
A brief look at the security of DeviceNet communication
in industrial control systems

Pal-Stefan Murvay
Politehnica University of Timisoara

Timisoara, Romania
pal-stefan.murvay@aut.upt.ro

Bogdan Groza
Politehnica University of Timisoara

Timisoara, Romania
bogdan.groza@aut.upt.ro

ABSTRACT
Security is a vital aspect of industrial control systems since
they are used in critical infrastructures and manufacturing
processes. As demonstrated by the increasing number of
emerging exploits, securing such systems is still a challenge
as the employed fieldbus technologies do not offer intrinsic
support for basic security objectives. In this work we dis-
cuss some security aspects of DeviceNet, a communication
protocol widely used for control applications especially in
the North American industrial sector. Having the Controller
Area Network (CAN) protocol at its base, DeviceNet inher-
its all the vulnerabilities that were already illustrated on
CAN in-vehicle communication. We discuss how the lack of
security in DeviceNet can be exploited and point on the fact
that these vulnerabilities can be modelled by existing formal
verification tools and countermeasures can be put in place.

CCS CONCEPTS
• Security and privacy → Denial-of-service attacks; • In-
formation systems → Process control systems; • Computer
systems organization → Embedded systems;

KEYWORDS
industrial control systems, security, DeviceNet, attacks
ACM Reference Format:
Pal-Stefan Murvay and Bogdan Groza. 2018. A brief look at the
security of DeviceNet communication in industrial control systems.
In Central European Cybersecurity Conference 2018 (CECC 2018),
November 15–16, 2018, Ljubljana, Slovenia. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3277570.3277575

1 INTRODUCTION AND MOTIVATION
Industry areas such as critical infrastructure and manufactur-
ing have become increasingly dependent on industrial control
systems (ICS) which have evolved and adapted to suit the
needs of all industry sectors. Inevitably, this made ICSs a

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
CECC 2018, November 15–16, 2018, Ljubljana, Slovenia
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6515-4/18/11. . . $15.00
https://doi.org/10.1145/3277570.3277575

target for attackers leading to more and more attacks being
reported in recent years. The well known Stuxnet worm [8]
targeted specific systems involved in the process of uranium
enrichment. In another instance the BlackEnergy malware
was used to cause a considerable power outage in western
Ukraine in 2015 [21]. Such attacks raise awareness on the
security of ICSs in general and on the technologies used at
the network level in particular

Multiple fieldbus technologies were developed to facilitate
communication in ICSs. However, these industrial network
protocols were not developed with security in mind enabling
an attacker to mount successful exploits once gaining ac-
cess to the internal process control network. Studying the
protocol specification can help in revealing weaknesses and
attacks that they can facilitate. This work focuses on the
vulnerabilities that stem from the DeviceNet protocol speci-
fication, a member of the family of networks that uses the
Common Industrial Protocol (CIP) at the higher-level. The
CIP network adaptions (i.e. EtherNet/IP, DeviceNet, Con-
trolNet and CompoNet) are developed and maintained by
ODVA (Open DeviceNet Vendor Association). While having
common specifications for the upper application layer, each
of these protocols uses specific adaptations of CIP. DeviceNet,
also known as CIP on CAN (Controller Area Network), is
employed by millions of installed nodes according to ODVA
[14]. Using CAN as the building block covering the physical
and data-link layers makes DeviceNet susceptible to the same
types of attacks that are possible on the basic CAN (e.g.,
DoS, spoof, replay). We will not insist on the particularities
of these attacks since they were extensively studied as part
of research done on the security of the automotive sector in
which CAN is the most widely used network protocol. We
focus on attacks that use these basic CAN vulnerabilities to
exploit the DeviceNet protocol specification from the upper
application layers.

The remainder of this paper is structured as follows. In
section 2 we present related work on the security of industry-
standard protocols. A basic description of the DeviceNet
protocol is given in section 3 before presenting the identified
attacks in section 4. Finally a discussion on vulnerability
modelling and securing DeviceNet is included in sections 5
and 6 followed by the paper conclusion.

