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Abstract— This article describes information-based ap-
proaches to processing and organizing spatially distributed,
multi-modal sensor data in a sensor network. Energy con-
strained networked sensing systems must rely on collabora-
tive signal and information processing (CSIP) to dynami-
cally allocate resources, maintain multiple sensing foci, and
attend to new stimuli of interest, all based on task require-
ments and resource constraints. Target tracking is an essen-
tial capability for sensor networks and is used as a canoni-
cal problem for studying information organization problems
in CSIP. After formulating a CSIP tracking problem in a
distributed constrained optimization framework, the paper
describes IDSQ and other techniques for tracking individual
targets as well as combinatorial tracking problems such as
counting targets. Results from simulations and experimen-
tal implementations have demonstrated that these informa-
tion based approaches are scalable and make efficient use of
scarce sensing and communication resources.
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I. SENSOR NETWORK APPLICATIONS, CONSTRAINTS,
AND CHALLENGES

Networked sensing offers unique advantages over tra-
ditional centralized approaches. Dense networks of dis-
tributed networked sensors can improve perceived signal-
to-noise ratio (SNR) by decreasing average distances from
sensor to target. Increased energy efficiency in communi-
cations is enabled by the multi-hop topology of the net-
work [22]. Moreover, additional relevant information from
other sensors can be aggregated during this multi-hop
transmission through in-network processing [13]. But per-
haps the greatest advantages of networked sensing are in
improved robustness and scalability. A decentralized sens-
ing system is inherently more robust against individual
sensor node or link failures, because of redundancy in the
network. Decentralized algorithms are also far more scal-
able in practical deployment, and may be the only way to
achieve the large scales needed for some applications.

A sensor network is designed to perform a set of high-
level information processing tasks such as detection, track-
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ing, or classification. Measures of performance for these
tasks are well defined, including detection, false alarms or
misses, classification errors, and track quality. Commercial
and military applications include environmental monitor-
ing (e.g., traffic, habitat, security), industrial sensing and
diagnostics (e.g., factory, appliances), infrastructure pro-
tection (e.g., power grid, water distributions), and battle-
field awareness (e.g., multi-target tracking).

Unlike a centralized system, however, a sensor network
is subject to a unique set of resource constraints such as
limited on-board battery power and limited network com-
munication bandwidth. In a typical sensor network, each
sensor node operates untethered and has a microprocessor
and limited amount of memory for signal processing and
task scheduling. Each node also is equipped with one or
more of acoustic microphone arrays, video or still cameras,
IR, seismic, or magnetic sensing devices. Each sensor node
communicates wirelessly with a small number of local nodes
within the radio communication range.

The current generation of wireless sensor hardware
ranges from shoe-box sized Sensoria WINS NG sensors [20]
with an SH-4 microprocessor to matchbox sized Berkeley
motes with an 8-bit microcontroller [12]. It is well-known
that communicating one bit over the wireless medium con-
sumes far more energy than processing the bit. For the
Sensoria sensors and Berkeley motes, the ratio of energy
consumption for communication and computation is in the
range of 1,000-10,000. Despite the advances in silicon fab-
rication technologies, wireless communication will continue
to dominate the energy consumption of embedded net-
worked systems for the foreseeable future [8]. Thus, min-
imizing the amount and range of communication as much
as possible, for example, through local collaboration, data
compression, or invoking only the nodes that are relevant
to a given task, can significantly prolong the lifetime of a
sensor network and leave nodes free to support multi-user
operations.

Traditional signal processing approaches have focused on
optimizing estimation quality for a fixed set of available re-
sources. However, for power-limited and multi-user decen-
tralized systems, it becomes critical to carefully select the
embedded sensor nodes that participate in the sensor col-
laboration, balancing the information contribution of each
against its resource consumption or potential utility for
other users. This approach is especially important in dense
networks, where many measurements may be highly redun-
dant, and communication throughput severely limited. We
use the term “collaborative signal and information process-
ing” (CSIP) to refer to signal and information processing
problems dominated by this issue of selecting embedded
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sensors to participate in estimation.

