97
1536 14.55 142.50 139.69 7183.59 126.80 461.13 888.28 6972.66 124.69
4096 13.84 138.87 135.57 6952.15 125.68 459.67 883.30 6978.52 123.66
long msgs 13.41 136.76 133.15 6723.63 124.98 458.79 880.66 6978.52 123.05
8 854.13 7284.13 7381.50 N/A 4525.00 3310.25 43154.63 20993.88 3154.63
64 177.27 1825.91 1779.19 N/A 567.38 1054.02 9180.23 19613.02 993.30
MSP430 576 82.92 1020.67 958.44 N/A 467.96 875.49 6706.38 19309.26 824.68
1536 75.55 957.76 894.32 N/A 460.36 861.64 6426.41 19288.99 811.27
4096 72.78 934.17 870.27 N/A 457.51 856.39 6408.12 19277.00 806.07
long msgs 71.13 920.02 855.84 N/A 455.80 853.21 6397.15 19270.41 802.95
8 403.00 2280.00 2408.00 158800.00 1772.00 2976.00 43154.63 16960.00 844.00
64 74.13 578.75 563.75 19125.00 224.00 1277.50 4405.00 15850.00 231.75
MPC5606B 576 29.72 329.44 297.78 10041.67 176.11 1215.28 2605.56 15777.78 178.06
1536 26.25 309.90 277.08 8979.17 172.50 1210.42 2395.83 15750.00 173.96
4096 24.96 302.73 269.14 8671.88 171.09 1210.94 2390.63 15742.19 172.46
long msgs 24.18 298.44 264.45 8390.63 170.31 1209.38 2386.72 15742.19 171.48
8 1038.51 4582.12 3861.89 276594.12 5228.98 16213.63 124730.10 113939.10 2804.67
64 201.24 1107.10 883.64 35730.34 660.64 6084.42 81259.20 110448.11 766.11
iMX6 576 81.90 605.34 451.47 18310.13 507.73 5488.07 78579.88 110119.63 583.15
1536 72.88 565.34 417.84 16308.63 493.68 5441.57 78133.33 110055.31 569.43
4096 69.38 673.24 405.45 15738.47 488.39 5421.07 78013.76 109997.74 563.99
long msgs 67.27 718.38 397.84 15196.68 485.57 5407.57 77871.30 109989.03 560.22
8 295.48 1858.60 1429.36 129263.00 1576.72 2306.24 16128.72 13551.48 559.48
64 48.78 469.75 321.59 16505.17 201.09 962.78 2507.11 12593.59 159.78
RHS50 G3K 576 16.34 266.11 163.54 8673.26 145.95 906.92 1531.55 12471.95 127.97
1536 13.80 250.20 151.19 7757.24 141.71 902.56 1419.99 12462.45 125.49
4096 12.85 244.24 146.56 7489.74 140.13 900.91 1413.50 12458.89 124.56
long msgs 12.28 240.66 143.78 7238.03 139.17 899.91 1409.61 12456.75 124.00
8 240.24 1134.48 857.60 101158.48 1205.24 1556.72 11818.84 9340.84 400.84
64 37.72 284.75 187.72 12867.73 150.95 630.70 1732.48 8522.08 114.58
RHS50 G3M 576 13.71 163.00 95.90 6824.79 122.26 591.69 1025.05 8419.67 93.10
1536 11.83 153.49 88.74 6110.75 120.04 588.64 943.02 8411.67 91.44
4096 11.13 149.92 86.05 5903.47 119.23 587.50 939.02 8408.67 90.81
long msgs 10.70 147.78 84.44 5706.54 118.73 586.81 936.63 8406.88 90.44

and 3. These plots were synthetically obtained based on
the determined cycle/byte value and considering that the
frequency used on each platform is the maximum possible
(Table 1II).

Hardware support for AES on iMX6. From our list
of selected devices, only iMx6 has hardware support for
cryptographic primities, i.e., AES. We also evaluated the
AES HW-based implementation on iMx6 which for 64-
byte messages was only 8.9 times faster than the SW
implementation - the longer than expected execution time
is due to various calls from the software layer and measure-
ment difficulties due to the multi-tasking OS that runs on
the iMx6. For the longer 4KByte messages the execution
time was 67.5 faster and at 379.33 cycles/byte is faster than
the software implementation in any of our target platforms.