2 RELATED WORK
Intrinsic vulnerabilities in the CAN protocol were first re-
ported in [20]. Later experimental studies in the automotive
domain has shown that replay and spoofing attacks launched

https://doi.org/10.1145/3277570.3277575
https://doi.org/10.1145/3277570.3277575

CECC 2018, November 15–16, 2018, Ljubljana, Slovenia P.-S. Murvay et al.

Figure 1: The DeviceNet object model according to [12]

from the application layer can be easily used to control the
behavior of nodes in a CAN network [3, 9], while the proto-
col’s arbitration and fault confinement mechanisms can be
exploited to mount DoS attacks [10].

Research on the security of the CIP family of protocols
has mainly focused on the EtherNet/IP protocol. A man-in-
the-middle approach to attack EtherNet/IP communication
is discussed in [19]. While effective in affecting the controlled
process this type of attack is based on the assumption that
the attacker has the ability of planting a device in the ICS
network. The authors of [5] report a set of DoS attacks on
EtherNet/IP nodes based on connection space exhaustion,
flooding and TCP connection timeouts. The possibility to ex-
ploit vendor specific extensions of CIP to mount DoS attacks
is investigated in [17].

With adaptations, some of these attacks could be mounted
on DeviceNet communication given the shared CIP specifica-
tion. However, to the best of our knowledge this is the first
paper to investigate attacks on the DeviceNet protocol.

In depth specification analysis was done for other fieldbus
protocols such as DNP3 and Modbus to build detailed attack
taxonomies [4, 7].

3 DEVICENET PROTOCOL
The specification of DeviceNet, as provided by ODVA, con-
sists of two main documents: the Common Industrial Protocol
Specification [11] and the DeviceNet adaption of CIP [12].
The main body of the CIP specification covers the top lay-
ers of the protocol stack. CIP was designed as an object
oriented protocol following a producer-consumer communi-
cation model. It uses object modelling to define the visible
network behaviour of nodes which are viewed as collections
of objects. Figure 1 depicts the object model of a DeviceNet
node presenting object types along with their relationships
and illustrates the class concept. A class is a set of objects
with related services, attributes and behaviours. Services are
the procedures that an object can perform while attributes
are object characteristics. The CIP specification provides a
so-called library of objects which defines objects that cover
typical functionalities required in network nodes. For other
more specific objects that could be needed the specification
covers the possibility of defining vendor-specific objects.

CAN ID bits Value range Designated use10 9 8 7 6 5 4 3 2 1 0
0 𝐼𝐷𝐺1

𝑀𝑠𝑔 Src. MAC ID 000-3ff Message Group 1
1 0 Src./Dest. MAC ID 𝐼𝐷𝐺2

𝑀𝑠𝑔 400-5ff Message Group 2
1 1 𝐼𝐷𝐺3

𝑀𝑠𝑔 Src. MAC ID 600-7bf Message Group 3
1 1 1 1 1 𝐼𝐷𝐺4

𝑀𝑠𝑔 7c0-7ef Message Group 4
1 1 1 1 1 1 1 x x x x 7c0-7ef Invalid CAN Identifiers

Figure 2: CAN ID encoding in DeviceNet

While the main CIP specification is common to a family of
protocols, special restrictions on the application of CIP are de-
fined for each of these protocols. DeviceNet represents the im-
plementation of the CIP on the widely used CAN technology.
DeviceNet uses CAN as the basis for the physical and data
link layers. The DeviceNet physical layer extends the classi-
cal CAN specification [15] by adding improved transceiver
characteristics along with options for cabling and connectors
[16]. At the data link layer DeviceNet uses the classical CAN
protocol which specifies standard frames having an 11 bit ID
field and a data payload of up to 8 bytes, therefore, excluding
the use of extended frames. As an additional restriction, the
use of remote frames is not allowed.