This paper uses tracking as a representative problem to
expose the key issues for CSIP — how to dynamically de-
termine what needs to be sensed, who should sense, how of-
ten the information must be communicated, and to whom.
The rest of the paper is organized as follows. Section IT will
introduce the tracking problem and present a set of design
considerations for CSIP applications. Sections IIT and IV
will analyze a range of tracking problems that differ in the
nature of the information being extracted, and describe
and compare several recent contributions that adopted in-
formation based approaches. Section V will discuss future
directions for CSIP research.

II. TRACKING AS A CANONICAL PROBLEM FOR CSIP

Tracking is an essential capability in many sensor net-
work applications, and is an excellent vehicle to study in-
formation organization problems in CSIP. It is especially
useful for illustrating a central problem of CSIP: dynam-
ically defining and forming sensor groups based on task
requirements and resource availability.

From a sensing and information processing point of view,
we define a sensor network as a tuple, Sn = (V, E, Py, Pg).
V and E specify a network graph, with its nodes V', and
link connectivity ¥ C V x V. Py is a set of functions which
characterizes the properties of each node in V, including
its location, computational capability, sensing modality,
sensor output type, energy reserve, and so on. Possible
sensing modalities includes acoustic, seismic, magnetic, IR,
temperature, or light. Possible output types include infor-
mation about signal amplitude, source direction-of-arrival
(DOA), target range, or target classification label. Simi-
larly, Pg specifies properties for each link such as link ca-
pacity and quality.

A tracking task can be formulated as a constrained op-
timization problem T'r = (Sn,Tg,Sm,Q,0,C). Sn is the
sensor network specified above. T'g is a set of targets, spec-
ifying for each target the location, shape (if not a point
source), and signal source type. Sm is a signal model
for how the target signals propagate and attenuate in the
physical medium. For example, a possible power attenu-
ation model for an acoustic signal is the inverse distance
squared model. @ is a set of user queries, specifying query
instances and query entry points into the network. A sam-
ple query is “Count the number of targets in region R”. O
is an objective function, defined by task requirements. For
example, for a target localization task, the objective func-
tion could be the localization accuracy, expressed as the
trace of the covariance matrix for the position estimate.
C = {C4,Cy, ..., } specifies a set of constraints. An exam-
ple is localizing an object within a certain amount of time
and using no more than a certain quantity of energy. The
constrained optimization finds a set of feasible sensing and
communication solutions for the problem that satisfy the
given set of constraints. For example, a solution to the
localization problem above could be a set of sensor nodes
on a path that gathers and combines data and routes the
result back to the querying node.

Bearing sensors
(eg. PIR)

Range sensors (eg.
Omni-microphone)

Fig. 1. A tracking scenario, showing two moving targets, X and
Y, in a field of sensors. Large circles represent the range of radio
communication from each node.

In wireless sensor networks, some of the information
defining the objective function and/or constraints is only
available at run time. Furthermore, the optimization prob-
lem may have to be solved in a decentralized way. In addi-
tion, anytime algorithms are desirable because constraints
and resource availability may change dynamically.

A. A tracking scenario

We use the following tracking scenario (Figure 1) to bring
out key CSIP issues. As a target X moves from left to right,
a number of activities are initiated in the network:

1. Discovery: Node a detects X and initializes tracking.
2. Query processing: A user query () enters the network
and is routed towards regions of interest, in this case, the
region around node a. It should be noted that other types
of queries, such as long-running queries that dwell in a
network over a period of time are also possible.

3. Collaborative Processing: Node a estimates the target
location, possibly with help from neighboring nodes.

4. Communication: Node a may hand off data to node b,
b to ¢, etc.

5. Reporting: Node d or f summarizes track data and
sends it back to the querying node.

Let’s now assume another target, Y, enters the region
around the same time. The network will have to handle
multiple tasks in order to track both targets simultane-
ously. When the two targets move close to each other, the
problem of properly associating a measurement to a tar-
get track, the so-called data association problem, becomes
tricky. In addition, collaborative sensor groups, as defined
earlier, must be selected carefully since multiple groups
might need to share the same physical hardware [18].

This tracking scenario raises a number of fundamen-
tal information processing problems in distributed infor-
mation discovery, representation, communication, storage,
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Fig. 2.

