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Abstract. Mobile ad hoc networks have attracted attention lately as a means of providing continuous network connectivity to mobile
computing devices regardless of physical location. Recent research has focused primarily on the routing protocols needed in such an
environment. In this paper, we investigate the effects that link breakage due to mobility has on TCP performance. Through simulation, we
show that TCP throughput drops significantly when nodes move, due to TCP’s inability to recognize the difference between link failure and
congestion. We also analyze specific examples, such as a situation where throughput is zero for a particular connection. We introduce a
new metric, expected throughput, for the comparison of throughput in multi-hop networks, and then use this metric to show how the use of
explicit link failure notification (ELFN) techniques can significantly improve TCP performance.
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1. Introduction

With the proliferation of mobile computing devices, the de-
mand for continuous network connectivity regardless of phys-
ical location has spurred interest in the use of mobile ad hoc
networks. A mobile ad hoc network is a network in which
a group of mobile computing devices communicate among
themselves using wireless radios, without the aid of a fixed
networking infrastructure. Their use is being proposed as an
extension to the Internet, but they can be used anywhere that
a fixed infrastructure does not exist, or is not desirable. A lot
of research of mobile ad hoc networks has focused on the de-
velopment of routing protocols (e.g., [10,11,13,16,18,20,22,
25,27,29–35]). Our research is focused on the performance
of TCP over mobile ad hoc networks.

Since TCP/IP is the standard network protocol stack on
the Internet, its use over mobile ad hoc networks is a cer-
tainty. Not only does it leverage a large number of appli-
cations, but its use also allows seamless integration with the
Internet, where available. However, earlier research on cel-
lular wireless systems showed that TCP suffers poor perfor-
mance in wireless networks because of packet losses and cor-
ruption caused by wireless induced errors. Thus, a lot of
research has since focused on mechanisms to improve TCP
performance in cellular wireless systems (e.g., [2,3]). Fur-
ther studies have addressed other network problems that neg-
atively affect TCP performance, such as bandwidth asymme-
try and large round-trip times, which are prevalent in satellite
networks (e.g., [4,12]).

In this paper, we address another network characteristic
that impacts TCP performance, which is common in mo-
bile ad hoc networks: link failures due to mobility. We first
present a performance analysis of standard TCP over mobile
ad hoc networks, and then present an analysis of the use of
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explicit notification techniques to counter the affects of link
failures.

2. Simulation environment and methodology

The results in this paper are based on simulations using the
ns network simulator from Lawrence Berkeley National Lab-
oratory (LBNL) [14], with extensions from the MONARCH
project at Carnegie Mellon [5]. The extensions include a set
of mobile ad hoc network routing protocols and an imple-
mentation of BSD’s ARP protocol, as well as an 802.11 MAC
layer and a radio propagation model. Also included are mech-
anisms to model node mobility using precomputed mobility
patterns that are fed to the simulation at run-time. For more
information about the extensions, we refer the reader to [5].
Unless otherwise noted, no modifications were made to the
simulator described in [5], beyond minor bug fixes that were
necessary to complete the study.

All results are based on a network configuration consisting
of TCP-Reno over IP on an 802.11 wireless network, with
routing provided by the Dynamic Source Routing (DSR) pro-
tocol and BSD’s ARP protocol (used to resolve IP addresses
to MAC addresses). These are wildly used and studied proto-
cols, and are likely candidates for implementation in commer-
cial ad hoc networks. Hence, understanding how they work
together, and with TCP, can lead to modifications that im-
prove performance. Since we frequently refer to details of the
DSR protocol, in the next paragraph we give a brief primer
on DSR to familiarize the reader with its characteristics and
terminology.

The Dynamic Source Routing (DSR) protocol was devel-
oped by researchers at CMU for use in mobile ad hoc net-
works [6]. In DSR, each packet injected into the network con-
tains a routing header that specifies the complete sequence of
nodes on which the packet should be forwarded. This route is
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obtained through route discovery. When a node has a packet
to send for which it does not have a route, it initiates route
discovery by broadcasting a route request. This request is
propagated through the network until it reaches a node, say x,
that knows of a route to the destination. Node x then sends a
route reply to the requester with the new route formed from
the route at node x concatenated with the source route in the
request. To limit how far a request is propagated, a time-
to-live (TTL) field is attached to every request along with a
unique request identifier. A node that receives a route request
that it has seen before, or that has lived beyond its time-to-
live, drops the request. To reduce the number of route dis-
coveries, each node maintains a cache of routes that it has
learned. A node may learn of a route through route discov-
ery, or through other means such as snooping routes in route
replies and data packets, or eavesdropping on local broad-
casts. This cache is updated through route error messages.
Route error messages are sent by a node when it discovers
that a packet’s source route is invalid. The route discovery
protocol, as implemented in the CMU extensions to ns, has
two phases: a local broadcast (a ring-0 search) followed by a
propagating search. The ring-0 search is initiated in the hope
that a route can quickly be found in a neighbor’s cache. If a
route is not found within a small amount of time, a propagat-
ing search is attempted. If this fails, the protocol backs off
and tries again, eventually giving up if a route is not found.
This procedure repeats until all of the packets queued for that
particular destination are dropped from the queue, or a route
is found. A packet may be dropped from the queue if a route
has not been found within a prespecified amount of time (the
“Send Buffer Timeout” interval), or if the queue is full and
newly arriving packets force it out. Route discoveries for the
same destination are limited by the backoff and retry proce-
dure, which is initiated per destination (versus per packet).
Thus, regardless of the number of packets that need a route to
the same destination, only one route discovery procedure is
initiated. Once a route is found and a packet is sent, there is
the possibility that the route becomes “stale” while the packet
is in flight, because of node mobility (a route is “stale” if some
links on the route are broken). In such an instance, DSR uses
a mechanism called packet salvaging to reroute the packet.
When a node x detects that the next link in a packet’s route
is broken, it first sends a route error message to the node that
generated the packet’s route to prevent it from sending more
packets on the broken route. Node x then attempts to salvage
the packet by checking its cache to see if it knows of another
route to the packet’s destination. If so, node x inserts the new
source route into the packet and forwards it on that route; if
not, the packet is dropped.