3.1 General communication principle
An addressing scheme is used for addressing specific objects
within nodes as part of the communication process. Each
node is assigned an unique integer identifier which, in the
case of DeviceNet, is called MAC ID (Media Access Control
Identifier). To assure uniqueness, the MAC ID of a node trying
to gain network access is checked and access is only granted if
this MAC ID is not already in use. Classes, object instances
and attributes also have associated integer identifiers while
services are represented by corresponding service codes.

The CIP messaging protocol is based on establishing con-
nections between nodes. Each established connection is as-
signed a connection identifier (CID). Two CIDs are allocated
if the connection involves bidirectional data transfer. The
CID is transmitted in the CAN ID field which is used to
encode four different message groups as depicted in Figure
2. Here 𝐼𝐷𝐺𝑖

𝑀𝑠𝑔 represents the identifier of a message within
group 𝑖. The CID is built by using a message ID in com-
bination with a MAC ID resulting in a limited number of
connections per MAC ID when also considering that some
message IDs are reserved for predefined use.

The two main types of connections used in CIP networks
are explicit messaging connections and I/O connections. Ex-
plicit connections are used for multi-purpose, point-to-point
communication following a typical request/response approach
within a client/server model. The client is the device that
sends a request to a server, while the server node is expected
to respond upon receiving the request. I/O connection are
dedicated to specific-purpose, unicast or multicast commu-
nication following a producer/consumer model. A producer
node places a message on the network to be consumed by
one or several consumer devices.

A brief look at the security of DeviceNet communication
in industrial control systems CECC 2018, November 15–16, 2018, Ljubljana, Slovenia

3.2 Establishing connections
There are several methods for establishing connections, their
usability, however, depends on the node state or CIP protocol
adaptation. Connections can be established by using one of
three mechanisms: (i) the Unconnected Message Manager,
(ii) an already existing explicit messaging connection or (iii)
the Predefined Master/Slave Connection Set.

Unconnected Message Manager. The Unconnected Message
Manager (UCMM) is responsible for establishing explicit mes-
saging connections in the absence of an already established
connection that can be used for this purpose. Messages used
in this case are called unconnected explicit messages as they
have the form of an explicit message but they are not used
over an established connection. In DeviceNet nodes UCMM
supports two request services (for opening and closing con-
nections) and five response services (for opening and closing
connections as well as for device status notifications). Al-
though not mandatory, the implementation of the UCMM
in all DeviceNet nodes is highly recommended by the spec-
ification since devices without UCMM functionality bring
additional burden on other nodes and on network bandwidth.

Connection Object. An already established connection be-
tween two nodes can be used to create subsequent connections
by sending create service requests to the connection object
class. Similarly, the delete service can be used to delete a
specific connection or all existing connections within the class.
However, the support for these two services is optional.

Predefined Master/Slave Connection Set. Some DeviceNet
nodes have limited capabilities preventing them from em-
ploying the previously described approaches for establishing
connections. To minimize the message processing load on
this type of nodes, DeviceNet introduces the predefined mas-
ter/slave connection set which provides 5 predefined connec-
tion types in a node, one for explicit messaging and four for
I/O messaging. Nodes using predefined master/slave connec-
tion set messages communicate using a master/slave relation-
ship. The master "takes control" over slaves by allocating their
predefined connection set to its own MAC ID and gathers or
distributes data to or from the controlled slaves. A slave can
only allocate its predefined master/slave connection set to
a single master at a given time. The master releases control
over a slave by using the release service. The allocation and
release of predefined master/slave connection sets is handled
by the DeviceNet object which must have an instance per
each physical network connection in a DeviceNet node.