(b)

Storage and communication of target state information in a networked distributed tracker. Circles on the grid represent sensor

nodes, and some of the nodes, denoted by solid circles, store target state information. Thin, faded arrows or lines denote communication
paths among the neighbor nodes. Thin, dark arrows denote sensor hand-offs. A target moves through the sensor field, indicated by thick
arrows. (a) A fixed single leader node has the target state. (b) A succession of leader nodes are selected according to information such as
vehicle movement. (c¢) Every node in the network stores and updates target state information.

and querying: in collaborative processing, the issues of tar-
get detection, localization, tracking, and sensor tasking and
control; in networking, the issues of data naming, aggrega-
tion, and routing; in databases, the issues of data abstrac-
tion and query optimization; in human-computer interface,
the issues of data browsing, search, and visualization; in
software services, the issues of network initialization and
discovery, time and location services, fault management,
and security. In the rest of the paper, we will focus on
the collaborative processing aspects and touch other issues
only as necessary.

A common task for a sensor network is to gather informa-
tion from the environment. Doing this under the resource
constraints of a sensor network may require data-centric
routing and aggregation techniques which differ consid-
erably from TCP/IP end-to-end communication. Conse-
quently, the research community has been searching for
the right “sensor net stack” that can provide suitable ab-
stractions over networking and hardware resources. While
defining a unifying architecture for sensor networks is still
an open problem, we believe a key element of such an archi-
tecture is the principled interaction between the application
and networking layers. For example, Sec. I1I will describe
an approach that expresses application requirements as a
set of information and cost constraints so that an ad hoc
networking layer using, for example, the diffusion routing
protocol [13], can effectively support the application.

B. Design desiderata in distributed tracking

In essence, a tracking system attempts to recover the
state of a target (or targets) from observations. Informally,
we refer to the information about the target state distilled
from measurement data as a belief or belief state. An exam-
ple is the posterior probability distribution of target state,
as discussed in Sec. III. As more observation data are avail-
able, the belief may be refined and updated.

In sensor networks, the belief state can be stored cen-
trally at a fixed node, at a sequence of nodes through suc-
cessive hand-offs, or at a set of nodes concurrently. In the
first case (Figure 2(a)), a fixed node is designated to receive

measurements from other relevant sensors through commu-
nication. This simpler tracker design is obtained at the
cost of potentially excessive communication and reduced
robustness to node failure. It is feasible only for tracking
nearly stationary targets, and is in general neither efficient
nor scalable.

In the second case (Figure 2(b)), the belief is stored at
a node called the leader node, which collects data from
nearby, relevant sensors. As the phenomenon of inter-
est moves or environmental conditions vary, the leadership
may change hands among sensor nodes. Since the changes
in physical conditions are often continuous in nature, these
handoffs often occur within a local geographic neighbor-
hood. This moving leader design localizes communication,
reducing overall communication and increasing the lifetime
of the network. Robustness of this method may suffer from
potential leader node attrition, but this can be mitigated
by maintaining copies of the belief in nearby nodes and de-
tecting and responding to leader failure. The key research
challenge for this design is to define an effective selection
criterion for sensor leaders, to be addressed in Sec. III.

Finally, the belief state can be completely distributed
across multiple sensor nodes (Figure 2(c)). The inference
from observation data is accomplished nodewise, thus lo-
calizing the communication. This is attractive from the
robustness point of view. The major design challenge is
to efficiently infer global properties about targets, some of
which may be discrete and abstract, from partial, local in-
formation, and to maintain information consistency across
multiple nodes. Sec. IV addresses the challenge. Many is-
sues about leaderless distributed trackers are still open and
deserve much attention from the research community.

III. IDSQ: A CSIP APPROACH TO TARGET TRACKING

Distributed tracking is a very active field, and it is be-
yond the scope of this paper to provide a comprehensive
survey. Instead, we will focus on the information pro-
cessing aspect of the tracking problems, answering ques-
tions such as what information is collected by the sensors,
how that information is aggregated in the network, and
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what high-level user queries are answered. This section de-
scribes information-driven sensor query (IDSQ), a set of
information- based approaches to tracking individual tar-
gets, and discusses major issues in designing CSIP solu-
tions. Next, Sec. IV presents approaches to other track-
ing problems, where the focus is more on uncovering ab-
stract and discrete target properties, such as target density,
rather than just their locations.