We chose to keep most of the parameters of the simulations
identical to those in [5], with a few exceptions. The following
is a discussion of our simulation setup.

Our network model consists of 30 nodes in a 1500 ×
300 m2 flat, rectangular area. The nodes move according to
the random waypoint mobility model. In the random way-
point model, each node x picks a random destination and
speed in the rectangular area and then travels to the destina-

tion in a straight line. Once node x arrives at its destination, it
pauses, picks another destination, and continues onward. We
used a pause time of 0 so that each node is in constant motion
throughout the simulation. All nodes communicate with iden-
tical, half-duplex wireless radios that are modeled after the
commercially available 802.11-based WaveLan wireless ra-
dios, which have a bandwidth of 2 Mbps and a nominal trans-
mission radius of 250 m. TCP packet size was 1460 bytes,
and the maximum window was eight packets.

Unless otherwise noted, all of our simulation results are
based on the average throughput of 50 scenarios, or patterns.
Each pattern, generated randomly, designates the initial place-
ment and heading of each of the nodes over the simulated
time. We use the same pattern for different mean speeds.
Thus, for a given pattern at different speeds, the same se-
quence of movements (and link failures) occur. The speed of
each node is uniformly distributed in an interval of 0.9v–1.1v

for some mean speed v. For example, consider one of the
patterns, let us call it I . A node x in I that takes time t to
move from point A to point B in the 10 m/s run of I will take
time t/2 to traverse the same distance in the 20 m/s run of I .
So, x will always execute the exact same sequence of moves
in I , just at a proportionally different rate. See [19] for more
details on the mobility patterns.

3. Performance metric

In this performance study, we set up a single TCP-Reno con-
nection between a chosen pair of sender and receiver nodes
and measured the throughput over the lifetime of the connec-
tion. We use throughput as the performance metric in this
paper.

The TCP throughput is usually less than “optimal” due to
the TCP sender’s inability to accurately determine the cause
of a packet loss. The TCP sender assumes that all packet
losses are caused by congestion. Thus, when a link on a TCP
route breaks, the TCP sender reacts as if congestion was the
cause, reducing its congestion window and, in the instance
of a timeout, backing-off its retransmission timeout (RTO).
Therefore, route changes due to host mobility can have a
detrimental impact on TCP performance.

To gauge the impact of route changes on TCP perfor-
mance, we derived an upper bound on TCP throughput, called
the expected throughput. The TCP throughput measure ob-
tained by simulation is then compared with the expected
throughput.

We obtained the expected throughput as follows. We first
simulated a static (fixed) network of n nodes that formed a
linear chain containing n − 1 wireless hops (similar to the
“string” topology in [17]). The nodes used the 802.11 MAC
protocol for medium access. Then, a one-way TCP data trans-
fer was performed between the two nodes at the ends of the
linear chain, and the TCP throughput was measured between
these nodes. This set of TCP throughput measurements is
analogous to that performed by Gerla et al. [17], using simi-
lar (but not identical) MAC protocols.
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Figure 1 presents the measured TCP throughput as a func-
tion of the number of hops, averaged over ten runs. Observe
that the throughput decreases rapidly when the number of
hops is increased from 1, and then stabilizes once the num-
ber of hops becomes large. The primary reason for this trend
is due to the characteristics of 802.11. Consider the simple
four hop network shown in figure 2. In 802.11, when link 1–2
is active only link 4–5 may also be active. Link 2–3 cannot be
active because node 2 cannot transmit and receive simultane-
ously, and link 3–4 may not be active because communication
by node 3 may interfere with node 2. Thus, throughput on an i

hop 802.11 network with link capacity C is bounded by C/i

for 1 ≤ i ≤ 3, and C/3 otherwise. The decline in figure 1
for i ≥ 4 is due to contention caused by the backward flow
of TCP ACKs. For further explanation of this trend, we re-
fer the reader to [17]. Our objective here is only to use these
measurements to determine the expected throughput.

Hops Throughput
(Kbps)

1 1463.0
2 729.0
3 484.4
4 339.9
5 246.4
6 205.2
7 198.1
8 191.8
9 185.3

10 182.4

Figure 1. TCP-Reno throughput over an 802.11 fixed, linear, multi-hop net-
work of varying length (in hops).

Figure 2. A simple multi-hop network.

