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ABSTRACT 
Recent research in sensor networks has raised security issues for small 
embedded devices. Security concerns are motivated by the deployment 
of a large number of sensory devices in the field. Limitations in 
processing power, battery life, communication bandwidth and memory 
constrain the applicability of existing cryptography standards for small 
embedded devices. A mismatch between wide arithmetic for security 
(32 bit word operations) and embedded data bus widths (often only 8 
or 16 bits) combined with lack of certain operations (e.g., multiply) in 
the ISA present other challenges. 
This paper offers two contributions. First, a survey investigating the 
computational requirements for a number of popular cryptographic 
algorithms and embedded architectures is presented. The objective of 
this work is to cover a wide class of commonly used encryption 
algorithms and to determine the impact of embedded architectures on 
their performance. This will help designers predict a system’s 
performance for cryptographic tasks. Second, methods to derive the 
computational overhead of embedded architectures in general for 
encryption algorithms are developed. This allows one to project 
computational limitations and determine the threshold of feasible 
encryption schemes under a set of the constraints for an embedded 
architecture. 
Experimental measurements indicate uniform cryptographic cost for 
each encryption class and each architecture class and negligible impact 
of caches. RC4 is shown to outperform RC5 for the Motes Atmega 
platform contrary to the choice of RC5 for the Motes project, a choice 
driven in large by memory constraints. The analytical model allows to 
assess the impact of arbitrary embedded architectures as a multi-variant 
function for each encryption scheme. Overall, our results are not only 
valuable to assess the feasibility of encryption schemes for existing 
embedded architectures, they also extend to assess the feasibility of 
encryption methods for new algorithms and architectures for sensor 
systems.  

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks] Network Architecture 
and Design - Wireless communication 

C.3 Special-Purpose and Application-Based Systems - Real-time and 
embedded systems 
C.4 Performance of Systems - Modeling techniques 
D.2.8 [Software Engineering] Metrics – Performance measures 
E.3 Data Encryption 

General Terms 
Security, Performance, Measurement 

Keywords 
Sensor networks, encryption overhead, analysis, model, embedded 
systems. 