A. Tracking individual targets

The basic task of tracking a moving target in a sen-
sor field is to determine and report the underlying tar-
get state x(*), such as its position and velocity, based
on the sensor measurements up to time ¢, denoted as
z® = {20 z(1) ... 7M1 Many approaches have been
developed over the last half century, including Kalman
filters, which assume a Gaussian observation model and
linear state dynamics, and, more generally, sequential
Bayesian filtering, which computes the posterior belief at
time ¢ 4+ 1 based on the new measurement z(*+1) and the
belief p(x®|z®)) inherited from time :

p(x D ZED)Y o p(z(t+1)‘x(t+1))./p(x(t+1)‘x(w).p(x(t)ﬁ)) dx(®)

Here p(z(*+1)|x(t+1)) denotes the observation model, and
p(x#+D|x®) the state dynamics model. As more data is
gathered over time, the belief p(x®|z(®)) is successively
refined.

Kalman filters and many practical forms of Bayesian fil-
ters assume that the measurement noise across multiple
sensors is independent, which is not always the case. Algo-
rithms such as Covariance Intersection have been proposed
to combine data from sensors with correlated information.
While these methods have been successfully implemented
in applications, they were primarily designed for central-
ized platforms. Relatively little consideration was given
to the fundamental problems of moving data across sensor
nodes in order to combine data and update track informa-
tion. There was no cost model for communication in the
tracker. Furthermore, due to communication delays, sensor
data may arrive at a tracking node out of order compared
to the original time sequence of the measurements. Kalman
or Bayesian filters assume a strict temporal order on the
data during the sequential update, and may have to roll
back the tracker in order to incorporate “past” measure-
ment, or throw away the data entirely.

For multi-target tracking, methods such as Multiple Hy-
pothesis Tracking (MHT) [23] and Joint Probabilistic Data
Association (JPDA) [2] have been proposed. They ad-
dressed the key problem of data association, of pairing sen-
sor data with targets, thus creating association hypotheses.
MHT forms and maintains multiple association hypotheses.
For each hypothesis, it computes the probability that it is
correct. On the other hand, JPDA evaluates the associa-
tion probabilities and combines them to compute the state
estimate. Straightforward applications of MHT and JPDA
suffer from a combinatorial explosion in data association.
Knowledge about targets, environment, and sensors can be
exploited to rank and prune hypotheses [7], [21].

B. Information-based approaches

The main idea of information-based approaches is to base
sensor collaboration decisions on information content as
well as constraints on resource consumption, latency and
other costs. Using information utility measures, sensors in
a network can exploit the information content of data al-
ready received to optimize the utility of future sensing ac-
tions, thereby efficiently managing scarce communication
and processing resources. Distributed information filter as
described in [19] is a global method, requiring each sensor
node to communicate its measurement to a central node
where estimation and tracking are carried out. In this
method, sensing is distributed while tracking is central-
ized. Directed diffusion routes sensor data in a network
to minimize communication distance between data sources
and data sinks [9], [13]. This is an interesting way of or-
ganizing a network to allow publish-and-subscribe to occur
at a very fine grain level. A prediction-based tracking al-
gorithm is described in [3] which uses estimates of target
velocity to select which sensors to query. IDSQ [26], [5] for-
mulates the tracking problem as a more general distributed
constrained optimization that maximizes information gain
of sensors while minimizing communication and resource
usage. We describe the main elements of IDSQ here.

Given the current belief state, we wish to incrementally
update the belief by incorporating the measurements of
other nearby sensors. However, not all available sensors
in the network provide useful information that improves
the estimate. Furthermore, some information may be re-
dundant. The task is to select an optimal subset and an
optimal order of incorporating these measurements into our
belief update. Note that in order to avoid prohibitive com-
munication costs, this selection must be done without ex-
plicit knowledge of measurements residing at other sensors.
The decision must be made solely based upon known char-
acteristics of other sensors, such as their position and sens-
ing modality, and predictions of their contributions, given
the current belief.

Figure 3 illustrates the basic idea of optimal sensor se-
lection. The illustration is based upon the assumption that
estimation uncertainty can be effectively approximated by
a Gaussian distribution, illustrated by uncertainty ellip-
soids in the state space. In the figure, the solid ellipsoid
indicates the belief state at time ¢, and the dashed ellipsoids
are the incrementally updated belief after incorporating an
additional measurement from a sensor, S1 or S2, at the
next time step. Although in both cases, S1 and S2, the
area of high uncertainty is reduced by 50%, the residual
uncertainty of the S2 case is not reduced along the long
principal axis of the ellipse. If we were to decide between
the two sensors, we might favor case S1 over case S2, based
upon the underlying measurement task.

