
Cryptographic authentication on the communication from an 8051 based
development board over UDP

Bogdan Groza 1 , Pal-Stefan Murvay 2 , Ioan Silea 1 , Tiberiu Ionica 1
Politehnica University of Timisoara, Faculty of Automatics and Computers, Romania 1

Continental Corporation, Infotainment and Interpersonal Department, Romania 2
bogdan.groza, ioan.silea, tiberiu.ionica @aut.upt.ro

stefan.murvay @continental-corporation.com

Abstract

Implementing cryptography on devices with low

computational power is a necessity as they became
involved in communications over public networks.
Even more, these devices became ubiquitous and are
used in a large area of applications, from home-office
systems to industrial control systems. We deal with the
design and implementation of a cryptographic protocol
that can be used to assure the authenticity of the
information broadcasted over UDP from an 8051
based system-on-a-chip to a large number of receivers.
The protocol that we use is similar to the well known
TESLA protocol that was used in sensor networks, and
by using such a protocol information can be
broadcasted to a large number of receivers without
requiring secret shared keys or expensive public key
operations. Some implementation details and
experimental results are presented as well, and they
show that implementing a cryptographic
authentication protocol is feasible even in a
constrained environment as offered by the 8051
microcontroller.

1. Introduction

System-on-a-chip (SoC) are ubiquitous devices that
are used in a large variety of applications from home-
office to industrial systems. The main constraint, with
respect to cryptography, is the low computational
power that these devices have. Still, these devices may
be involved in tasks which put precious information at
a risk. The most obvious scenario is the case when
information travels over public networks such as the
Internet. In such a situation, information is exposed,
and may be subject to forgeries produced by some
adversaries.

In order to eliminate such a risk, the only solution is
the use of cryptography. Implementing cryptography,

as already stated, raises problems from the
computational point of view, since it is somewhat
unsuitable to implement many cryptographic
primitives such as for example public key primitives.
Also, implementing a cryptographic protocol on a SoC
is not as trivial as implementing on a high level
language where the programmer has access to a large
variety of classes that can be used for cryptographic
functions and communication purposes. Here only a
reduced library with a limited set of functions is
available.

The 8051F124 development board that we work on
is a device that fits well in the aforementioned
category. From the security point of view, in the
scenario that we deal with, we are first interested in
assuring the authenticity of information. This means to
give a guarantee that information originates from a
particular entity and was not altered during the
transmission by potential adversaries. Also authenticity
refers to assuring the freshness of information since
replayed information can not be considered authentic
as the original sender may not be present at the given
time. In order to assure the authenticity of some
information the use of Message Authentication Codes
(MAC) or Digital Signatures is required. However, in a
constrained environment the use of digital signatures is
not possible as they are public key primitives which
require more computational power; in fact they can be
from hundred to thousands times more computational
intensive than MAC codes. Therefore the use of MAC
codes is the only alternative. Unfortunately, this
alternative comes with a limitation as well, and this
limitation is the fact that MAC codes require a secret
shared key between the sender and each receiver. For
example, a scenario with n receivers will require n
distinct shared keys, and more, a distinct MAC code
must be computed by the sender for each receiver –
this obviously leads to an inefficient protocol. The
limitations go even further since such a solution is not

easily scalable as every new receiver that joins the
stage must share a new key with the sender and this
complicates things further as a key exchange protocol
must be run between the sender and each receiver.
After all, it is obvious that the use of MAC codes with
secret shared keys is an inefficient solution for our
purpose. Fortunately, a good solution exists. The
solution consists in the use of elements from a one-way
chain, i.e. an array generated by the successive
composition of a one-way function, as keys for MAC
codes and time synchronization – solution proposed by
Perrig et al. [11]. The first proposals for such a
protocol can be found in [1], [11], [12]. Such a solution
feats well to the scenario that we address, therefore we
will use a protocol based on one-way chains and time
synchronization to assure the authenticity of the
information that is broadcasted from our low
computational power device.

The paper is organized as follows. In section 2 the
application setting is presented and several details
about the board are given, this description is necessary
in order to understand the constraints of our
environment. In section 3 the cryptographic protocol is
explained. Section 4 holds some implementation
details and experimental results. In section 5 are the
conclusions of our paper.