The expected throughput is a function of the mobility pat-
tern. For instance, if two nodes are always adjacent and move
together (similar to two passengers in a car), the expected
throughput for the TCP connection between them would be
identical to that for 1 hop in figure 1. On the other hand, if the
two nodes are always in different partitions of the network,
the expected throughput is 0. In general, to calculate the ex-
pected throughput, let ti be the duration for which the shortest
path from the sender to receiver contains i hops (1 � i � ∞).
Let Ti denote the throughput obtained over a linear chain us-
ing i hops. When the two nodes are partitioned, we consider
that the number of hops i is ∞ and T∞ = 0. The expected
throughput is then calculated as

expected throughput =
∑∞

i=1 ti · Ti
∑∞

i=1 ti
. (1)

Of course,
∑∞

i=1 ti is equal to the duration for which the TCP
connection is in existence. The measured throughput may
never become equal to the expected throughput, for a num-
ber of reasons. For instance, the underlying routing proto-
col may not use the shortest path between the sender and re-
ceiver. Also, equation (1) does not take into account the per-
formance overhead of determining new routes after a route
failure. Despite these limitations, the expected throughput
serves as a reasonable upper bound with which the measured
performance may be compared. Such a comparison provides
an estimate of the performance degradation caused by host
mobility in ad hoc networks.

4. Measurement of TCP-Reno throughput

Figure 3(a) reports the measured TCP-Reno throughput and
the expected throughput as a function of the mean speed of
movement.

Note that the expected throughput is independent of the
speed of movement. In equation (1), when the speed is in-
creased, the values of ti for all i becomes smaller, but the

(a) (b)

Figure 3. Throughput for a single TCP-Reno connection over a mobile ad hoc network. (a) Measured and expected throughput, averaged over 50 mobility
patterns. (b) Per-pattern measured throughputs for the 20 m/s and 30 m/s points shown in (a).
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(a) (b)

(c) (d)

Figure 4. Comparison of measured and expected throughput for the 50 mobility patterns. Speed (in m/s) is (a) 2, (b) 10, (c) 20, and (d) 30.

ratio ti/tj for any i and j remains the same. Therefore, the
expected throughput for a given mobility pattern, calculated
using equation (1), is independent of the speed.

Intuition suggests that when the speed is increased then
route failures happen more quickly, resulting in packet losses,
and frequent route discoveries. Thus, intuitively, TCP
throughput should monotonically degrade as the speed is in-
creased. In figure 3(a), the throughput drops sharply as the
mean speed is increased from 2 m/s to 10 m/s. However,
when the mean speed is increased from 10 m/s to 20 m/s and
30 m/s, the throughput averaged over the 50 runs decreases
only slightly. This is a counter-intuitive result. The reason can
be attributed, in part, to the network layer’s problems main-
taining routes for paths longer than a few hops at the higher
node speeds. Thus, beyond a certain speed, throughput was
commonly achieved only in the situation where the sender
and receiver were within a few hops of each other. Another
contributing factor to this result is that, under certain circum-
stances, throughput could potentially increase with speed.
Consider, for example, figure 3(b), which plots the throughput
for each of the 50 mobility patterns for the 20 m/s and 30 m/s
mean speeds used in our simulations (the patterns are sorted,

in this figure, in the order of their throughputs at 20 m/s).
Observe that, for certain mobility patterns, the throughput in-
creases when the speed is increased. This can happen, for in-
stance, when fortuitous timing of TCP and MAC retransmis-
sions, with regard to the state of the network (e.g., the position
of the nodes in the network), results in the re-establishment of
the packet flow at the higher speed but not at the slower speed.
Section 5 discusses this anomaly in more detail.

Figure 4 provides a different view of the TCP throughput
measurements. In this figure, we plot the measured through-
put versus expected throughput for each of the 50 mobility
patterns. The four graphs correspond to each of the four
different mean speeds of movement. Because the expected
throughput is an upper bound, all the points plotted in these
graphs are below the diagonal line (of slope 1). When the
measured throughput is closer to the expected throughput, the
corresponding point in the graph is closer to the diagonal line,
and vice versa. The following observations can be made from
figure 4:

• Although, for any given speed, the points may be located
near or far from the diagonal line, when the speed is in-
creased the points tend to move away from the diagonal,
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signifying a degradation in throughput. Later in this pa-
per, we show that, using a TCP optimization, the cluster
of points in this figure can be brought closer to the diago-
nal.

• On the other hand, for a given speed, certain mobility pat-
terns achieve throughput close to 0, although other mobil-
ity patterns (with the same mean speed) are able to achieve
a higher throughput.

• Even at high speeds, some mobility patterns result in high
throughput that is close to the expected throughput (for
instance, see the points close to the diagonal line in fig-
ure 4(c) and (d)). This occurs for mobility patterns in
which, despite moving fast, the rate of link failures is low
(as discussed earlier, if two nodes move together, the link
between them will not break, regardless of their speed).

Section 5 provides explanations for some observations
made based on the data presented in figures 3 and 4.

5. Mobility induced behaviors

In this section, we look at examples of mobility induced be-
haviors that result in unexpected performance. The measured
throughput of the TCP connection is a function of the interac-
tion between the 802.11 MAC protocol, the ARP protocol, the
DSR routing protocol, and TCP’s congestion control mecha-
nisms. As such, there are likely to be several plausible expla-
nations for any given observation. Here, for each observation,
we give one such explanation that we have been able to con-
firm using the measured data.

5.1. Some mobility patterns yield very low throughput

We present one observed scenario wherein loss of some TCP
data and acknowledgment packets (due to route failures) re-
sults in zero throughput. Note that we measure throughput
as a function of the amount of data that has been acknowl-
edged to the sender. In the example scenario discussed here,
no acknowledgments are received by the sender during the
120 s lifetime of the TCP connection (the average speed for
this case is 30 m/s). However, the expected throughput for
the mobility pattern in this run is 694 Kbps. A path exists
between the TCP sender and receiver nearly the entire time.