In distributed sensor network systems, we must balance
the information contribution of individual sensors against
the cost of communicating with them. For example, con-
sider the task of selecting among K sensors with measure-
ments {z;}1£,. Given the current belief p(x | {z;}icv),
where U C {1,..., K} is the subset of sensors whose mea-
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Fig. 3. Sensor selection based on information gain of individual sen-
sor contributions. The information gain is measured by the reduction
in the error ellipsoid. In the figure, reduction along the longest axis of
the error ellipsoid produces a larger improvement in reducing uncer-
tainty. Sensor placement geometry and sensing modality can be used
to compare the possible information gain from each possible sensor
selection, S1 or S2.

surement has already been incorporated, the task is to
choose which sensor to query among the remaining un-
incorporated set A = {1,---, K} \ U. For this task, an
objective function as a mixture of information and cost is
designed in [5]:

Op(x|z)) = ad(p(x[z,,29)) — (1 — a)u(z?). (1)

Here ¢ measures the information utility of incorporating

t .o
the measurement z§ ) from sensor 7, % is the cost of commu-

nication and other resources, and « is the relative weighting
of the utility and cost. With this objective function, the
sensor selection criterion takes the form:

= argl}leaj( O (p (x| {ziticv U{z;})) . (2)

This strategy selects the best sensor given the current state
p(x | {z:i}icv). A less greedy algorithm has been proposed
in [17], extending the sensor selection over a finite look-
ahead horizon.

Metrics of information utility ¢ and cost 1) may take var-
ious forms, depending on the application and assumptions
[26]. For example, [5] considers the query routing problem:
assuming a query has entered from a fixed node, denoted
by “?” in Figure 4, the task is to route the query to the
target vicinity, collect information along an optimal path,
and report back to the querying node. Assuming the be-
lief state is well- approximated by a Gaussian distribution,
the usefulness of the sensor data (in this case, range data),
¢, is measured by how close the sensor is to the mean of
the belief state under a Mahalanobis metric, assuming that
close-by sensors provide more discriminating information.
The cost 9 is given here by the squared Euclidean distance
from the sensor to the current leader, a simplified model
of the energy expense of radio transmission for some en-
vironments. The optimal path results from the tradeoff
between these two terms. Figure 4 plots such a sample
path. Note that the belief is updated incrementally along

Fig. 4. Sensor querying and data routing by optimizing an objec-
tive function of information gain and communication cost, whose iso-
contours are shown as the set of concentric ellipses. The circled dots
are the sensors being queried for data along the querying path. “T”
represents the target position, and “?” denotes the position of the
query origin.

the information collection path. The ellipses in Figure 4
show a snapshot of the objective function that an active
leader node locally evaluates at a given time step.

For multi-modal non-Gaussian distributions, a mutual
information-based sensor selection criterion has been devel-
oped and successfully tested on real data [16]. The problem
is as follows: assuming that a leader node holds the current
belief p(z®|z(®), and the cost to query any sensor in its
neighborhood N is identical (e.g. over a wired network or
using a fixed power level radio), the leader selects from N
the most informative sensor to track the moving target. In
this scenario, the selection criterion (2) takes the form:

jrpsq = argmax (X, 2"V Z0 = 20), (3)
J€

where I(-;-) measures the mutual information in bits be-

tween two random variables. Essentially, this criterion se-
_;tJrl)
the current measurement history z(¥), would provide the
greatest amount of information about the target location
x(#+1 " The mutual information can be interpreted as
Kullback-Leibler divergence between the belief after and
before applying the new measurement z;tﬂ). Therefore,
this criterion favors the sensor which on average gives the
greatest change to the current belief.

To analyze the performance of the IDSQ tracker, we
measure how the tracking error varies with sensor density

through simulation. Figure 5 shows that as the sensor den-

lects a sensor whose measurement z , combined with
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t=42

Fig. 5. Experimental results (right figure) show how the tracking
error (vertical axis), defined as the mean error of estimated target
positions, varies with the sensor density (horizontal axis), defined
as the number of sensors in the sensor field. The left figure shows
snapshots of a belief “cloud” — the probability density function of
the location estimate — for different local sensor densities.

sity increases, tracking error, expressed as the mean error
of the location estimate, decreases, as one would expect,
and tends to a floor dominated by sensor noise. This indi-
cates that there is a maximum density beyond which using
more sensors gains very little in tracking accuracy.