1. INTRODUCTION 
Security is a well-established field for general-purpose computing. 
Security mechanisms address computing services, such as 
authentication for user admission, intrusion detection and prevention 
as well as counter-measures for other forms of attacks (e.g., denial of 
service) and data protection in storage, in e-mails or to provide secure 
transactions. This paper focuses on the last aspect, namely, data 
protection mechanisms provided by encryption techniques. The 
objective of this paper is to study the impact of a variety of encryption 
techniques for embedded architectures instead of general-purpose 
processors. 
Embedded systems have a long history in the context of transaction 
processing, for example, cash transactions at teller machines. However, 
security measures have typically focused on physical access 
restrictions as well as software measures to disable a device if attempts 
to tamper with it are suspected. Recent developments have changed 
this focus. On the one side, embedded architectures provide a wider 
range of processing power, which allows more sophisticated security 
responses, in particular for high-end embedded systems.  On the other 
side, new application areas in embedded systems require secure 
communication. For example, recent work in sensor networks includes 
data encryption considerations [12]. Sensor networks allow the 
collection of data from low-end sensor nodes in the field. This data is 
communicated over non-secure channels, such as radio frequencies, 
through routers (in the latest design) and, ultimately, to a base station 
for further processing and decision making. Applications range from 
battlefield surveillance over data collection to study environmental 
impacts to medical observation. Beyond sensor networks, embedded 
processors are increasingly deployed with network connections, such 
as in PDAs with wireless communication (802.11b), e.g., for the Ipaq 
Pocket PCs used in this study [23]. The objective of data encryption in 
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such settings is to ensure that data can only be interpreted by 
authorized recipients. 
In this paper, we assess the feasibility of different encryption schemes 
for a range of embedded architectures. We determine architectural 
impacts on the performance of encryption as well as algorithmic 
properties of the selected encryption schemes. The particular 
embedded platforms were chosen to cover a wide range of embedded 
devices. Measurements were obtained for six different architectures, 
ranging in word size from 8 (Atmel AVR) over 16 (Mitsubishi M16C) 
to 32-bit width (StrongARM, XScale) to cover low-end, medium and 
high-end embedded processors, respectively. As a baseline for 
comparison, one general-purpose architecture (SPARC) was also 
included as a reference point. Future encryption schemes need only be 
evaluated on reference architectures to derive the overhead for other 
architectures. Other reference architectures are those with differing 
ISA support for encryption, as detailed in the evaluation. The analysis 
takes into account features of architectures, such as processor 
frequency, ISA characteristics, such as RISC vs. CISC, support for 
variable-sized bit shifts or native multiply, and the impact of memory 
hierarchies for architectures with caches. 
Five popular encryption schemes were chosen for the study ranging 
from stream ciphers (RC4) over block ciphers (RC5, IDEA) to hashing 
techniques (SHA-1, MD5). This choice was driven by the objective to 
assess encryption schemes with different overheads that provide 
increasing levels of protection. Most significantly, the algorithmic 
choice is motivated by the constraints of embedded architectures. 
Public key encryption schemes do not appear to be feasible on current 
low-end embedded systems, not only because of code/data size and 
processing constraints but also due to their high demand on power 
consumption, which would severely limit the lifetime of mobile 
devices such as nodes in a sensor network. 
We obtained measurements to assess the overhead of encryption for 
the aforementioned algorithms and platforms. We studied the impact 
of the length of the data to encrypt as well as a variety of processor-
dependent parameters, as mentioned above. Results indicate a mostly 
uniform cycle overhead for each word size (8/16/32 bit) but 
differences between the three word-size classes. The impact on caches 
was negligible while ISA support is limited to specific effects on 
certain algorithms. Specifically, we were surprised to find that RC4 
outperforms RC5 on encryption for the 8 and 16-bit architectures. This 
is particularly interesting since RC5 was chosen for the Atmega in the 
Berkeley Motes SPINS project [12]. Although the choice of RC5 for 
SPINS was due to memory constraints – the block cipher could also be 
used as a hash function – other 8-bit architectures may fare better with 
RC4, as our results show. We also found that hashing techniques 
require almost an order of a magnitude higher overhead. Based on our 
results, we formulate an analytical model to assess the impact of 
arbitrary embedded architectures as a multi-variant function for each 
encryption scheme depending on processor frequency, word width, 
ISA type and specific ISA support. 
The paper is structured as follows. First, we contrast the different 
encryption schemes and embedded platforms. Following this survey, 
we present and interpret measurements from a variety of experiments. 
From these results, we derive an analytical model. Our discussion of 
related as well as future work and a summary of our contributions 
conclude the paper. 

2. ALGORITHMS 
Our choice of algorithms represents popular symmetric encryption and 
hashing function schemes that form an integral part of many security 
protocols. RC4 [2] is used in IEEE 802.11 WEP [13], IDEA [2] and 
MD5 [2],[3] are part of PGP [11], SHA-1 [4] and MD5 [2][3] are 
included in the security architecture for Internet Protocol (IPSEC) 

[14],[10], and RC5 [1] has been suggested as a good algorithm for 
sensor networks [12]. These algorithms offer variety in the mode in 
which they operate and encompass different mathematical and data 
manipulation operations. They work on different word sizes ranging 
from 8 bits to 32 bits, and, hence, help assess the effectiveness of the 
different architectures. Table 1 presents the parameters used in our 
study.  

Table 1: Encryption Schemes and Parameters 
Algorithm Type |key/hash| |Block| 
RC4 [2] stream 128 bits 8 bits 
IDEA [2] block 128 bits 64 bits 
RC5 [1] block 64 bits 64 bits 
MD5 [2][3] 1-way hash 128 bits 512 bits 
SHA1 [4] 1-way hash 128 bits 512 bits 

 
RC4 is a stream cipher symmetric key algorithm. This algorithm is 
quite simple and operations involve the addition of 8 bit elements or 
swapping variables in a 256-byte state table. RC4 supports variable 
length keys. We consider a 128-bit key here. 
IDEA (International Data Encryption Algorithm) is a symmetric-key 
block cipher that operates on 64 bit plaintext blocks. The key is 128 
bits long with the same algorithm used for both encryption and 
decryption. The algorithm primarily includes operations from three 
algebraic groups: XOR, addition modulo 216, multiplication modulo 
216+1. 
RC5 is a fast symmetric block cipher with a variety of parameters: 
block size, key size and number of rounds. We currently focus on a 
RC5 implementation with a 64-bit data block and 64-bit key. It uses 
the XOR, addition and rotation operations. 
MD5 is a one-way hash function that processes the input text in 512 
bit blocks to generate a 128-bit hash value. The mathematical 
operations that are involved in this algorithm are: XOR, AND, OR, 
NOT and rotations. The algorithm also pads plaintext to 512 blocks 
with the last 64 bits of the last block indicating the length of the 
message. 
SHA-1 is also a one-way hash function that produces a 160-bit output 
when any message of any length less than 264 bits is input. The 
operations are similar to MD5 and constitute XOR, AND, OR, NOT 
and rotations. 