2. The addressed scenario

2.1. Application setting

A brief description of the scenario that we address
follows, the application setting is suggested in figure 1.
We are interested in a scenario where information from
a low computational power device must be broadcasted
to a large number of receivers. More particular, we
used an 8051 based development board, which
broadcasts the temperature acquired from a local
sensor to a large number of receivers. The board has a
temperature sensor embedded and an extension board
for Ethernet communication. Such a scenario is
commonly present in industrial control systems where
measurements from processes are taken and sent to the
controllers. The relevance of cryptographic security in
this area is widely acknowledged as several recent
papers show [3], [4]. Also such a scenario is wlog and
can be extended to other applications as well. The
information that is broadcasted must be guaranteed to
be authentic by the use of MAC codes and time
synchronization between the participants. Therefore,
this scenario implies the presence of a low
computational power device, a number of receivers,
and a time synchronization server. Several details
about the low computational power device are in the

next section; all other participants are standard
computers.

Time Synchronization Server
(Trusted Third Party)

Receiver

Receiver

Receiver

Router

Secure perimeter

BROADCAST

C8051F124
Development Board

+ AB2 Ethernet Board
(SENDER)

Figure 1. Application setting.

2.2. Description of the development board

The authentication protocol was implemented on a
C8051F124 development board [15] from Cygnal
Integrated Product Inc., now owned by Silicon
Laboratories [16]. For fulfilling the communication
requirements, the board was connected to an AB2-
extension Ethernet development board that uses a
CS8900A low cost Ethernet controller. This ensemble
is presented in figure 2.

Figure 2. C8051F124 Development Board
connected to an AB2 Ethernet Board

The 8051 microcontroller found on the board has an

internal oscillator that comes calibrated to obtain a 24.5
MHz frequency. By using the integrated Phase-Locked
Loop (PLL), the output frequency is currently set to 49

MHz. The available memory on the board consists in
256 bytes internal RAM and 64kbytes external RAM
for data storage and 64KB of flash memory for storing
the application code.

Temperature readings are made using the
microcontroller’s built-in temperature sensor which is
internally connected to an Analog to Digital Converter
(ADC). The ADC works on 12 bits and the output is
the temperature value in Celsius degrees, see [18] for
more details.

The development board has five timers. Two 16-bit
timers are used by the AB2 extension board and
another three 16-bit auto-reload and capture timers are
available for use by the application. In particular we
have used one timer for the temperature readings and
one timer was programmed to measure the local time
for synchronization. Using one timer for
synchronization purposes was needed as the board
doesn’t have any clock to keep track of the local time,
for example a real time clock.

The AB2 development board uses a CS8900A low-
cost Ethernet LAN controller. This controller can be
used in embedded applications that communicate over
UDP or TCP sockets. More complex applications such
as HTTP or FTP servers can be done as well. In
particular, in our application we programmed it for
UDP communication, as this is the best way to achieve
a broadcast communication.

3. The cryptographic protocol

The use of one-way chains has proven to be a very
effective mechanism in assuring authenticity of
information broadcasted in low computational power
environments. This is because by the use of elements
from one-way chains as keys for MAC codes in
conjunction with time synchronization removes the
need for secret shared keys, which a MAC will require
otherwise. The first proposal is in [11], [12] and
afterwards other papers extended this idea or proposed
related solutions [1], [6], [7], [8]. In one of our
previous papers we have already pointed out the
relevance of a one-way chain based authentication
protocol for an industrial control system [8]. For the
current scenario we will use a protocol based on one-
way chains and time-synchronization similar to the
TESLA protocol [11].

As seen in the previous section, the application
needs a time synchronization server, which acts as a
trusted third party (TTP), for assuring time
synchronization and distributing the initialization key
of the sender to the receivers. However, when a TTP is
involved there are two types of trust in which the TTP
can be engaged: unconditional trust and functional

trust. A TTP is called unconditionally trusted if it has
access to the secret and private keys of users. A TTP is
called functionally trusted if all that we request is to
behave honest, and the TTP does not have access to
private or secret information.

Of course our scenario requires for the time
synchronization server to be functionally trusted, since
the server does not have access to the secret keys used
for the MAC codes, but indeed, if the time
synchronization server is corrupted and gives false
time values then one can easily forge the packets. For
example, if the time given by the time synchronization
server is behind the correct time from the sender then
an attacker can forge the packets as keys may be
already disclosed for packets that also verify the
security condition from the perspective of a receiver
with wrong time synchronization. Therefore we rely on
the fact that the time synchronization server behaves
honestly, i.e. is functionally trusted.