4 ATTACKS ON THE DEVICENET
PROTOCOL

In this section we will present attacks on the DeviceNet pro-
tocol identified by analysing the specification. For performing
these attacks we considered the case of an attacker with direct
access to the DeviceNet network that has the ability to listen
to DeviceNet traffic and inject any forged message. Access
to the DeviceNet network is gained either by compromising
an already existing node or by connecting a new node. For a
better understanding of the protocol vulnerabilities involved

in each case the description of each attack is preceded by
background details on the exploited feature.
(1) Deny network access
Background. Prior to initiating communication in a DeviceNet
network a node has to gain network access by successfully
passing the duplicate MAC ID check. This step involves
sending the duplicate MAC ID check request at least two
consecutive times (one time if using Quick Connect) without
receiving a response. A response is sent by a network node
that receives a check request for a MAC ID identical to
its own. Both the request and response messages contain
additional identification data about the sender nodes such as
Vendor ID and serial number. If the duplicate MAC ID check
fails the node enters a communication fault state which can
be exited by manual intervention or a MAC ID change.

Attack. The network access procedure is similar to the IPv4
address conflict detection1 making it prone to the same type
of attacks. A DeviceNet node can be denied network access
if an attacker always sends a response to the legit node’s
duplicate MAC ID check requests. The target node can be
easily identified based on the vendor ID and serial number
sent as part of the duplicate MAC ID check request. The
DeviceNet specification does not require the use of a timeout
for duplicate MAC ID check responses after the final request
transmission. This omission along with the state machine
describing the network access flow would suggest that it is
possible to send false duplicate MAC ID check responses to
nodes that have already established normal operation forcing
them to transition in the fault state.

(2) Disrupt UCMM connection process
Background. The UCMM object facilitates the process of es-
tablishing explicit messaging connections. Such connections
are established by using the Open Explicit Messaging Con-
nection service. A request for this service contains the source
and destination MAC IDs as well as the message ID and in-
formation on the messaging format to be adopted. Requests
are answered with either a response to the same service or
an error. The connection is considered as established on both
sides if no error was issued and the response has been received
by the request initiator.
Attack. The correct establishment of an explicit messaging
connection using the UCMM functionality can be prevented
if an attacker that detects the connection attempt transmits
an error message before the legit answer is sent by the server
node. As a result, the client will consider the connection
attempt as failed following the reception of the error message
and will drop the correct response that follows as it will not
correspond to an ongoing request. Depending on the error
code, the client may attempt to retry the connection request
with adapted parameters. This retry could be prevented by
setting the transmitted error code to Service Not Supported
(0x08) suggesting that the requested service is not supported
by the server. The connection will still be considered as es-
tablished on the server side but unusable since any messages

1https://tools.ietf.org/html/rfc5227

CECC 2018, November 15–16, 2018, Ljubljana, Slovenia P.-S. Murvay et al.

sent to the client referencing an invalid CID are dropped.
Moreover, if the server connection object uses the inactiv-
ity/watchdog functionality, the connection will be closed on
its end after an inactivity period of at leas 10 seconds (the
actual timeout value is configuration dependent).

(3) Close connections via UCMM
Background. The UCMM also provides a means for closing
connections by implementing the Close Connection service.
This service may be used to close any type of connection
(i.e. explicit messaging or I/O). A close connection request
will terminate the connection only on one of the connected
endpoints, i.e. the one denoted by the MAC ID transmitted
within the request message.
Attack. An attacker that wants to prevent messages from
being transmitted or received over a certain connection can
extract the CID from the monitored network traffic and
send a close connection request to the targeted endpoint
indicating the corresponding CID. The request receiver is
forced to terminate the connection on its side ceasing to
transmit or accept any messages over this connection.

(4) Connection disruption via connection class
Background. The connection class can provide services for
creating and deleting connections over an existing explicit
messaging connection. A device is only capable of providing
this behaviour if the create and delete services are imple-
mented by its connection class. When available, the use of
these two services is similar to the use of the open and close
services of the UCMM with the added ability of the create
service to produce I/O connections. Moreover, the delete
service can be used to delete all connections allocated on the
device if, instead of addressing a particular connection, the
delete request addresses the connection class.
Attack. Using these features an attacker can prevent new
connections with an approach similar to the one used for dis-
rupting the UCMM connection process, i.e. by sending error
messages upon create connection requests. The same applies
to closing connections with the added ability of closing all
connections on one node with a single delete request.