3. HARDWARE PLATFORMS 
We evaluate the performance of the cryptographic functions on five 
different embedded processors, which were selected to span a broad 
range of applications from low-end (4 MHz 8-bit Atmel AVR Atmega 
103) to high-end (400 MHz 32-bit Intel XScale). For comparison we 
also evaluate the performance of a workstation (with a 440 MHz 64-bit 
SPARC CPU, operated in 32-bit mode), as depicted in Table 2. 
 

Table 2: Hardware Platforms 
Platform Wordsize clockfreq. I/D-$ 
Atmega 103 8 bits 4 MHz none 
Atmega 128 8 bits 16 MHz none 
M16C/10 16 bits 16 MHz none 
SA-1110 32 bits 206 MHz 16/8KB 
PXA250 32 bits 400 MHz 32/32KB 
UltraSparc2 64/32 bits 440 MHz 16/16KB 
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3.1 Atmega 103/Atmega 128 
The Atmega 103 implements the AVR architecture, a RISC 
architecture featuring 8 bit native word size, 32 general-purpose 
registers, and limited support for 16 bit operations. The processor 
features a two-stage pipeline. This processor lacks multiply and divide 
instructions. Data memory is byte-accessible and byte-aligned. The 
Atmega 103 is in the middle of the performance spectrum of the AVR 
device family. We use an Atmel STK300 evaluation board with a 4 
MHz clock. On-chip memory consists of 4 kilobytes of SRAM and 
128 kilobytes of Flash EEPROM. In addition, 32 kilobytes of external 
SRAM are used (with a one cycle performance penalty). No cache 
exists, and no coprocessor is available. The C compiler used is GCC 
3.0. No operating system is used. 
Running at 16MHz, the Atmega 128 is pin-compatible with the 
Atmega 103 (which runs only at 4 MHz). With its improved clock rate, 
the Atmega 128 is at the high end of the AVR family’s performance 
spectrum. The performance is identical on a cycle-by-cycle basis, with 
the exception of the addition of a two-cycle multiply instruction. Some 
algorithms use multiplication; these were recompiled for the  Atmega 
128 and run to derive new execution times. Algorithms that do not use 
multiplication have identical code whether for the  Atmega 103 and 
128, and they result in identical cycle counts. 

3.2 M16C/10 
The Mitsubishi M30102 implements the company’s M16C ISA, a 
CISC architecture featuring a 16 bit native word size, four general 
purpose registers and six address and pointer registers.  This is a 
widely used architecture in the automotive industry and has been 
available for over ten years. The CPU is not pipelined; the 
manufacturer states 75% of instructions take five or fewer cycles to 
execute. The 16 MHz M30102 is in the middle of the performance 
spectrum of the M16C device family; other devices are available with 
clock rates of 24 MHz. There is no coprocessor available. We use a 
Mitsubishi MSV30102-SKP evaluation board with a 16 MHz 
M30102 and no external memory. No operating system is used. 
This MCU offers 1 KB of SRAM and 24 KB of Flash EEPROM on-
board. No cache exists, and the memory is word-aligned (with a one-
cycle penalty for misaligned accesses). The C compiler used is 
Mitsubishi's nc30 version 3.00.01, and -03 optimization is selected. 

3.3 StrongARM SA-1110 
The SA-1110 is a 32-bit Intel StrongARM RISC processor capable of 
running at up to 206 MHz that implements the ARM v4 architecture. 
The SA-1110 MMUs provide separate 32-entry translation look-aside 
buffers (TLBs) for the instruction and data streams. The SA-1110 
contains 16 Kbytes of instruction cache and 8 KB of data cache.  The 
memory bus interfaces to many device types including DRAM, 
SDRAM and ROM. This processor forms the core of the iPAQ Pocket 
PC, which was the platform we used to perform the measurements. 
The Pocket PC comes with 32 MB of RAM. The operating system 
used was Familiar Linux with code compiled using the GNU gcc 
compiler. 