The description of the protocol now follows. The
structure of the broadcasted packet is the following:

Sender Receivers→ : (){ }1
, , , 1,

ii i k i iP MAC k i nθ θ
+

= =

These packets are broadcasted at time i δ⋅ where
δ is the key disclosure interval, see the experimental
results form section 4 for the exact values of δ . Here

iθ is the value of the temperature acquired by the
temperature sensor at time i δ⋅ and ()

1ik iMAC θ
+

 is a

MAC computed on these value with key 1ik + which
will be disclosed in the forthcoming packet. The value
of ik is computed as ()n i

i genk Hash k−= , where n is the

length of the chain, Hash is a hash function and genk is
a random value from which the chain is generated.

All receivers must follow a time synchronization
procedure with the time server, which consists in the
following standard steps (a similar procedure was used
in [7], [11], [12] and other papers to which the reader is
referenced for further details):

Receiver TimeServer→ : RNonce
TimeServer Receiver→ :

0

, , ,
, ,

R

SigRS

Nonce CurrentTime DisclosureDelay
StartTime Duration k

The receivers must follow this procedure every time
the chain is exhausted, this happens at time
CurrentTime+Duration. For future work, if the board
proves to be good enough to handle public key
operations, such as the one from [10] we plan to move
this entire procedure on the board and possibly
renounce on the time server.

Also, the sender, which is the microcontroller, must
follow an initialization stage on the time server. The
main purpose of the initialization on the time server is
to announce the time when the broadcast starts, the key
disclosure period and the initialization key for the one-
way chain, i.e. ()0

n
genk Hash k= . In the addressed

scenario we had considered that the communication
line between the board and the synchronization server
is secure, as they are part of a secure perimeter.
Therefore a simple announcement to the time
synchronization server is enough. However, the
problem is that the board doesn’t have in its
development library any function that can be used to
generate random numbers. Implementing a function for
generating random numbers is future work for us as in
this context generating random numbers on the board
can be avoided. However, implementing such a
function does not seem to be a trivial task, as there are
not many sources of entropy on the board. More,
information can not be stored at runtime since the
board does not have non-volatile memory, except for
the flash that stores the program and which is
dangerous to erase since erasing it too frequent would
lead to memory inconsistencies. In the absence of non-
volatile memory, the use of counter mode for an
encryption function is a problem because when the
board goes off-line we can not store the value of the
counter and when power-up the same numbers will be
generated by the board. In these conditions we must
help the board with values from the time server.
Fortunately, this can be done as they are part of the
secure perimeter. Therefore the device will use random
nonces received from the time server in order to
generate a one-way chain. However if the random
value from the time server is simply used to compute
the one-way chain, then what we get is unconditional
trust for the time server, since the time server is now in
possession of the secret key used by the board.
Therefore, in order to remove this shortcoming, we
will use a random nonce from the time server just to
derive the key that is directly used in the construction
of the one-way chain. The following are the
initialization steps between the board and the time
server:

Sender TimeServer→ : LocalTime
TimeServer Sender→ : Nonce
Sender TimeServer→ : 0 ,k StartTime

Now the value of genk can be easily computed as

()
secretgen kk MAC Nonce= . Here secretk is a secret random

value written on the flash of the board. In this way a
time server, if providing fresh random nonces, will not

know the secret keys used by the sender – therefore the
time server is only functionally trusted.

For the case when the communication line is not
secure between the board and the time server, the use
of MAC codes and nonces to ensure the information is
fresh is the only alternative. The use of just one secret
shared key between the board and the time
synchronization server should not represent a problem.
Again, the problem that must be solved in this context
is the generation of fresh nonces on the sender’s side.

4. Implementation and results

4.1. The cryptographic primitives involved

For the development of the application two distinct
environments were used. This is because the
synchronization server and the receivers were standard
computers where a high level language could be use,
while the board had to be programmed in a lower level
language. In particular the source code for the board
was written in the ANSI C programming language
from the Cygnal IDE that comes with the board. As a
high level language, we used the .NET and in
particular the C# language in which the time server and
the receiver applications were written.