(5) Connection exhaustion
Background. Each device can allocate a limited number of
connections, due to the CAN ID encoding convention and
internal device resources. CAN ID encoding, as illustrated in
Figure 2, limits the total number of connections that can be
initiated by a node to 27 over all message groups since some
bit combinations are reserved for special-purpose messaging.
The constraint is even greater if the usable message format is
limited to a certain message group. Additionally, each device
has a maximum number of connections which is established
based on the device capabilities. A device that reaches its
connection limits will refuse further connection requests.
Attack. An attacker could prevent a target node from achiev-
ing and using legitimate connections with other nodes by
exhausting its connection capability. This can be done by
forcing the target node to establish connections up to its

configured limit. If the device’s capabilities allows it to estab-
lish as many connection as allowed by the CAN ID encoding
scheme the attacker needs to enssure that all the possible
connections are covered. This might seem as an intensive task
for the attacker if we consider that a DeviceNet network can
hold up to 64 nodes each of which can initiate as much as 27
connections leading to a total of 1728 connections. It would
take the attacker at most 1.8𝑠 to transmit the connection re-
quests for all these connections at a baudrate of 125kbps not
accounting for any computational bottlenecks and network
delays caused by legit traffic. Even if legit nodes manage to es-
tablish connections with the node targeted by the attack, the
connection can be closed on their end by employing the close
connection attack. The same approach should be taken to
leave any connections initiated by the target node open only
on its side as they cannot be covered by the attacker by mak-
ing connection requests. Another aspect to consider for such
an attack is the connection inactivity/watchdog functionality
that may force all the opened connections to close in the
absence of any messages to use them. One of the parameters
used to determine the behaviour of the inactivity/watchdog
timer is the expected_packet_rate of the connection object.
Setting it to 0 disables the use of the timer. This attribute
defaults to 2500 (2.5s) for explicit messaging connections and
0 for I/O connections. Therefore, an efficient attacker should
attempt to establish only I/O connections, otherwise addi-
tional actions are needed to disable the inactivity/watchdog
functionality on nodes with which it establishes connections.

(6) Deny predefined connection set ownership
Background. The predefined master/slave connection set of
a slave must be allocated to a master node before being
used. For this the master uses the allocate service to request
ownership over the slave. The slave is not allowed to use
connections from the predefined set with a node other than
its current master until the master releases the ownership
using the corresponding release service request.
Attack. This can be exploited by an attacker that allocates
ownership over a node’s predefined connection set to itself and
never releases it preventing the legit master from performing
its normal tasks. In case the legit master has already claimed
ownership over the target slave, the attacker can forge the
release request using the legitimate master’s identity making
the slave accept new requests for connection set allocation.

(7) Change connection object attributes
Background. Each connection object instance must implement
a set of mandatory attributes which define the behaviour of
the established connection. The values of certain attributes
can be modified by using the Set_Attribute_Single service
provided that the node implements it. Some of the parame-
ters that can be modified while a connection is established
refer to CIDs, packet data rate and timer configuration.
Attack. If implemented, this feature can be exploited to mod-
ify connection attributes with malicious intent. For example,
an attacker could affect the efficiency of the process control
algorithm by configuring a lower data rate for connections
used to transport sensor data.