3.4 XScale PXA250 
The PXA250 is a low-power high-performance 32-bit Intel XScale™ 
core-based CPU (200, 300 and 400 MHz). It is ARM architecture 
v.5TE compliant and a successor to the StrongARM processor. It is 
based on Intel’s superpipelined RISC technology. The PXA250 has 32 
KB of instruction and data caches. This processor is used in iPAQ 
39xx series of Pocket PC 2002 with a RAM of 64 MB and 48 MB 
flash ROM. The iPAQ used in our experiments is powered by Win CE. 

The eVC++ compiler provided by Microsoft was used for generating 
code. 

3.5 UltraSPARC II 
The UltraSPARC II series of microprocessors are 64 bit RISC based 
architectures. They implement the SPARC v9 architecture. It is a 
superscalar, superpipelined micro-architecture. It has an on chip 
instruction cache of 16 KB and on chip data cache of 16 KB. The 
SPARC processor we used has a frequency of  440 MHz. The 
processor has an external cache of 2 MB. The SPARC, unlike the 
embedded architectures, is a generic processor. The Operating System 
used was Sun Solaris with the code compiled in 32-bit mode using 
GNU gcc. 

4. EXPERIMENTS & ANALYSIS 
In this section, we present the results of the execution times 
measurements of the considered algorithms on the various 
microcontroller architectures. We also develop an approximate model 
for the execution times applicable to any microcontroller architecture. 

4.1 Experimental Methods 
Experiments were conducted for each architecture and algorithm. For 
each of the considered platforms, we compiled the same 
implementation of the considered algorithms without any 
modifications. Input lengths were varied for encryption based on 
hashing with fixed-sized packets to assess the effect of algorithmic 
padding up to packet length. The block and hash algorithms operate on 
plaintext that meets specific byte boundaries. In case the plaintext is 
not a multiple of the block size, the plaintext is padded. The RC5 and 
IDEA implementations work on block sizes of 64 bits. The MD5 and 
SHA-1 algorithms work on 512 bit blocks. The plaintext that is input 
to all the symmetric cryptography algorithms is 128 bits long. We 
work with incrementing sizes of plaintext with the hash algorithms 
until we approach the second 512-bit block boundary. For one 
architecture, the XScale, the experiments were conducted for two 
frequency settings, namely 200 MHz and 400 MHz, while memory 
access times remained the same. This experiment was conducted to 
assess the impact of caches on the algorithms, which can be inferred 
since memory fetches on a miss take fewer cycles for lower processor 
frequencies while memory latency remains constant. Each functional 
block of the algorithm, such as initialization, encryption and 
decryption, was executed 1000 times with the same input, and results 
were averaged over these runs. The timing information is obtained as 
system time on all platforms, except for the low-end micro-controllers 
where built-in timers are used. 

4.2 Performance Assessment 
Figure 1 depicts the execution time overhead for each of the 
considered platforms and algorithms on a log scale. These numbers are 
also depicted in Table 3.  For the digest algorithms (MD5 and SHA1), 
we used multiple plaintext sizes to emphasize the non-linear behavior 
of those algorithms with the length of the plaintext. The main reason 
for this nonlinear behavior is the existence of a minimum plaintext size 
(64 bytes) for those algorithms, so smaller messages are padded up to 
the minimum plaintext size. As expected, the slowest microcontroller 
(Atmega 103 –4 MHz), which is also the simplest (from the point of 
view of resources and capabilities), will take the longest time to 
complete any of the analyzed cryptography algorithms. 
A comparison of RC5 and RC4 on Atmega 103 reveals that the 
encrypt times are close to each other. In fact, RC4 is slightly faster. 
However, a similar comparison on StrongARM indicates RC5 is three 
times faster than RC4. This can be attributed to the fact that RC5 
operates on 32-bit words while RC4 operates on 8-bit words. 
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Since the StrongARM utilizes a 32-bit word size, a 32-bit operation 
occurs for every 8 bits needed by RC4, thereby reducing the efficiency 
of the algorithm on higher end architectures. Since RC4 requires 
accesses to the 256-byte state table for encryption of each byte, the 
memory access delay can result in larger execution times, but this 
penalty is almost absent in low-end processors like the Atmega 103. 