Limitations on MSP430 and SP37. While testing the
implementations for result correctness we found that the
SHA3 implementation was not providing correct results
on our MSP430 device due to stack overflowing during
execution. We could not resolve this issue by any further
straightforward optimisation; for this reason the results in
Table III for SHA3 on MSP430 are not provided. On the
SP37 we only evaluated Present and Speck as these were
the only primitives we could implement on the device.
Given the nature of this device, the data that it has to
send over a wireless channel will be lower than 8 bytes.
Therefore, we evaluated them for small input sizes. For
an 8 byte input, a Present encryption with an 80 bit key
will be executed in 303.3ms (at 16451 cycles/byte) while
for Speck with 64 bit block and 128 bit key it will take
29.1ms (at 1578 cycles/byte). We consider these speeds as
being reasonable due to the low transmission frequencies
required from this kind of devices.

B. Memory consumption

Evaluation methodology. To get an image on the impact
of the usage of security in AUTOSAR on the Flash
memory consumption we obtained object code dimensions
from memory map files generated by the linker of each
platform.

Adding software security mechanisms to an embedded
system should not obstruct the implementation of the main
functionalities due to insufficient memory. More than this,
usually a memory area is reserved for future use (e.g.
updates or hotfixes). With this in mind we evaluated the
impact of using security primitives and the AUTOSAR
CAL interface on memory usage for our set of target
devices and illustrated this as the percentage of the total
available memory occupied by each of them.

Results. Table IV shows the Flash memory needed
to store the primitive implementation while Table V il-
lustrates the overhead brought by using the AUTOSAR
wrapper.

In some cases more than 10% of the Flash memory is
occupied by the object code of the primitive alone. These
occurrences, highlighted in gray, add a considerable limit

SHAS
Present

@
=L
T
@

10000

Present

8000

6000

Katan

4000

SHAZ
Speck

2000

Blake2

g 3
g 3

AES

(i) S08 (i) S12

Present
Present

2500k

2000F

1500F

1000p

a00F

(iii) S12Z

)
<

(iv) MSP430

Present

T
7]

SHA3

3000F 150

2500F

1
Present

2000F 100
1800F
1o00f _ow .
s500F] - o 9w & =
2 w I g I 2
0 a = oo] i)
b .
(V) RL78 DIA (vi) TC1782
5
% &
150 7 1000
800
100 a0
400
50 c
@ 8 = 200 o 5
s & 2 £ 08 = £ g 3 7 5
) =) (%) E O O 2]
o = w0 | o &
(vii) TC1797 (viii) MPC5606B

Present
Present

300

200

100

MDE
SHA1

JSpeck

(ix) iIMX6 (x) RH850 G3K

@
@
o

[

100

SHAZ

&0

60

40

20

Katan

0
u
<L

MDS
SHAT
SHAZ
Blake2
Speck

(xi) RH850 G3M

Figure 2. Execution time for 4096 byte inputs(ms) platform-based view

to the memory that can be used to implement the actual
ECU functionality and could be viewed as unacceptable
depending on the application complexity. We consider a
second category of memory occupation where the occupied
percent is smaller than 10% and greater than 5%, this is

Table IV

FLASH MEMORY CONSUMPTION OF PRIMITIVE IMPLEMENTATIONS

Code size
Platform MD5 SHAI SHA2 SHA3 Blake2 AES Katan Present Speck
256 256 128-128 32-80 64-128 128-128
bytes % | bytes % |bytes % | bytes % | bytes % | bytes % |bytes % |bytes % |bytes %
S08 14120 1227 0.96 | 2675 2.09 | 7005 5.47| 5275 4.12| 2119 1.66 | 3185 2.49| 4113 3.21| 4918 3.84
S12 5528 1042 0.20| 2251 0.44| 4021 0.79| 3455 0.67 | 1692 0.33 | 2741 0.54 | 2186 0.43 | 2596 0.51
S12Z 5374 902 1.41| 2081 3.25| 4922 7.69 | 4828 | 7.54| 2688 4.20| 2761 4.31 | 4252 1 6.64 | 3659 5.72
MSP430 6394 1338 4.18 | 2610 [8.16 | 5384 683N 4046 1810 [5.66 | 2628 8.21 | 1776 5.55| 1376 4.30
RL78 D1A 8606 1137 0.22| 2304 045| 5436 1.06| 3606 0.70 | 2611 0.51 | 3005 0.59 | 2247 0.44| 1309 0.26
TC1782 2856 730 0.03| 1360 0.05| 3924 0.16]2634 0.11| 1682 0.07 | 2004 0.08 | 3080 0.12 | 1396 0.06
TC1797 2856 730 0.02| 1360 0.03| 3924 0.10| 2634 0.07 | 1682 0.04 | 2004 0.05 | 3080 0.08 | 1396 0.03
MPC5606B 3998 880 0.09| 1730 0.17| 5916 0.59 | 3244 0.32| 2258 0.23 | 2518 0.25 | 3720 0.37| 3324 0.33
iMX6 7688 1516 1.58| 2820 2.94| 11296 11.77 | 4628 4.82| 5428 5.65| 3552 3.70 | 7756 8.08 | 5040 5.25
RH850 G3K | 2216 734 0.04| 1194 0.06 | 4464 0.22|2082 0.10| 2528 0.13| 2182 0.11| 2842 0.14| 746 0.04
RH850 G3M | 2216 734 0.02| 1194 0.03| 4464 0.11|2082 0.05| 2528 0.06| 2182 0.05| 2842 0.07| 746 0.02
g 2 Table V