The IDSQ tracker has been successfully tested in a
DARPA tracking experiment at 29 Palms, November 2001.
In the experiment, 21 Sensoria WINS NG wireless sensors
were used to collect acoustic data from moving vehicles.
Details of the results can be found in [16].

IV. COMBINATORIAL TRACKING PROBLEMS

The discussion of tracking so far has focused on localiz-
ing targets over time. In many applications, however, the
phenomenon of interest may not be the exact locations of
individual objects, but global properties regarding a collec-
tion of objects, for example, the number of targets, their
regions of influence, or their boundaries. The information
to be extracted in this case is more discrete and abstract,
and may be used to answer high-level queries about the
world-state or to make strategic decisions about actions to
take.

An expensive way to compute such global class proper-
ties of objects is to locate and identify each object in the
collection, determine its individual properties, and combine
the individual information to form the global answer, such
as the total number of objects in the collection. However,
in many cases, these class properties can be inferred with-
out accurate localization or identification of all the objects
in question. For example, it may be possible to focus on
attributes or relations that can be directly sensed by the
sensors. This may both make the tracking results more ro-
bust to noise and may simplify the algorithms to the point
where they can be implemented on less powerful sensor
nodes. We call these approaches combinatorial tracking.

A. Counting the number of targets

Target counting is an attempt to keep track of the num-
ber of distinct targets in a sensor field, even as they move,

0.7
110

Fig. 6. Target counting scenario, showing three targets in a sensor
field (a). The goal is to count and report the number of distinct
targets. With the signal field plotted in (b), the target counting
becomes a peak counting problem.

cross-over, merge, or split. It is representative of a class of
applications that need to monitor intensity of activities in
an area. To describe the problem, let us consider counting
multiple targets in a two-dimensional sensor field, as shown
in Figure 6. We assume that targets are point source acous-
tic signals and can be stationary or moving at any time,
independent of the state of other targets. Sensors mea-
sure acoustic power and are time synchronized to a global
clock. We assume that signals from two targets simply add
at a receiving sensor, which is reasonable for non-coherent
interference between acoustic sources.

The task here is to determine the number of targets in
the region. One way to solve the problem is to compute an
initial count and then update the count as targets move,
enter, or leave the region. Here, we describe a leader-based
counting approach, where a sensor leader is elected for each
distinct target. A leader is initialized when a target moves
into the field. As the target moves, the leadership may
switch between sensor nodes to reflect the state change.
When a target moves out of the region, the corresponding
leader node is deactivated. Note here the leader election
does not rely on accurate target localization, as will be
discussed later. The target count is obtained by noting
the number of active leader nodes in the network (and the
number of targets each is responsible for). Here we will
focus on the leader election process, omitting details of
signal and query processing.

Since the sensors in the network sense only signal energy,
we need to examine the spatial characteristics of target
signals when multiple targets are in close proximity to each
other. In Figure 6(b), the 3-D surface shown represents
total target signal energy. Three targets are plotted, with
two targets near each other and one target well separated
from the rest of the group.

There are several interesting observations to make here:

o Call the set of sensors who can “hear” a target the tar-
get influence area. When targets’ influence areas are well-
separated, target counting can be considered as a cluster-
ing and a cluster leader election problem. Otherwise, it
becomes a peak counting problem.
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Fig. 7. Target counting application implemented on Berkeley motes.
(a) 25 MICA motes with light sensors are placed on a perturbed grid
in a dark room. (b) Two light blobs emulating 1/r? signal atten-
uation are projected onto the mote board. (c) The leader of each
collaboration group sends its location back to a base station GUI.

o The target signal propagation model has a large impact
on target “resolution”. The faster the signal attenuates
with distance from the source, the easier targets it is to
discern targets from neighboring targets based on the en-
ergy of signals they emit.

e Sensor spacing is also critical in obtaining correct tar-
get count. Sensor density has to be sufficient to capture
the peaks and valleys of the underlying energy field, yet
very densely-packed sensors are often redundant, wasting
resources.