For implementing the previously described
authentication protocol on the microcontroller, several
cryptographic primitives were needed. We used the
MD5 [13] hash function and the HMAC [9] message
authentication code (based also on MD5). Both
algorithms were implemented based on the Request for
Comments (RFC) implementations available at [9],
[13]. The code was optimized by removing the parts
used for testing so that it will consume as little memory
as possible to leave enough memory space for storing a
one-way chain of a reasonable length.

The one-way key chain was generated using the
MD5 one way hash function. The number of elements
from the one-way key chain that can be stored is
restricted by the data memory left after implementing
the application – 3780 bytes. Therefore, if the entire
chain has to be stored in memory only a chain with a
length of 220 elements can be used. The efficient
computation and storage of hash chains is a known
problem that was addressed by several papers [2], [5],
[14]. The main solution is to compute the entire chain
and store only some values for the efficient subsequent
computation, this gives an efficient time-memory
tradeoff.

As for the cryptography in the .NET applications
we used the classes available in the framework, more
concrete the System.Security.Cryptography namespace.
For computing MD5 hashes the

MD5CryptoServiceProvider class was used and for
HMAC calculations we used the HMACMD5 class.
The digital signatures on the messages sent from the
time server to the receivers, and their verifications,
were done using the RSA signature from the
RSACryptoServiceProvider class.

4.2. Implementing the communication

The Ethernet communication from the board was

done using UDP sockets. The TCP/IP library [17] that
comes with the AB2 development board can be
configured by the developer to meet the specific needs
of the application. Therefore, we configured it to
enable the use of UDP sockets. Two UDP sockets are
used. One is for the communication with the Time
Server in the initialization task, and one is for
broadcasting the messages to receivers. The TCP/IP
library makes the communication easy by the use of
the following functions: mn_open, mn_send,
mn_receive and mn_close - see the documentation for
further details [17].

UDP and TCP/IP communication in the .NET
applications was implemented by using the Socket
class from the System.Net.Sockets namespace.

4.3. The protocol and its performance

The application must be evaluated both in terms of
computational time for the cryptographic primitives
involved and communication speed when the protocol
is running.

Table 1 shows the computational time of several
cryptographic functions implemented on the 8051F124
development board. The computational time was
measured by running each test 1000 times and
computing the mean value. Inputs of different lengths
were tested for each cryptographic primitive as shown
in table 1.

Time estimates were done using one of the five
internal timers available on the microcontroller. The
timer was configured as a counter enabling us to get
the current time value before the call to the function
and after the function call has ended. The key used for
the HMAC calls was the same as its input.

In the broadcast application the MD5 hash function
was used. Indeed this function is known to be weak
and collisions can be found. However, breaking the
protocol requires inverting this function which is not
yet feasible; therefore we have used it in the
experiments. Of course, for future use we plan to use
more secure hashes such as SHA-256 or other variants
from the SHA-2 family. Computational times for

SHA1 and RC5 are left only for comparison purposes
as these functions were not used in our application.

Cryptographic
primitive Input length (bytes) Runtime

(10-3seconds)
0 1.91

26 1.95
62 3.64 MD5

80 3.63
0 4.33

26 4.37
62 8.46 SHA-1

80 8.44
0 7.13

26 7.36
62 9.30 HMAC-MD5

80 12.58
0 16.74

26 16.97
62 21.30 HMAC-SHA-1

80 29.39
RC5 4 5.18
Table 1. Computational time for the
cryptographic primitives on the 8051 based
development board.

Key disclosure

period
(seconds)

Packets sent
Authentic

packets
received

Loss Rate

10 220 220 0%
1 220 220 0%

0.1 220 213 3.18%
0.08 220 204 7.27%

0.05 220 182 17.27%

0.04 220 174 20.9%
0.03 220 0 100%

Table 2. Communication statistics for the
protocol.

Table 2 contains some values for the time interval

and test results obtained with the previously described
protocol. By using the values from Table 1 we can
estimate that for the cryptographic functions that we
used in the implementation, a broadcast speed of at
most 138 messages per second can be reached. This
was estimated by using the computational time
required for HMAC-MD5. Choosing a key disclosure
period that corresponds to a speed higher than this
would lead to the inability of sending messages in the
correct time period because computing the MAC
would take longer than the key disclosure period. The
message will be then considered to be not authentic by
failing to verify the time constraint. However, due to
other computations done in the application for building
the message, like for instance the measurement of the
temperature, and because of the network speed the
actual broadcasting speed is much lower than 138

packets per second. Tests show that a speed of 10 to 20
packets per second is safe to use. This means that the
time spent for cryptographic operations does not raise
problems in the protocol performance.