A condensed version of the simulation packet trace is
shown in table 1. This trace was obtained with node 1 as
the TCP sender and node 2 as the TCP receiver. In the table,
the Evnt column lists the event type – s denotes that a packet
is sent, r denotes that a packet is received, and D denotes that
a packet is dropped. The Resn column lists the reason why
a packet is dropped – NRTE means that the routing protocol
could not find a route and END means the simulation finished.
The Node, SeqNo, and Pkt columns report the node at which

Table 1
Packet trace for a 30 m/s run that experienced zero throughput.

Evnt Time (s) Node SeqNo Pkt Resn

s 0.000 1 1 tcp
D 0.191 5 1 tcp NRTE
s 6.000 1 1 tcp
r 6.045 2 1 tcp
s 6.145 2 1 ack
D 6.216 21 1 ack NRTE
s 18.000 1 1 tcp
s 42.000 1 1 tcp
s 90.000 1 1 tcp
D 120.000 15 1 tcp END
D 120.000 16 1 tcp END
D 120.000 25 1 tcp END

the event occurred, the TCP sequence number1 of the packet
depicted in the event, and the type of packet, respectively.

In this scenario, the sender and the receiver node are ini-
tially six hops apart and stay within six hops of each other for
all but 6 s of the 120 s simulation. For 6 s, the network is par-
titioned, with the sender and receiver nodes being in different
partitions.

Soon after the first packet is sent by node 1, a link break oc-
curs along the route that causes a partition in the network. The
partition causes the first packet to be dropped (at time 0.191 s)
by the routing protocol on node 5, which was the forwarding
node that detected the link failure. Eventually, the TCP sender
on node 1 times out and retransmits the packet (at time 6.000).
On the second attempt, the packet reaches the receiver,
node 2, who sends a delayed acknowledgment (at time 6.145).
However, the acknowledgment is sent on a route from no-
de 2’s cache that is stale (i.e., some links on the route are bro-
ken), so the acknowledgment is later dropped (at time 6.216).
The remaining attempts to retransmit the packet also fail be-
cause of stale cached routes. In each instance, the packet is
held by the ARP layer of a forwarding node until the end of
the simulation (see the rows with Evnt = D and Resn = END
in table 1). Each ARP layer is left holding a packet because
its attempts to resolve the IP address of the next node in the
route to a MAC address fail because of mobility.

Therefore, the TCP sender is unable to receive any ac-
knowledgment from the receiver.

5.2. Anomaly: Throughput increases when speed is increased

In the example discussed in this section, TCP throughput im-
proves by a factor of 1.5 when the speed is increased from
10 m/s to 20 m/s. In the scenario under consideration, the
TCP sender and receiver were able to reach each other 100%
of the time, and spent 74% of the time at most two hops away.
The nodes were never more than three hops away.

The characteristics of the connection between the TCP
sender and receiver can be seen in the mobility pattern profile

1 These are sequence numbers assigned by ns to TCP packets. ns does not
number each octet individually; instead, the packets are numbered sequen-
tially as 1, 2, etc. All references to TCP sequence numbers in this paper are
the ns assigned sequence numbers.
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(a)

(b)

(c)

(d)

(e)

Figure 5. TCP-Reno performance for mobility pattern No. 20, demonstrating that an increase in mean node speed may result in an increase in mean throughput.
(a) Mobility pattern profile. Mean speed (in m/s) is (b) 2, (c) 10, (d) 20, and (e) 30. The ticks at the top of (a) denote changes on the minimum path between

the TCP sender and receiver. The curves in (b)–(e) show the measured throughput for the connection, averaged over 1 s intervals.

shown in figure 5(a) (see [19] for similar details on all of the
patterns). The ticks shown at the top of the profile mark the
points in the pattern at which the minimum path between the
TCP sender and receiver changed. The curve shows the min-
imum path length (distance) in hops between the sender and
receiver for the duration of the pattern. Notice that a change
in the minimum path is not always caused by a change in path
length (e.g., at the 0.28 mark in figure 5(a)), because the nodes
on the path may change even though the total number of hops
stays the same.

The other curves in figure 5 show the mean throughput
over the TCP connection (averaged over 1 s) for each of the
four mean node speeds. Note that, as mentioned in section 2,
the sequence of moves that each node makes is identical, re-
gardless of the mean speed.

The only difference is that a distance covered by a node,
say x, over time t , such as in figure 5(b), takes x a time of
t/2 to cover in figure 5(c). This is analogous to a movie in
which the time taken to show the same number of frames at
rate r takes half the time to show at rate 2r . Thus, the mobility
pattern profile shown in figure 5(a) can be used as a reference

point for the other curves in figure 5. Note that the variations
in the throughput for curves (b)–(e) are correlated to the path
length in (a) because of the effect shown in figure 1, which
we discussed earlier. Also note that DSR does not always use
the minimum path when one is available, as seen around the
1450 s mark of figure 5(b).

Discussion of figure 5(c). In the 10 m/s run, the routing pro-
tocol uses symmetric forward and reverse routes (of optimal
length) between the TCP sender and receiver for the first 50 s
of the simulation, resulting in good initial throughput.