A decentralized algorithm was introduced for the tar-
get counting task [10]. This algorithm forms equivalence
classes among sensors and elects a leader node for each
class based on the relative power detected at each sensor,
and counts the number of such leaders. The algorithm
comprises a decision predicate P which, for each node 14,
tests if it should participate in an equivalence class and a
message exchange schema M about how the predicate P
is applied to nodes. A node determines whether it belongs
to an equivalence class based on the result of applying the
predicate to the data of the node as well as information
from other nearby nodes. Equivalence classes are formed
when the process converges. This protocol finds equiva-
lence classes even when multiple targets interfere.

This leader election protocol is very powerful yet
lightweight enough to be implemented on sensor nodes such
as the Berkeley motes. Figure 7 shows an experiment con-
sists of 25 MICA motes with light sensors. The entire appli-
cation, including code for collaborative leader election and
multi-hop communication to send the leader information
back to the base station, takes about 10K bytes memory
space on a mote.

contour node contour level

triangulation  norecontour node

Fig. 8.
in a sensor field. The contours are constructed using a distributed
marching squares like algorithm, and is updated as targets move.

Simulation result showing contours for three point targets

B. Contour tracking

Contour tracking is another example of finding the influ-
ence regions of targets without locating them. For a given
signal strength, the tracking results are a set of contours,
each of which contains one or more targets.

As in the target counting scenario, let us consider a 2-D
sensor field and point source targets. One way of deter-
mining the contours is by building a mesh over distributed
sensor nodes via a Delaunay triangulation or a similar al-
gorithm. The triangulation can be computed offline when
setting up the network. Nodes that are connected by an
edge of a triangle are called direct neighbors. Given a mea-
surement threshold o, which defines a o-contour, a node is
called a contour node if it has a sensor reading above ¢ and
at least one of its direct neighbors has a sensor reading be-
low o. For a sufficiently smooth contour and dense sensor
network, a contour can be assumed to intersect an edge
only once, and an triangle at exactly two edges, as shown
in Figure 8. By following this observation, we can traverse
the contour by “walking” along the contour nodes. Again,
purely local algorithms exist to maintain these contours as
the targets move.

C. Shadow edge tracking

Contour tracking can be viewed as a way to determine
the boundary of a group of targets. In an extreme case,
the group of targets can be a continuum over space, where
no single sensor alone can determine the global informa-
tion from its local measurement. An example of this is to
determine and track the boundary of a large object moving
in a sensor field, where each sensor only “sees” a portion
of the object. One such application is tracking a moving
chemical plume over an extended area using airborne and
ground chemical sensors.

We assume the boundary of the object is a polygon made
of line segments. Our approach is to convert the problem
of estimating and tracking a nonlocal (possibly very long)
line segment into a local problem using a dual-space trans-
formation [15]. Just as a Fourier transform maps a global
property of a signal, such as periodicity in the time domain,
to a local feature in the frequency domain, the dual-space
transform maps a line in the primal space into a point in
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Fig. 9. Primal-dual transformation, a one-one mapping where a point
maps to a line and a line maps to point (upper figure). The image of
a half-place shadow edge in the dual space is a point located in a cell
formed by the duals of the sensor nodes (lower figure).

the dual space, and vice versa (Figure 9). Using a primal-
dual transformation, each edge of a polygonal object can be
tracked as a point in the dual space. A tracking algorithm
has been developed based on the dual-space analysis and
implemented on the Berkeley motes [15]. A key feature of
this algorithm is that it allows us to put to sleep all sensor
nodes except those in the vicinity of the object boundary,
yielding significant energy savings.

Tracking relations among a set of objects is another form
of global, discrete analysis of a collection of objects, as de-
scribed in [11]. An example determining whether a friendly
vehicle is surrounded by a number of enemy tanks. Just
as in the target counting problem, the “am I surrounded”
relation can be resolved without having to solve the local
problems of localizing all individual objects first.

V. DISCUSSIONS

We have used the tracking problem as a vehicle to dis-
cuss sensor network CSIP design. We have focused on the
estimation and tracking aspects and skipped over other im-
portant details, such as target detection and classification,
for space reasons.