A brief look at the security of DeviceNet communication
in industrial control systems CECC 2018, November 15–16, 2018, Ljubljana, Slovenia

(8) Disturb fragmented message transmission
Background. Fragmented transmission is used for transmit-
ting data which does not fit in a single 8 byte CAN frame.
Using this feature each message fragment is sent along with
sequence information needed to reconstruct the message.
Sending a fragment which is out of order according to its
sequence information results in all the previously received
fragments being discarded. The only exception to this be-
haviour is the case of acknowledged fragmented transmission
which accepts the reception of consecutive duplicated data.
Attack. An attacker can exploit this to prevent the correct
reception of fragmented data by transmitting a forged frag-
mented message transmission with an out of order sequence
information. While nodes sending acknowledged fragmented
messages will detect the interrupted reception due to the
missing acknowledgement, nodes involved in unacknowledged
fragmented message transmission will be unaware of the
problem in reception.

(9) Spoof control data
Background. The main body of the data transmitted in De-
viceNet networks is used for process control functionalities
either as inputs from sensors or control stations or outputs
for actuators. A smaller percentage of traffic is used for es-
tablishing and maintaining connections between nodes.
Attack. An attacker listening to DeviceNet traffic can obtain
information about device identities and purpose of estab-
lished connection. Based on this information the attacker
can send forged messages to either directly control the func-
tion of actuators or feed false sensor data in the process
controller. Additional knowledge on the characteristics of the
controlled process would increase the attacker’s ability to
control process output. Although this attack is generic to all
CAN-based protocols and already studied in cited related
work we include it here for completeness.

5 FORMAL MODELLING
Formal verification tools can be easily used to model the secu-
rity of DeviceNet. We exemplify this by using the ASLan lan-
guage which is the specification language of the AVANTSSAR
platform [1]. For verification we use CL-Atse [18] which is
one of the AVANTSSAR back-ends. The CL-Atse protocol
verifier was previously used to model the security of industrial
control systems in [18].

In ASLan, a protocol is modelled as a set of transitions from
the left-hand side LHS to the right-hand side RHS , starting
from an initial state. The LHS and RHS are a conjunction of
positive and negative facts. Intruder abilities are modelled by
the iknows predicate which embeds the intruder knowledge.
Facts are non-persistent, in contrast, iknows is persistent as
the intruder never forgets what he learned from protocol
execution.

The simplified state diagram for DeviceNet network access
is shown in Figure 3. We omit some transitions, e.g., in
case of bus-off or quick-connect, due to space constraints.
In principle, each node has to send a duplicate MAC check
twice before entering the on-line state. In case a duplicate

Figure 3: Simplified state machine of the network access mech-
anism

step send_req_duplicate_mac(X, MAC):=
assoc(X, MAC). state_a(X, 0)
=>

iknows(MAC). iknows(X).
send_mac_request(X, MAC, 1).
send_mac_request(X, MAC, 2).
assoc(X, MAC).
state_a(X, 1)

Figure 4: ASLan code for modeling the wait for duplicate
MAC state of network access transition diagram in DeviceNet

MAC response occurs, a communication fault is signalled.
This state diagram is easy to model. A particular challenge
however in symbolic executions is to model time (required
here to check if a timer expired in state 2) but this can be
done by concatenations of an abstract symbol associated to
a clock tick.

Figure 4 shows a transition from the ASLan code that
we used for modelling the transitions for DeviceNet network
access according to the state machine depicted in Figure 3.
Principal X associated to adress MAC sends two duplicate
MAC requests on the bus (this is according to the DeviceNet
specification which mandates for two such requests before
going on-line). Fact assoc(X, MAC) is duplicated from the
LHS on the RHS since principal X retains his address after
the transition. From the transition, the intruder learns the
name of the principal and his MAC which is modelled by
iknows(X). iknows(MAC). Figure 5 shows the attack trace
as output by CL-Atse. First, principal 𝑎, in order to enter
the network, sends a request for a duplicate MAC. From this
request the intruder learns his name 𝑎 and the value of his
MAC represented here by natural number 15. In the second
transition, the intruder knowing his name and his MAC value,
sends a duplicate MAC response. This triggers the principal
in the 3-rd transition to enter in a communication fault state.