However, the sequence of path changes around the 50 s
mark causes the TCP sender to back off, from which it fails
to recover, until the final 30 s of the simulation. The details
of the packet activity around the moment at which the ini-
tial backoff occurs is shown in figure 6. Leading up to the
failure, the forward and reverse routes are symmetric and op-
timal in length (two hops). Around the 50.4 s mark, the route
breaks (because of mobility) at the link between the interme-
diate node and the TCP receiver. This results in the queuing
of nearly a full window of packets at the intermediate node.
The intermediate node salvages the queued packets, then suc-
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Figure 6. Detailed packet plot showing the beginning moments, around the 50 s mark in figure 5(c), at which a sequence of path changes, shown in figure 5(a),
causes TCP to repeatedly time out and back off. Packet Sent and Packet Recv indicate the time at which a TCP data packet with the indicated ns sequence
number was sent by the sender and arrived at the receiver, respectively, Ack Recv indicates the time at which a TCP acknowledgment was received by the
sender with the indicated sequence number, and Packet Dropped indicates the time at which a data packet with the indicated sequence number was dropped.

cessfully delivers them to the receiver on a new forward route
(seen around the 50.58 s mark). After detecting the failed link,
the receiver chooses a new reverse route for sending acknowl-
edgments, which is different than the forward route. How-
ever, the reverse route that it chooses is also stale, so several
acknowledgments are lost before salvaging results in the ar-
rival of two of the acknowledgments at the TCP sender around
the 50.72 s mark. These acknowledgments trigger a burst of
packets from the sender, which are immediately queued by
the forwarding node at the next hop in the path, because, al-
though the reverse route is good, the forward route is now
broken by mobility. Another acknowledgment arrives later
(around the 50.87 s mark), resulting in the queuing of another
packet. Meanwhile, the forwarding node, which now has the
full window queued, repeatedly tries to salvage the packets.
This finally results in the loss of half of the packets (around
the 50.98 s mark) by ARP, which fails to determine the MAC
address of the node over the next hop in the salvaged route be-
cause the node has moved away. However, half of the packets
are successfully salvaged on an alternate route and delivered
(seen between the 51.0 s and 51.08 s marks), generating a
sequence of duplicate acknowledgments (dupacks) from the
receiver signifying the packet loss. After the third and fourth
dupacks arrive, the TCP sender enters fast recovery and re-
transmits the lost packet (at the 51.08 s mark), but the lost
packets cause the sender to timeout. The retransmission of
the lost packet by the sender results in a brief burst of packets
(seen as a small bump at the 51 s mark), but the routes break
quickly thereafter, as the path changes from two to three hops,
resulting in lost packets that cause the sender to timeout again.

For all subsequent timeouts, except one, stale routes result
in packet losses even though the TCP sender and receiver are
never more than three hops distance from each other. The
one exception occurs around the 333 s mark, at which time a
retransmitted packet results in the reestablishment of packet
flow when the nodes are one hop away.

Discussion of figure 5(d). The 20 m/s run shares many of
the characteristics of the slower 10 m/s run, but results in
higher throughput because a retransmission late in the pat-
tern (around the 90 s mark) succeeds in briefly reestablish-
ing the flow of packets. Initially, the data flow is quickly
stalled (around the 25 s mark) because of the loss of a full
window of packets, which is caused by the same sequence of

link changes in the pattern that affected the 10 m/s run. The
throughput, again, degrades when repeated route failures in-
duce packet losses, causing the TCP sender to time out and
backoff. However, unlike the 10 m/s run, the packet flow is
reestablished later in the pattern (at the 88 s mark) when a
retransmitted packet results in the discovery of a good route
when the nodes are only two hops apart. This success is why
the 20 m/s run is able to transfer data at 1.5 times the rate of
the 10 m/s run, for the same mobility pattern.

5.3. Summary and observations

In this section, we present a summary of the effects of mo-
bility on TCP performance that we observed in the previous
examples and in our other experiments.

From the previous examples, it is clear that the character-
istics of the routing protocol have a very significant impact on
TCP performance. Most notable were the problems caused by
the caching and propagation of stale routes. Even in relatively
slowly changing topologies, the inability of the TCP sender’s
routing protocol to quickly recognize and purge stale routes
from its cache resulted in repeated routing failures. Allowing
intermediate nodes to reply to route requests with routes from
their caches complicated this problem, because they often re-
sponded with stale routes. This was further amplified by the
fact that other nodes could overhear or snoop the stale routes
in the replies as they were propagated, spreading the bad in-
formation to caches in other nodes. We saw the effects of
this problem in our simulations. For instance, in the simula-
tion run presented in our first example (section 5.1), the TCP
sender tried to use the same stale route three times because it
received the route repeatedly from other nodes. In the latter
two tries, the stale route came to the TCP sender by way of
salvaging. The stale route that was used was a two hop route
between the TCP sender and receiver. In each of the two in-
stances, a neighboring node salvaged a packet from the TCP
sender using the stale route, which the node had stored in its
route cache. The neighboring node then sent the packet on
the next hop in the salvaged route, back to the TCP sender.
The result was that the TCP sender ended up trying to for-
ward its own packet on a route that it had earlier determined
was stale. However, we believe that these problems can po-
tentially be solved using more effective cache maintenance
strategies, including simple techniques like dynamically ad-
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Figure 7. A comparison of TCP-Reno performance when DSR route replies
from caches are, and are not, allowed.

justing the route cache timeout mechanism depending on the
observed route failure rate, the use of negative route informa-
tion (mentioned in [6]), or the use of signal strength informa-
tion.

Alternatively, replying from caches can be turned off al-
together. This has a startling improvement in performance,
as shown in figure 7. However, these results are for a single
TCP connection in a network with no other data traffic. In
a network with multiple data sources, the additional routing
traffic introduced when replies from caches are not used could
degrade performance.