A comparison between RC5 and IDEA on the Atmega 103 reveals that 
RC5 is 1.5 times faster than IDEA, although they both work on 64-bit 
blocks. The workhorse of the IDEA algorithm is the multiply 
instruction while for RC5 it is rotations. Although both are costly 
operations on Atmega 103 (since there is a lack of native multiply and 
variable-length bit shifts), the frequency of the operations makes IDEA 
more costly. 
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Figure 1: Execution times [µµµµs] for algorithms, platforms and plaintext sizes [bytes] 

 

Table 3: Execution times [µµµµs] for algorithms, platforms and plaintext sizes [bytes] 
Algorithm Size Action Atmega103 Atmega128 M16C/10 StrongARM Xscale(400) Xscale(200) Sparc(440) 

MD5 0 Digest 5863 1466 1083 46 26 53 23 
 1-26 Digest 5890 1473 1075 46 26 53 23 
 62-80 Digest 10888 2722 2011 74 45 90 39 
          

SHA-1 1 Digest 15249 3812 2651 69 51 102 27 
 3 Digest 15781 3945 5303 69 50 103 27 
 56 Digest 14543 3636 7955 133 102 205 55 
 64 Digest 31107 7777 10907 145 103 207 56 
          

RC5 16 Init 9641 2410 2074 41 45 91 28 
  Enc 1651 413 197 3 3 6 2 
  Dec 1636 409 202 3 3 7 2 
          

IDEA 16 Init enc 1523 381 727 26 21 47 11 
  Init dec 9417 2354 1927 76 35 69 36 
  Enc 2555 325 596 16 8 17 9 
  Dec 2614 325 597 16 8 17 9 
          

RC4  Init 1886 472 2455 155 108 216 96 
  Enc 344 86 123 10 5 9 4 
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Figure 2: Clock cycles for algorithms, platforms and various plaintext sizes [bytes] 
 
To isolate the influence of the existence of a multiply instruction we 
compiled the IDEA algorithm for Atmega 128. Atmega 103 and 
Atmega 128 microcontrollers almost have identical architectures. The 
main difference is that Atmega 128 has a native two cycles multiply 
instruction. Confirming our expectations, the Atmega 128 performs 
significantly better  on IDEA (10220 clock cycles for Atmega 103 vs. 
5200 for Atmega 128), i.e., the performance is comparable to the level 
of RC5. 
To eliminate the influence of the clock frequency (which spans two 
orders of magnitude from 4 MHz for Atmega 103 to 440 MHz for the 
SPARC), Figure 2 depicts the results in terms of clock cycles instead 
of wall-clock time, as in Figure 1. Clock cycles, depicted on a 
logarithmic scale, indicate the overhead in terms of executed 
instructions for scalar architectures. The most significant observation is 
that, depending on the word size of the architecture, cycle overhead 
falls into three classes. Again, consider the impact of the log-scale, 
which causes diverging results to appear closer than they are. Class 
one, the 8-bit architectures, requires additional loops for architectural 
shortcomings, such as a missing variable-length bit-shift operation. 
Instead, the Atmega has to resort to a sequence of single bit-shifts. 
Class two, the 16-bit architectures, lie between the 8-bit and 32-bit 
neighbors, as expected. Class three, the 32-bit architectures, comprises 
a third range of cycle overheads fairly close to each other (StrongARM, 
XScale and SPARC). 
In some cases, the results for the Atmega 103 and the M16C/10 are 
surprisingly close, which can be attributed to multi-cycle instructions 
on M16C/10, while the Atmega 128, a RISC with multiply support, 
performs significantly better. This shows that a RISC design can 
compensate for its limited instruction set and bus width. 
The SA1110 and the XScale exhibit similar performance, which stems 
from their common RISC based ISA at identical bus widths. Both 
these processors outperform 8-bit and 16-bit micro-controllers roughly 
by a factor of two. Finally, the SPARC processor, outperformed all 
other processors in most cases, both in absolute time as well as in 
clock cycles. This performance of the SPARC is due to a combination 
of its instruction parallelism (super-scalar RISC design) and multi-