Detection is an important capability for a sensor net-
work, as a tracker must rely on detection to initialize it-
self as new events emerge [25], [14]. Traditional detection
methods focused on minimizing false alarms or the miss
rate. In a distributed sensor network, the more challenging
problem for detection is the proper allocation of sensing
and communication resources to multiple competing de-
tection tasks spawned by emerging stimuli. This dynamic
allocation and focusing of resources in response to external
events is somewhat analogous to attentional mechanisms
in human vision systems, and clearly a future research di-
rection. More research should also be directed to the infor-
mation architecture of distributed detection and tracking,
and address the problems of “information double-counting”
and data association in a distributed network [18], [24].

Optimizing resources for a given task, as for example

in IDSQ), relies on accurate models of information gain and
cost. To apply the information-driven approach to tracking
problems involving other sensing modalities or to problems
other than tracking, we will need to generalize our models
for sensing and estimation quality as well as our models of
the tradeoff between resource use and quality. For exam-
ple, what is the expected information gain per unit energy
consumption in a network? One must make assumptions
about the network, stimuli, and tasks in order to build such
models. Another interesting problem for future research is
to consider routing and sensing simultaneously and opti-
mize for the overall gain of information.

We have not yet touched upon the programming issues
in sensor networks. The complexity of the applications,
the collaborative nature of the algorithms, and the plu-
rality and diversity of resource constraints demand novel
ways to construct, configure, test, and debug the system,
especially the software. This is more challenging than tra-
ditional collection-based computation in parallel process-
ing research because sensor group management is typically
dynamic and driven by physical events. In addition, the
existing development and optimization techniques for em-
bedded software are largely at the assembly level and do not
scale to collaborative algorithms for large-scale distributed
sensor networks. We need high-level system organizational
principles, programming models, data structures, and pro-
cessing primitives to express and reason about system prop-
erties, physical data, and their aggregation and abstrac-
tion, without losing relevant physical and resource con-
straints.

A possible programming methodology for distributed
embedded sensing systems is shown in Figure 10. Given
a specification at a collaborative behavioral level, software
tools automatically generate the interactions of algorithm
components, and map them onto the physical hardware of
sensor networks.

application-level specification

phenomena, events,
collaboration model, ...

sensing modality,
comm. patterns, ...

message passing,
node tasking, ...

node-level specification

libraries, ...

resource scheduling

uonejdwod

o
o
S

£ ,
2 packet delivery
L+

hardware

Fig. 10. A programming methodology for deeply embedded systems.

At the top level, the programming model should be
expressive enough to describe application level concerns:
physical phenomena to be sensed, user interaction, and col-
laborative processing algorithms, without the need to man-
age node-level interactions. The programming model may
be domain specific. For example, SAL [27] is a language
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for expressing and reasoning about geometries of physi-
cal data in distributed sensing and control applications;
various biologically inspired computational models [1], [6]
study how complex collaborative behaviors can be built
from simple components. The programming model should
be structural enough to allow synthesis algorithms to ex-
ploit commonly occurring patterns and generate efficient
code. TinyGALS [4] is an example of synthesizable pro-
gramming models for event-driven embedded software.

Automated software synthesis is a critical step in
achieving the scalability of sensor network programming.
Hardware-oriented concerns such as timing and location
may be introduced gradually by refinement and configu-
ration processes. The final outputs of software synthesis
are operational code for each node, typically in forms of
imperative languages, from which the more classical oper-
ating system, networking, and compiler technologies can
be applied to produce executables. The libraries support-
ing node-level specifications need to abstract away hard-
ware idiosyncrasy across different platforms, but still ex-
pose enough low-level features for applications to take ad-
vantage of.

VI. CONCLUSION

This paper has focused on the collaborative signal and
information processing (CSIP) issues in designing and an-
alyzing sensor network applications. In particular, we have
used tracking as a canonical problem to expose important
constraints in designing, scaling, and deploying these sen-
sor networks, and described approaches to several tracking
problems that are at progressively higher levels with re-
spect to the nature of information being extracted.

From the discussions, it is clear that for resource-limited
sensor networks one must take a more holistic approach
and break the traditional barrier between the application
and networking layers. The challenge is to define the con-
straints from an application in a general way so that the
networking layers can exploit, and vice versa. An impor-
tant contribution of the approaches described in this paper
is the formulation of application requirements and network
resources as a set of generic constraints so that target track-
ing and data routing can be jointly optimized.
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