Therefore, we simulated the same TCP connection in a
network containing multiple CBR data sources to gauge the
impact of the additional routing overhead when replies from
caches are not allowed. These results are shown in figure 8.
We looked at three different levels of network traffic using
ten CBR connections across eight nodes (not including the
TCP sender or receiver), each sending 512 byte packets at
mean rates of 5, 10, and 20 packets per second (pps). Start
times were staggered. For low mobility in the presence of
CBR traffic, disallowing route replies from caches results in
slightly lower TCP performance than when route replies from
caches are allowed. This is due, in part, to the impact of the
additional routing overhead. For moderate-to-high mobility,
however, we see a consistent improvement in performance,
which is clearly evident in the 5 pps and 10 pps curves. We
observed that this improvement occurred because the steady
traffic provided by the CBR connections increased the accu-
racy of cached routes by steadily exercising routes in the net-
work, facilitating quick detection of broken links and, sum-
marily, the purging of stale routes. However, for increasing
levels of traffic the performance improvement decreases due
to the additional routing traffic, until, for the 20 pps curve,
disallowing route replies results in worse performance at 5
and 10 m/s, and only slight improvement at 20 and 30 m/s.

We also looked at a scenario where multiple TCP connec-
tions share the network. This data is presented in figure 9,
which shows the mean throughput over five TCP connections

Figure 8. A comparison of TCP-Reno performance when DSR route replies
from caches are, and are not (NC), allowed, and additional traffic is in the
network: 10 CBR connections, each sending 5, 10, and 20 packets per sec-

ond.

Figure 9. A comparison of TCP-Reno performance of five TCP connections
when DSR route replies from cache are, and are not, allowed.

(each between separate pairs of nodes) for 30 patterns. Here,
also, we see the same trend as in the previous figure.

Another interesting effect of a routing protocol’s behavior
with respect to mobility was observed in our second example
(section 5.2). The fact that the TCP data flow was lost at the
same point in the mobility pattern for both runs raised ques-
tions about what characteristic of the pattern was causing the
failure. From figure 5(a), it is clear that the rapid sequence
of path changes at the 0.13 mark caused all four runs to fail.
Upon further inspection, we observed that the routing pro-
tocol regularly failed when the minimum path increased in
length. This is apparent in the results shown in figure 10.

In the first few moments of the mobility pattern, shown in
figure 10(a), the TCP sender and receiver move closer to each
other, shortening the path between them from two hops to
one (around mark 0.01). A few moments later (around mark
0.07), they slowly diverge to a distance of five hops. In the
TCP throughput measurements shown in figure 10(b)–(e), it is
evident that the data flow across the TCP connection is main-
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(a)

(b)

(c)

(d)

(e)

Figure 10. TCP-Reno performance for mobility pattern No. 46, showing that an increase in the minimum path length between the TCP sender and receiver
consistently results in the loss of data flow across the connection. (a) Mobility pattern profile. Mean speed (in m/s) is (b) 2, (c) 10, (d) 20, and (e) 30. The
ticks at the top of (a) denote changes on the minimum path between the TCP sender and receiver. The curves in (b)–(e) show the measured throughput for the

connection, averaged over 1 s intervals.

tained when the path is shortened, but is lost when the path
is lengthened. This happens several times in the pattern, in-
dependent of the mean speed of the nodes. Most notably, fig-
ure 10(b) shows that even while traveling at a slow speed of
2 m/s, a path change from one hop to two (around the 1500 s
mark) can stall the data flow. This behavior can be attributed,
in part, to the routing protocol. As the TCP sender and re-
ceiver move closer to each other, DSR can often maintain a
valid route by shortening the existing route, and often does
so before a failure occurs. However, as the TCP sender and
receiver diverge, the increase in path length eventually causes
a route failure because DSR does not attempt to lengthen a
route until a failure occurs. The route failure and subsequent
route discovery process often result in the restoration of the
route only after the TCP sender has repeatedly timed out and
backed off, stalling the data flow. This is further magnified
by the caching and propagation of stale routes, as mentioned
previously.

However, intuition suggests that this is not a problem that
is unique to DSR, but will most likely be a problem for other

reactive protocols as well. Thus, perhaps a metric of routing
protocol performance should not only measure the protocol’s
ability to recognize optimal routes, but also to quickly adjust
an existing route, albeit non-optimally.

Another characteristic of DSR that we observed affecting
TCP performance was the route request retransmission back-
off algorithm. In DSR, if a route request does not generate
a timely reply, the requester times out and retransmits the re-
quest. Each timeout results in exponential backoff, which is
limited to some fixed maximum value. If this value is too
large, then route requests may occur too infrequently to recog-
nize available routes in time to prevent TCP’s retransmission
timer from backing off to a large value, but if it is too small,
then the frequent route requests may cause network conges-
tion. The maximum value suggested in [6] may not be suit-
able for good TCP performance.

Based on these observations, it might be suggested that in-
stead of augmenting TCP/IP, it would be better to improve the
routing protocols so that mobility is more effectively masked.
Clearly, extensive modifications to upper layer protocols is
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less desirable than a routing protocol that can react quickly
and efficiently such that TCP is not disturbed. However, re-
gardless of the efficiency and accuracy of the routing proto-
col, network partitioning and delays will still occur because
of mobility, which cannot be hidden.

Thus, in the next section, we analyze some simple modifi-
cations to TCP/IP to provide TCP with a mechanism by which
it can recognize when mobility induced delays and losses oc-
cur, so that it can take appropriate actions to prevent the invo-
cation of congestion control.