6 SECURITY COUNTERMEASURES
The current version of the CIP protocol includes security
enhancements based on proven technologies employed in
Ethernet-based communication which are intended for Ether-
Net/IP implementations. Most of these solutions are clearly
out of the reach of DeviceNet nodes which are resource con-
straint devices and use CAN as communication layer (not
Ethernet). ODVA promises to include generic methods for

CECC 2018, November 15–16, 2018, Ljubljana, Slovenia P.-S. Murvay et al.

ATTACK TRACE
(a,4) -> i: 15.a

& Remove state_a(a,0); Remove assoc(a,15); Add state_a(a,1);
& Add sent_mac_request(a,15,1); Add sent_mac_request(a,15,2);
& Add assoc(a,15);
& Built from send_req_duplicate_mac

i -> none: 15
none -> i: {}

& Remove state_a(i,0); Add sent_mac_response(15);
& Built from send_duplicate_mac

i -> (a,4): {}
(a,4) -> i: {}

& Remove state_a(a,1); Remove sent_mac_response(15);
& Remove sent_mac_request(a,15,1); Remove assoc(a,15);
& Add state_a(a,2); Add assoc(a,15); Add comm_fault(a);
& Built from wait_for_mac

Figure 5: Attack trace output by CL-Atse on the DeviceNet
network access model

providing authorization, integrity, non-repudiation and avail-
ability in future protocol versions [13].

There is an extensive literature that addresses the security
of the CAN bus which stands at the base of DeviceNet. A
survey on CAN bus security is available in [6]. The challenge
still remains in integrating security in a backward compati-
ble manner for DeviceNet. To add security, authentication
tags (regular cryptographic Message Authentication Codes -
MACs) have to be embedded in existing frames or sent as
separate frames. Embedding the tags along with the message
suffers from the limited size of the CAN frame, i.e., 64 bits.
According to current standards for automotive security [2]
that address CAN frames, 24 bits of security for authentica-
tion tags is the recomended security level. This amount can
be embedded in the 64 bits along with the message.

In the case of the previously discussed network access steps,
adding additional authentication frames should not represent
a problem since the network access should not be done so
often. DeviceNet has a set of reserved IDs that are invalid
CAN identifiers as depicted in Figure 2. These IDs can be used
to carry additional authentication information. For regular
message, sending the authentication tag in separate frames
still adds some limitations since the a tag has to be associated
to a particular message, messages need to be buffered until
the authentication tag is received and the bandwidth will
also be increased. Addressing these issues may remain as
future work for us provided that we find a suitable scenario
and experimental setup.

7 CONCLUSIONS
We illustrated some attack possibilities in DeviceNet networks
as identified based on protocol specification analysis. While
the applicability of attacks on optional features depends on
the actual instantiation of a DeviceNet node it is clear that
even a minimal protocol implementation is prone to DoS
and spoofing attacks. The practical consequences of these
attacks on industry standard DeviceNet nodes along with the
identification of other implementation specific vulnerabilities
remains to be determined as a future work. Numerous security

solutions have been proposed for the CAN bus and these
should fit the requirements of the DeviceNet protocol. Formal
modelling may help in assessing security but challenges in
modelling cyber-physical systems still persist.

ACKNOWLEDGEMENTS
This work was supported by a grant of the Romanian Ministry
of Research and Innovation, CNCS - UEFISCDI, project
number PN-III-P1-1.1-PD-2016-1198, within PNCDI III.

REFERENCES
[1] Alessandro Armando, Wihem Arsac, Tigran Avanesov, Michele

Barletta, et al. 2012. The AVANTSSAR platform for the au-
tomated validation of trust and security of service-oriented ar-
chitectures. In Intl. Conf, on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 267–282.

[2] AUTOSAR 2017. Specification of Secure Onboard Communica-
tion (4.3.1 ed.). AUTOSAR.