level cache hierarchy. Recall that SPARC executables were compiled 
for the 32-bit SPARC binary format, which means that the SPARC 
should be treated as a 32-bit architecture in these experiments since its 
64-bit design is not being exploited. Notice that the XScale performed 
slightly better than the SPARC for SHA-1 and IDEA encodes/decodes, 
which can be attributes to the XScale’s larger L1 caches (without L2) 
and faster memory. Overall, the impact of caches is small. This is 
realistic given that communicated data will be cached prior/after 
communication for pre-/post-processing, respectively. Hence, 
messages in excess of 80 bytes should not result in significant changes. 
Comparing the two message digest algorithms (MD5 and SHA1), we 
show that prior results [8,9] extend to embedded architectures: MD5 is 
significantly faster than SHA1. Similarly, the symmetric key 
encryption of RC5 outperforms IDEA. The initialization overheads are 
significant for all encryption algorithms (RC5, IDEA and RC4), 
especially for small plaintexts (as previously reported for general-
purpose ISAs in [11]). 
From these results, clear factors emerge in terms of the effect of word 
size and architecture, memory access latency, costliness of basic 
operations (such as multiply and rotations) on the overall performance. 
We also studied the variance of execution times, which is of particular 
interest for real-time systems. Results indicate that variances in 
execution times rarely occur for most encryption algorithms since data 
processing proceeds without case distinctions, and data accesses tend 
to be regular as well as pre-cached at encryption time. Few exceptions 
exist, which are caused by data dependencies, but even then alternate 
paths tend to be balanced. In general, the algorithms do not contain 
significant differences in execution due to conditionals, nor do they 
vary depending on the input length since data padding up to packet 
size is applied. Hence, our results are not only valuable to assess the 
feasibility of encryption schemes for arbitrary embedded architectures, 
they also impact the analysis of worst-case execution times suitable for 
schedulability analysis in the context of real-time systems. 
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4.3 Impact of Native Data Size 
After normalizing the different clock frequencies in Figure 2, we still 
observe a significant performance gap between different classes of 

processors. More precisely, architectures with larger word size perform 
better than architectures with smaller words. 
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Figure 3: Normalized overhead for algorithms, platforms and plaintext sizes [bytes] 

This is expected because most cryptographic methods use operations 
on large words. Naturally, implementing large bit operations on 
architectures with large bus widths is more efficient than 
implementations on those with a small bus. For a meaningful 
comparison of different architectures, we consider the influence of 
various bus sizes. Figure 3 shows the time measurements normalized 
both as a function of the clock frequency and of the bus width, and 
then compared with (divided by) the SPARC processor performance. 
The lower a bar is, the more efficient its ISA and the better it is able to 
use its native word width. Bars below 1 are possible due to other ISA 
factors which improve efficiency relative to the baseline architecture, 
such as single-cycle multibit shifting and fast memory access. 
The results in Figure 3 show that the performance overhead 
normalized by the word width and relative to the reference architecture 
(SPARC) is surprisingly close for most algorithms and platforms. By 
normalizing by the word size, we introduce a novel metric that 
provides a refreshing view from a different angle. The surprisingly 
close results were somewhat unexpected given the significant 
differences not accounted for in the normalization operation (number 
of registers, availability of certain instructions in the ISA, presence and 
size of cache memory, RISC/CISC architecture etc.). Hence, we 
conclude that, on the average, these variables do not influence the 
execution times significantly. 
Figure 3 also depicts a few outliers. The M16C performs poorly on our 
metric for SHA-1, which indicates architectural problems with data 
sizes and operations of the algorithm. Furthermore, the Atmega 
microcontrollers are leading the pack with the lowest normalized 
performance overhead for some algorithms (MD5, IDEA, RC4). This 
can be explained by the fact that only some operations benefit from 
larger bus sizes while others, such as branch operations, do not. In 
other words, the Atmega is a remarkably efficient RISC architecture 
that fares well considering its small bus width. Based on these results, 
a hypothetical Atmega processor at high processor frequencies might 
outperform any of the other architectures. 

4.4 Code Memory Size 

 
Figure 4: Code sizes for algorithms 

 
Sensor nodes may be implemented with low-cost processors which 
lack large amounts of program memory, making code size important. 
Figure 4 shows the code sizes for the cryptographic functions but 
excludes all scaffolding, library and other code. MD5 requires 
significantly more code than other algorithms, while RC4 is the most 
efficient. The AVR architecture requires significantly more space than 
other ISAs for its code due to its limited instruction set and eight-bit 
native data. Finally, the StrongARM requires much more memory than 
the other 32 bit architectures, which appears to be due to the 
development tools. 