6. TCP performance using explicit feedback

In this section, we present an analysis of the use of explicit
feedback on the performance of TCP in dynamic networks.
The use of explicit feedback is not new, and has been pro-
posed as a technique for signaling congestion (e.g., ECN [15],
BECN [26], DECBit [28]), corruption due to wireless trans-
mission errors (e.g., EBSN [1], ELN [3]), and link failures
due to mobility (e.g., [7], SCPS-TP [9], TCP-F [8]). Our in-
terest in this section is analyzing the performance of the last
technique, which we refer to as Explicit Link Failure Notifi-
cation (ELFN) techniques. Although the TCP-F paper studies
a similar idea, the evaluation is not based on an ad hoc net-
work. Instead, they use a black-box, that does not include the
evaluation of the routing protocol.

The objective of ELFN is to provide the TCP sender with
information about link and route failures so that it can avoid
responding to the failures as if congestion occurred.

There are several different ways in which the ELFN mes-
sage can be implemented. A simple method would be to use
a “host unreachable” ICMP message as a notice to the TCP
sender. Alternatively, if the routing protocol already sends
a route failure message to the sender, then the notice can be
piggy-backed on it. This is the approach we took in this analy-
sis. We modified DSR’s route failure message to carry a pay-
load similar to the “host unreachable” ICMP message. In par-
ticular, it carries pertinent fields from the TCP/IP headers of
the packet that instigated the notice, including the sender and
receiver addresses and ports, and the TCP sequence number.
The addresses are used to identify the connection to which
the packet belongs, and the sequence number is provided as a
courtesy.

TCP’s response to this notice is to disable congestion con-
trol mechanisms until the route has been restored. This in-
volves two different issues: what specific actions TCP takes
in response to the ELFN notice, and how it determines when
the route has been restored.

We used the following simple protocol. When a TCP
sender receives an ELFN, it disables its retransmission timers
and enters a “standby” mode. While on standby, a packet is
sent at periodic intervals to probe the network to see if a route
has been established. If an acknowledgment is received, then
it leaves standby mode, restores its retransmission timers, and
continues as normal. For this study, we elected to use packet
probing instead of an explicit notice to signal that a route has
been reestablished.

To see what could be achieved with this protocol, we stud-
ied variations in the parameters and actions and measured
their effects on performance. In particular, we looked at the
following:

• Variations in the length of the interval between probe
packets.

• Modifications to the retransmission timeout value (RTO)
and congestion window upon restoration of the route.

• Different choices of what packet to send as a probe.

The results of these studies are presented below. Each curve
is based on the mean throughput for the 50 different mobility
patterns we used earlier.

Figure 11 is the analogue of figure 4, except that the results
in figure 11 are based on simulations in which TCP-Reno was
modified to use ELFN (with a 2 s probe interval). Clearly,
the use of ELFN has improved the mean throughput for each
of the speeds, as evidenced by the closer proximity of the
measured pattern throughputs to the expected throughput line.
The tighter clustering of the points also suggests that the use
of ELFN techniques improves throughput across all patterns,
rather than dramatically increasing just a few. However, no-
tice that for one pattern performance was worse when ELFN
was used. In figure 4(c) there is a pattern which has a mea-
sured throughput very near to its expected throughput (i.e., it
is very close to the line), which is not present in figure 11(c).
In this instance, the unusually good performance of TCP was
a consequence of fortuitous timing of packet retransmissions,
with regard to the state of the network, that did not occur when
ELFN was used. This is further evidence of the complex na-
ture of TCP. The general trend, however, shows a performance
improvement when ELFN is used.

Figure 12 shows the measured throughput as a percentage
of the expected throughput for various probe intervals. Based
on these results, it is apparent that the throughput is critically
dependent on the time between probe packets. This depen-
dency exists because increasing the time between probes de-
lays the discovery of new routes by the length of the inter-
val. Thus, it is no surprise that if the probe interval is too
large, then the throughput will degrade below that of stan-
dard TCP, as shown by the results for probe intervals of 30 s.
Intuitively, if the probe interval is too small, then the rapid in-
jection of probes into the network will cause congestion and
lower throughput. Thus, instead of a fixed interval, perhaps
choosing an interval that is a function of the RTT could be
a more judicious choice. However, based on the sensitivity
of the throughput to the interval size, the function must be
chosen very carefully.

In addition to varying the probe intervals, we also looked
at the performance advantages of adjusting the congestion
window and/or retransmission timeout (RTO) after the failed
route had been restored. These results are shown in fig-
ure 13. In the figure, ELFN represents the case where no
changes are made to TCP’s state because of ELFN. Thus,
TCP’s state (congestion window, RTO, etc.) are the same af-
ter the route is restored, as it was when the ELFN was first
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(a) (b)

(c) (d)

Figure 11. Per-pattern performance of TCP with ELFN using a 2 s probe interval. Speed (in m/s) is (a) 2, (b) 10, (c) 20, and (d) 30.

Figure 12. Performance comparison between basic TCP-Reno and
TCP-Reno with ELFN using varying probe intervals.

received. W/ELFN represents the case where the congestion
window is set to one packet after the route has been restored,
and RTO/W/ELFN represents the case where the RTO is set
to the default initial value (6 s in these simulations) and the
window is set to one after the route is restored. Adjusting the

Figure 13. Performance comparison of different window and RTO modifica-
tions in response to the receipt of an ELFN message.

window seemed to have little impact on the results. This is be-
lieved to be due to the fact that the optimal window (the band-
width/delay product) of the simulated network is a relatively
small number of packets, so it takes only a few round trips to
ramp up to the optimal window after a failure. However, alter-
ing the RTO had a more significant impact on throughput. We
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Figure 14. Performance comparison between basic TCP-Reno and
TCP-Reno with ELFN using different choices for the probe packet.