&00

300 600

200 400

100 200

MSP430
RHA50G3K
RHB30G3M

o
o

512

5122
RL7ED1A
TC1782
TC1797
MPCS606E
IMXE
TC1782
TC1797
MPCS6068
IMRG
RHB50G3K
RHBS0G3M

(i) MD5

(i) SHA1

o
o o
o
o o
=

@
=1
@

508

1500 10000

8000

1000
6000

4000
500

512

2000

MPCS606E
MPCE606E
M6
RHB50G3K
RHBS0G3M

iMKE
RHBA0GEK

RHB50G3M

(iv) SHA3

o
@
=
o
@
=

(iii) SHA2

|s06
508
5197

1000

800 200

600 150

400

MPCE6066

100

56068
RHBS0G3K

a0

512
127
MS5P430
RL7ED1A

o
]
MP:
iM=E
o

RHBS0G3K

TC1782
TC1797
RHB50G3M
RHBS0G3M

(v) BLAKE2

(vi) AES

o
2
g
£000 &®
=

L
508

3500
3000
2500
2000
1500
1000

500

MSP430

5127
RL78D1A

512
MPCSG06E

TC1782
TC1797
MPCOE0EE
RHB50G3K
RHB50G3M
g
=]
TC1782
TC1797
MG
RHEZ0G3K
RH250G3M

(viii) Present

X
m
4]
=]
I}
@
T
4

508

500

MPCEE0EE

RH350G3M

(ix) Speck

Figure 3. Execution time for 4096 byte inputs(ms) primitive-based view

AUTOSAR INTERFACE MEMORY OVERHEAD

Hash functions Block ciphers

Platform bytes % bytes %
S08 345 0.27 746 0.58
S12 259 0.05 566 0.11
S12Z 305 0.48 656 1.03
MSP430 360 1.13 480 1.50
RL78 D1A 242 0.05 512 0.10
TC1782 266 0.01 528 0.02
TC1797 266 0.01 528 0.01
MPC5606B 444 0.04 918 0.09
iMX6 711 0.74 1498 1.56
RH850 G3K 288 0.01 624 0.03
RH850 G3M 288 0.01 624 0.02

acceptable when the complexity of the target functionality
for the device is moderate. Most of the primitives occupy
less than 5% on the majority of platforms which should
fit most applications.

Although some of the iMX6 implementations also fall
in the first two categories this is perfectly acceptable as the
on-chip Flash is destined for storing the bootloader which
needs considerable less memory than the application. This
platform is designed to work with external Flash chips that
hold the application code. The HW implementation of AES
occupies 4874 bytes of Flash being ~ 10% smaller than
the software one.

The overhead brought by the usage of the AUTOSAR
interface is mostly within reasonable bounds. Exceptions
come from the devices that also exhibited larger memory
consumption for the primitive implementations, namely the
S127Z and MSP430 device.

On the SP37 our Present implementation for 80 bit keys
occupies 1159 bytes (18.8 % of the Flash memory) while
the Speck-64-128 implementation takes 1059 bytes (17.2
% of the Flash memory). In both cases a considerable part
of the available memory is used but as shown in [15] this
would still allow the implementation of the basic TPMS
functionality along with an authentication protocol.

These results are just a baseline and in some scenarios
the memory consumption could be lowered through mem-

ory code optimizations or could be even increased if by
adding speed optimizations the code size increases. We
also stress that even though the memory consumption will
be the same on all members of the microcontroller families
we studied, the memory occupation percentage will differ
depending on the particular memory characteristics of each
family member. A good illustration of this statement is
given by our TriCore and RH850 devices.