[3] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny An-
derson, et al. 2011. Comprehensive Experimental Analyses of
Automotive Attack Surfaces. In USENIX Security Symposium.

[4] Samuel East, Jonathan Butts, Mauricio Papa, and Sujeet Shenoi.
2009. A Taxonomy of Attacks on the DNP3 Protocol. In Intl.
Conf. on Critical Infrastructure Protection. Springer, 67–81.

[5] Ryan Grandgenett, William Mahoney, and Robin Gandhi. 2015.
Authentication Bypass and Remote Escalated I/O Command
Attacks. In Proc. of the 10th Annual Cyber and Information
Security Research Conf. ACM, New York, USA, 2:1–2:7.

[6] Bogdan Groza and Pal-Stefan Murvay. 2018. Security Solutions
for the Controller Area Network: Bringing Authentication to
In-Vehicle Networks. IEEE Veh. Tech. Magazine 13, 1 (2018),
40–47.

[7] Peter Huitsing, Rodrigo Chandia, Mauricio Papa, and Sujeet
Shenoi. 2008. Attack taxonomies for the Modbus protocols. Intl.
Journal of Critical Infrastructure Protection 1 (2008), 37–44.

[8] Ralph Langner. 2013. To Kill a Centrifuge: A Technical Analysis
of What Stuxnet’s Creators Tried to Achieve. The Langner
Group.

[9] Charlie Miller and Chris Valasek. 2013. Adventures in automotive
networks and control units. DEF CON 21 (2013), 260–264.

[10] Pal-Stefan Murvay and Bogdan Groza. 2017. DoS Attacks on Con-
troller Area Networks by Fault Injections from the Software Layer.
In 3rd International Workshop on Secure Software Engineering.

[11] ODVA 2010. The CIP Networks Library Vol. 1: Common In-
dustrial Protocol (CIP), Edition 3.9. ODVA.

[12] ODVA 2010. The CIP Networks Library Vol. 3: DeviceNet
Adaptation of CIP, Edition 1.10. ODVA.

[13] ODVA. 2016. Optimization of Industrial Cybersecurity: ODVA’s
Vision for Securing the Flow of Data in Industrial Networks.
ODVA.

[14] ODVA. 2016. Technology Overview Series: DeviceNet. ODVA.
[15] Robert Bosch GmbH 1991. CAN Specification, Version 2.0, Part

A. Robert Bosch GmbH.
[16] Viktor Schiffer. 2016. Common Industrial Protocol (CIP) and

the Family of CIP Networks. ODVA.
[17] Francisco Tacliad, Thuy D Nguyen, and Mark Gondree. 2017. DoS

Exploitation of Allen-Bradley’s Legacy Protocol through Fuzz
Testing. In Proceedings of the 3rd Annual Industrial Control
System Security Workshop. ACM, 24–31.

[18] Mathieu Turuani. 2006. The CL-Atse protocol analyser. In Intl.
Conf. on Rewriting Techniques and Applications. Springer, 277–
286.

[19] David Urbina, Jairo Alonso Giraldo, Nils Ole Tippenhauer, and
Alvaro Cárdenas. 2016. Attacking Fieldbus Communications in
ICS: Applications to the SWaT Testbed. In SG-CRC. Springer,
75–89.

[20] Marko Wolf, André Weimerskirch, and Christof Paar. 2004. Se-
curity in automotive bus systems. In Workshop on Embedded
Security in Cars.

[21] Kim Zetter. 2016. Inside the cunning, unprecedented hack
of Ukrain’s power grid. https://www.wired.com/2016/03/
inside-cunning-unprecedented-hack-ukraines-power-grid/. [On-
line; accessed 1-July-2018].

https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/

	Abstract
	1 Introduction and motivation
	2 Related work
	3 DeviceNet protocol
	3.1 General communication principle
	3.2 Establishing connections

	4 Attacks on the DeviceNet protocol
	5 Formal modelling
	6 Security countermeasures
	7 Conclusions
	References