Figure 15. Performance comparison of TCP-Reno and TCP-Reno with ELFN
when additional traffic is in the network. The additional traffic is provided by
10 CBR connections, each sending 5, 10, and 20 packets per second (pps).

suspect that this is due to a combination of factors, but is most
probably caused by the frequency at which routes break, cou-
pled with ARP’s proclivity, as implemented, to silently drop
packets. Thus, if a restored route immediately breaks again
and results in a failed ARP lookup, then the sender will likely
timeout. Given the length of the timeout, it does not take
many such occurrences to dramatically affect performance.

We also took a brief look at the impact that the choice
of probe packet had on performance, which is shown in fig-
ure 14. We considered two possibilities: always send the
first packet in the congestion window (First/ELFN in the fig-
ure), or retransmit the packet with the lowest sequence num-
ber among those signaled as lost in the ELFNs that were re-
ceived (Lowest Rcvd/ELFN). The first approach is intuitive,
the second approach was chosen with the optimistic think-
ing that perhaps some packets in the window did get through,
and, if the route is restored quickly, then the next packet in
sequence will be in flight. However, as shown by the results,
this had almost no impact whatsoever. We suspect that this
has to do with the fact that routes, once broken, were rarely
restored quickly. In addition, as shown in section 5, the pres-
ence of different forward and reverse routes equalizes the two

Figure 16. Performance comparison of TCP-Reno and TCP-Reno with ELFN
for five concurrent TCP connections.

approaches when only the forward link breaks, since those
packets that did get through before the break are acknowl-
edged via the reverse channel. Thus, the lowest sequence
number of the packets lost would also happen to be the first
in the window.

Finally, we looked at how well the ELFN protocol per-
forms in networks that contain multiple data sources by re-
peating the set simulations that were used for the throughput
curves with cache replies enabled in figures 8 and 9, only now
using ELFN as well. The results with CBR traffic are shown
in figure 15, and the results for multiple TCP connections are
shown in figure 16. Each curve is the average over 30 patterns.
The ELFN protocol used 4 s probes. Based on these results,
it appears that similar performance benefits can be expected
in congested networks, as in the uncongested network.

7. Related work

Because routing is an important problem in mobile ad hoc net-
works, researchers have explored many routing protocols for
this environment (e.g., [10,11,13,16,18,20,22,25,27,29–35]),
many based on, or developed as a part of, work produced by
early DARPA packet-radio programs such as PRNet [21], and
SURAN [23,24].

Recently, some researchers have considered the perfor-
mance of TCP on multi-hop networks [8,17]. Gerla et al. [17]
investigated the impact of the MAC protocol on performance
of TCP on multi-hop networks. Chandran et al. [8] pro-
posed the TCP-Feedback (TCP-F) protocol, which uses ex-
plicit feedback in the form of route failure and reestablish-
ment control packets. Performance measurements were based
on a simple one-hop network, in which the link between the
sender and receiver failed/recovered according to an exponen-
tial model. Also, the routing protocol was not simulated.

Durst et al. [12] looked at the Space Communications
Protocol Specifications (SCPS), which are a suite of proto-
cols designed by the Consultative Committee for Space Data
Systems (CCSDS) for satellite communications. SCPS-TP
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handles link failures using explicit feedback in the form of
SCPS Control Message Protocol messages to suspend and re-
sume a TCP sender during route failure and recovery. Per-
formance measurements focused on link asymmetry and cor-
ruption over last-hop wireless networks, common in satellite
communications.

8. Conclusions and future work

In this paper, we investigated the effects of mobility on TCP
performance in mobile ad hoc networks. Through simula-
tion, we noted that TCP throughput drops significantly when
node movement causes link failures, due to TCP’s inability
to recognize the difference between link failure and conges-
tion. We then made this point clearer by presenting several
specific examples, one of which resulted in zero throughput,
the other, in an unexpected rise in throughput with an increase
in speed. We also introduced a new metric, expected through-
put, which provides a more accurate means of performance
comparison by accounting for the differences in throughput
when the number of hops varies. We then used this metric to
show how the use of explicit link failure notification (ELFN)
can significantly improve TCP performance, and gave a per-
formance comparison of a variety of potential ELFN proto-
cols. In the process, we discovered some surprising effects
that route caching can have on TCP performance.

In the future, we intend to investigate ELFN protocols in
more detail, as well as the effects that other mobile ad hoc
routing protocols have on TCP performance. Currently, we
are also studying the impact that the link-layer has on TCP
performance, such as aggregate delay caused by local retrans-
missions over multiple wireless hops.

More research is needed to better understand the complex
interactions between TCP and lower layer protocols when
used over mobile ad hoc networks, and to find solutions to
the problems caused by these interactions. One such prob-
lem that we identified was the interaction between TCP and
ARP. The ARP in the extensions is based on a BSD imple-
mentation, with a one-packet queue and no request timeout
mechanism. Thus, packets were regularly dropped or held in-
definitely while awaiting resolution. A more advanced ARP
needs to be employed, such as one that will provide for the
queuing of multiple packets awaiting resolution, with a time-
out mechanism to promptly signal failure. Another problem
we identified was the significant impact that route cache man-
agement has on TCP performance. The results suggest that
more aggressive cache management protocols are needed to
counter the effects of mobility, such as the use of adaptive
route cache timeouts, negative information, or signal strength
information.
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