V. CONCLUSION

To the best of our knowledge, our work is the first
academic research effort for implementing an AUTOSAR
compliant cryptographic library. The main scope was to
establish the performance, in terms of execution speed
and memory requirements, on a representative set of
automotive grade platforms. The results that we obtained
are mixed. In general, cryptography is well handled by
all platforms, but clear exception exists. For example
the SP37 sensor is unable to cope with most of the
cryptographic primitives and even the overhead induced
by the AUTOSAR interface exceeds its memory. For other
platforms, e.g., the case of SHA3 on the MSP430, the
code and variables may apparently fit in memory giving
the feeling that it can be handled by the controller but the
final results are erroneous due to more subtle overflows. In
particular the newer SHA3 standard was a poor performer,
giving a general feeling that a light-weight hash standard
for embedded devices may be needed. The AUTOSAR
wrapper brings an overhead which might be considered too
large on some devices. In general, given the constrained
nature of embedded devices we expect that AUTOSAR
compliant architectures will be present only on high-end
devices.

A general impression is that cryptographic hardware is
added only to devices that are already from the high-end
side of the table, and are capable of good performance for
software implementations, while more constrained devices
tend to be left behind. It remains an open question on
how to secure an entire car body when certain components
cannot be secured as they cannot handle cryptography, but
this question is out of scope for our work.

Evaluating automotive-grade controllers with crypto-
graphic hardware support remains as potential future work
for us.

ACKNOWLEDGMENT

This work was supported by a grant of the Romanian
National Authority for Scientific Research and Innovation,
CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-
1501 (2015-2017).

We are grateful to the reviewers for helpful comments
that improved our work.

(1]

(2]

(3]

(4]

(3]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner,
T. Kohno et al., “Comprehensive experimental analyses of
automotive attack surfaces.” in USENIX Security Sympo-
sium. San Francisco, 2011.

K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno,
S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham et al., “Experimental security analysis of a
modern automobile,” in Security and Privacy (SP), 2010
IEEE Symposium on. 1EEE, 2010, pp. 447-462.

C. Miller and C. Valasek, “A survey of remote automotive
attack surfaces,” Black Hat USA, 2014.

Specification of Crypto Abstraction Library, 4th ed., AU-
TOSAR, 2015.

Specification of Crypto Service Manager, 4th ed., AU-
TOSAR, 2015.

N. F. Pub, “197: Advanced encryption standard (AES),”
Federal Information Processing Standards Publication, vol.
197, pp. 441-0311, 2001.

R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark,
B. Weeks, and L. Wingers, “The SIMON and SPECK
lightweight block ciphers,” in Proceedings of the 52nd
Annual Design Automation Conference. ~ACM, 2015, p.
175.

A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar,
A. Poschmann, M. J. Robshaw, Y. Seurin, and C. Vikkelsoe,
PRESENT: An ultra-lightweight block cipher. Springer,
2007.

C. De Canniere, O. Dunkelman, and M. KneZevi¢, “KATAN
and KTANTAN-a family of small and efficient hardware-
oriented block ciphers,” in Cryptographic Hardware and
Embedded Systems-CHES 2009. Springer, 2009, pp. 272—
288.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
“Keccak sponge function family main document,” Submis-
sion to NIST (Round 2), vol. 3, p. 30, 2009.

J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Win-
nerlein, “Blake2: simpler, smaller, fast as md5,” in Applied
Cryptography and Network Security. Springer, 2013, pp.
119-135.

M. Culver, “2014 Automotive Semiconductors Supplier
Rankings Adjusted Based on Further Analysis, IHS
Says,” http://press.ihs.com/press-release/automotive/2014-
automotive-semiconductors-supplier-rankings-adjusted-
based-further-ana, 2016-03-28.

Layered Software Architecture, 4th ed., AUTOSAR, 2015.

M. Cazorla, K. Marquet, and M. Minier, “Survey and
benchmark of lightweight block ciphers for wireless sensor
networks,” in SECRYPT 2013 - Proceedings of the 10th
International Conference on Security and Cryptography,
Reykjavik, Iceland, 29-31 July, 2013, P. Samarati, Ed.
SciTePress, 2013, pp. 543-548.

[15] C. Solomon and B. Groza, “Limon - lightweight authentica-
tion for tire pressure monitoring sensors,” in /st Workshop
on the Security of Cyber-Physical Systems (affiliated to
ESORICS 2015), 2015.