5. Conclusions

An authentication protocol based on cryptographic
techniques was developed. The protocol was efficiently
used even in the constrained environment offered by
the 8051 based development board. The experimental
results show that a broadcast authentication protocol is
efficient and a large number of receivers are able to
receive information that can be checked for
authenticity. The protocol implementation can be
further improved, extended and used in other
environments as well. One limitation of the protocol is
at the size of the one-way chains, which is somewhat
short due to the memory limitations of the device; a
short chain will require frequent initializations. For this
purpose improvements based on time-memory
tradeoffs for the computation of the chain can be
subject of our future work.

6. References

 [1] F. Bergadano, D. Cavagnino, B. Crispo, “Individual
Authentication in Multiparty Communications”. Computer &
Security, Elsevier Science, vol. 21 n. 8, 2002, pp.719-735.

[2] D. Coppersmith and M. Jakobsson, “Almost Optimal
Hash Sequence Traversal”, Proceedings of the Fifth
International Conference on Financial Cryptography, pp.
102-119, 2002.

[3] D. Dzung, M. Naedele, T.P. Hoff, M. Crevatin, “Security
for Industrial Communication Systems”, Proceedings of the
IEEE, vol. 93, no. 6, 2005.

[4] J. Falco, J. Gilsinn, K. Stouffer, “IT Security for
Industrial Control Systems: Requirements Specification and
Performance Testing”, NDIA Homeland Security
Symposium & Exhibition, 2004.

[5] M. Fischlin, “Fast Verification of Hash Chains”, The
Cryptographers Track at the RSA Conference, pp. 339-352,
2004.

[6] B. Groza, “Using one-way chains to provide message
authentication without shared secrets”, Second International
Workshop on Security, Privacy and Trust in Pervasive and
Ubiquitous Computing (SecPerU 2006), IEEE, 2006.

[7] B. Groza, "Broadcast authentication protocol with time
synchronization and quadratic residues chains", Second
International Conference on Availability, Reliability and
Security, pp. 550-557, IEEE Comp. Soc., 2007.

[8] B. Groza, T.-L. Dragomir, "On the use of one-way chain
based authentication in secure control systems", Second
International Conference on Availability, Reliability and
Security, pp. 1214-1221, IEEE Comp. Soc., 2007.

[9] H. Krawczyk, M. Bellare, R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", Request for
Comments: 2104, http://www.ietf.org/rfc/rfc2104.txt.

[10] A. Liu, P. Ning, "TinyECC: A Configurable Library for
Elliptic Curve Cryptography in Wireless Sensor Networks",
TR-2007-36, North Carolina State University, Department of
Computer Science, November 2007.

[11] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar,
“SPINS: Security Protocols for Sensor Network”,
Proceedings of Seventh Annual International Conference on
Mobile Computing and Networks MOBICOM, 2001.

[12] A. Perrig, R. Canetti, J. D. Tygar, D. Song, “The
TESLA Broadcast Authentication Protocol”, In CryptoBytes,
5:2, Summer/Fall, pp. 2-13, 2002.

[13] R. Rivest, "The MD5 Message-Digest Algorithm",
Request for Comments: 1321,
http://www.ietf.org/rfc/rfc1321.txt.

[14] Y. Sella, “On the Computation-Storage Trade-offs of -
Hash Chain Traversal”, Proceedings of the Seventh
International Conference on Financial Cryptography, pp.
270-285, 2003.

[15] Cygnal C8051F120/1/2/3/4/5/6/7 High-speed Mixed-
Signal ISP FLASH MCU data sheet
http://www.betatvcom.dn.ua/komplekt/pdf/digit/microcontrol
ler/C8051F120.pdf

[16] Silicon Laboratories – High Performance, Analog
Intensive, Mixed-Signal Integrated Circuits (ICs),
www.silabs.com.

[17] Silicon Laboratories, “TCP/IP Library Programmer’s
Guide” -
http://www.silabs.com/public/documents/tpub_doc/anote/Mi
crocontrollers/Precision_Mixed-Signal/en/an237.pdf.

[18] Silicon Laboratories, “Using the On-chip Temperature
Sensor”,http://www.silabs.com/public/documents/tpub_doc/a
note/Microcontrollers/Precision_Mixed-Signal/en/an103.pdf.