4.5 Performance Model 
We observed that the word length and architectural features, namely 
the complexity of the ISA (RISC vs. CISC) and support for certain 
ALU operations (variable-sized shifts, multiply) are the causes of 
variations. From these findings and the experimental data, we can 
derive a multi-variant model that allows the interpolation of 
performance for other architectures. The objectives of such a model are 
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threefold. First, the feasibility of existing encryption schemes can be 
derived by just implementing one scheme on an architecture. Second, 
encryption overhead can be assessed based on architectural parameters 
to drive architecture design for a specific encryption scheme and 
formulate minimum requirements. Third, new encryption schemes 
only need to be assessed on a subset of reference platforms while their 
performance on other platforms can be derived from the model. 
First, a simple model is introduced. The results of this model is 
imprecise as there are many variables that influence the execution 
times of any program (e.g., the presence of variable-sized bit shift and 
multiplication instructions, presence and size of cache memory, RISC 
vs. CISC design etc.). The objective of this model is to aid a designer 
in computing a rough estimate of the execution times for a given 
encryption algorithm and a particular microprocessor. This rough 
estimate is especially useful for new architectures. It will allows one  to 
assess if a certain encryption (or hashing) will meet given timing 
constraints for this particular algorithm, on a projected architecture. 
Hence, the objective is provide approximate (accurate to a factor of 
two) execution times of the algorithms. We derived the following 
performance model: 

  (1)
bus_widthfreqprocessor_

blocksizeh / text_lengtba(txt_len)t exec •
•+≈

where    is the ceiling function, text_length is the size of the plaintext 
in bytes, processor_frequency and bus_width are the frequency and 
bus width of the microcontroller, respectively. The parameters a and b 
depend on the algorithm being evaluated, and block_size is the size of 
the blocks in the algorithm. Parameter a includes all the initialization 
overheads while b captures the time spent in operations repeated for 
each block. 
For the algorithms considered, we derive the parameters a and b, 
which minimize the least square relative error as given in Table 4. 
Checking the model against the measured results, one can see that 
most values are within 10%--20% of the measured value. For some 
measurements and architectures the error is almost twice (or half) of 
the measured value. This motivates the need to refine the model, as 
discussed in the following. 
The model in (1) is refined to account for other parameters that affect 
the execution times. For example, some algorithms can take advantage 
of the existence of a multiply instruction. In Figure 3, it becomes 
evident that the architecture of the microprocessor (RISC vs CISC) 
favors the short instructions of the RISC architecture. 

Table 4: Parameters for performance model 

Algorithm A B blksize(bits) 

MD5 203656 86298 512 

SHA1 60980 458660 512 

RC5 
init/encrypt 

352114 40061 64 

RC5 
init/decrypt 

352114 39981 64 

IDEA encrypt 67751 80617 64 

IDEA decrypt 385562 84066 64 

RC4 68540 13591 8 

Therefore, a more detailed model for the parameters a and b can be 
derived as follows: 

(3)                              bbbb                       
(2)                               aaaa                       

RISCMULBASE

RISCMULBASE

++=
++=

where aBASE and bBASE are the base parameters shown in Table 4, aMUL 
and bMUL are adjustments of those parameters, which take into account 
the presence of absence of a multiplication instruction, and aRISC and 
bRISC take into account the type of the microprocessor architecture 
(CISC/RISC). For algorithms not using multiplication (e.g., MD5), the 
adjustments aMUL and bMUL will be zero. For algorithms that can 
take advantage of a multiplication operation (e.g., IDEA) the 
parameters aMUL and bMUL can be computed by comparing the 
results for Atmega 103, which does not have the multiplication 
instruction, and the other microcontrollers. The adjustments aMUL 
and bMUL resulting from this comparison for the IDEA encryption 
algorithm are: 
Table 5: Parameters aMUL and bMUL for the the IDEA encryption 

algorithm 
 aMUL bMUL 

w/ MUL instr. 19016 -1143 
w/o MUL instr. -14330 8252 

 
Similarly, the influence of the CISC vs. RISC architectures can be 
separated by considering the M16C/10 (CISC) and the other 
microcontrollers, which all are RISC architectures. 
For example, for the MD5 the parameters aRISC and bRISC are: 
Table 6: Parameters aRISC and bRISC for the the IDEA encryption 

algorithm 
 aRISC bRISC 
RISC 3207 1661 
CISC 77175 -103593 

 
Using the model presented, one can predict the performance of a 
particular algorithm on a specific architecture even before the 
architecture is implemented. In Figure 5, the measured times and the 
predicted times are plotted as a function of the length of the plaintext 
for MD5 for a few of the architectures considered in this paper. 

5. RELATED WORK 
Prior work has shown that public key cryptographic algorithms can be 
a viable solution for constrained high-end wireless devices [6].  RSA 
key generation on smart cards [20] further shows that the generation of 
up to 1024 bit prime numbers is costly both in terms of time and 
energy for embedded systems (~20 sec on a 3.57 MHz Infineon 
SLE66CX160S). Even if keys were pre-generated, communication of 
lengthy public keys as well as their storage for each sensor node in 
range adds to these costs. Multiply operations in cryptographic 
schemes as a potential source of power consumption has been 
evaluated on low-end microcontrollers [17]. A secure architecture for 
constrained systems (like sensors) has been implemented in SPINS 
[12]. 
Other papers have analyzed the timing of encryption algorithms on 
higher end machines such as the performance analysis of MD5 [21] 
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where timing requirements on various high-end architectures have 
been shown and in [16] where various symmetric key ciphers’ 
performance have been measured in cycles and analyzed.  Change in 
various processing times with changes in MIPS capability of a 
processor has been modeled [14]. Some symmetric and asymmetric 
key algorithms have been evaluated on higher end microprocessors on 
the basis of power consumption [7]. Cryptographic overhead for 
performance critical systems [22] using a hash, secret key and public 
key examples for high-end and one embedded architecture (16MHz 
Motorola 68K). Also, general benchmarks for speed have been 
computed on a Celeron processor [8]. Our work attempts to bridge the 
gaps by assessing the performance of algorithms on different platforms 
and evaluates the overhead of each algorithm on different architectures. 
To our knowledge, there is currently no published work that focuses 
on evaluation of different cryptographic algorithms on embedded 
architectures, particularly for low-end systems, such as 8-bit and 16-bit 
architectures. 

6. FUTURE WORK 
Our proposed model helps to extrapolate the performance of a 
algorithm on different platforms. This could be enhanced to consider  

individual operations in each algorithm and provide a generic model 
where performance of any algorithm on any platform can be 
extrapolated. Many ad-hoc network security protocol schemes suggest 
the use of a variety of cryptographic algorithms. The model could be 
scaled to estimate the performance of these schemes. There are also 
some fast encryption algorithm, such as SEAL 3.0 [17], TEA [18] or 
TREYFER [19], that show very good performance in software 
implementations. These could be evaluated. However, more 
information on the strengths of these algorithms is necessary. 

7. CONCLUSION 
In this paper, we presented a survey investigating the computational 
requirements for a number of cryptographic algorithms and embedded 
architectures. The measurements obtained cover a wide class of 
commonly used encryption protocols and determine the impact of 
embedded architectures on  
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performance. Our experiments indicate a mostly uniform cycle 
overhead for each word size (8/16/32 bit) but differences between the 
three word-size classes. The impact on caches is negligible while ISA 
support is limited to specific effects on certain algorithms. Specifically, 
we were surprised to find that RC4 outperforms RC5 on encryption in 
low-end processors, compared to the choice of RC5 for current sensor 
networks [12]. Hashing techniques require almost an order of a 
magnitude higher overhead. 
We also derived a model to assess the computational overhead of 
embedded architectures for encryption protocols in general. Our 
analytical model assesses the impact of arbitrary embedded 
architectures as a multi-variant function for each encryption scheme 
depending on processor frequency, word width, ISA type and specific 
ISA support. This allows one to project computational limitations and 
determine the threshold of feasible encryption schemes under a set of 
the constraints for an embedded architecture. 
Overall, our results are not only valuable to assess the feasibility of 
encryption schemes for arbitrary embedded architectures, but they also 
provide the basis for modeling encryption overheads across platforms. 
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