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ABSTRACT

Recent research in sensor networks has raised security issues for small
embedded devices. Security concerns are motivated by the deployment
of a large number of sensory devices in the field. Limitations in
processing power, battery life, communication bandwidth and memory
constrain the applicability of existing cryptography standards for small
embedded devices. A mismatch between wide arithmetic for security
(32 bit word operations) and embedded data bus widths (often only 8
or 16 bits) combined with lack of certain operations (e.g., multiply) in
the ISA present other challenges.

This paper offers two contributions. First, a survey investigating the
computational requirements for a number of popular cryptographic
algorithms and embedded architectures is presented. The objective of
this work is to cover a wide class of commonly used encryption
algorithms and to determine the impact of embedded architectures on
their performance. This will help designers predict a system’s
performance for cryptographic tasks. Second, methods to derive the
computational overhead of embedded architectures in general for
encryption algorithms are developed. This allows one to project
computational limitations and determine the threshold of feasible
encryption schemes under a set of the constraints for an embedded
architecture.

Experimental measurements indicate uniform cryptographic cost for
each encryption class and each architecture class and negligible impact
of caches. RC4 is shown to outperform RC5 for the Motes Atmega
platform contrary to the choice of RCS for the Motes project, a choice
driven in large by memory constraints. The analytical model allows to
assess the impact of arbitrary embedded architectures as a multi-variant
function for each encryption scheme. Overall, our results are not only
valuable to assess the feasibility of encryption schemes for existing
embedded architectures, they also extend to assess the feasibility of
encryption methods for new algorithms and architectures for sensor
systems.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks] Network Architecture
and Design - Wireless communication
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C.3 Special-Purpose and Application-Based Systems - Real-time and
embedded systems

C.4 Performance of Systems - Modeling techniques
D.2.8 [Software Engineering] Metrics — Performance measures
E.3 Data Encryption

General Terms
Security, Performance, Measurement

Keywords

Sensor networks, encryption overhead, analysis, model, embedded
systems.

1. INTRODUCTION

Security is a well-established field for general-purpose computing.
Security mechanisms address computing services, such as
authentication for user admission, intrusion detection and prevention
as well as counter-measures for other forms of attacks (e.g., denial of
service) and data protection in storage, in e-mails or to provide secure
transactions. This paper focuses on the last aspect, namely, data
protection mechanisms provided by encryption techniques. The
objective of this paper is to study the impact of a variety of encryption
techniques for embedded architectures instead of general-purpose
processors.

Embedded systems have a long history in the context of transaction
processing, for example, cash transactions at teller machines. However,
security measures have typically focused on physical access
restrictions as well as software measures to disable a device if attempts
to tamper with it are suspected. Recent developments have changed
this focus. On the one side, embedded architectures provide a wider
range of processing power, which allows more sophisticated security
responses, in particular for high-end embedded systems. On the other
side, new application areas in embedded systems require secure
communication. For example, recent work in sensor networks includes
data encryption considerations [12]. Sensor networks allow the
collection of data from low-end sensor nodes in the field. This data is
communicated over non-secure channels, such as radio frequencies,
through routers (in the latest design) and, ultimately, to a base station
for further processing and decision making. Applications range from
battlefield surveillance over data collection to study environmental
impacts to medical observation. Beyond sensor networks, embedded
processors are increasingly deployed with network connections, such
as in PDAs with wireless communication (802.11b), e.g., for the Ipaq
Pocket PCs used in this study [23]. The objective of data encryption in



such settings is to ensure that data can only be interpreted by
authorized recipients.

In this paper, we assess the feasibility of different encryption schemes
for a range of embedded architectures. We determine architectural
impacts on the performance of encryption as well as algorithmic
properties of the selected encryption schemes. The particular
embedded platforms were chosen to cover a wide range of embedded
devices. Measurements were obtained for six different architectures,
ranging in word size from 8 (Atmel AVR) over 16 (Mitsubishi M16C)
to 32-bit width (StrongARM, XScale) to cover low-end, medium and
high-end embedded processors, respectively. As a baseline for
comparison, one general-purpose architecture (SPARC) was also
included as a reference point. Future encryption schemes need only be
evaluated on reference architectures to derive the overhead for other
architectures. Other reference architectures are those with differing
ISA support for encryption, as detailed in the evaluation. The analysis
takes into account features of architectures, such as processor
frequency, ISA characteristics, such as RISC vs. CISC, support for
variable-sized bit shifts or native multiply, and the impact of memory
hierarchies for architectures with caches.

Five popular encryption schemes were chosen for the study ranging
from stream ciphers (RC4) over block ciphers (RC5, IDEA) to hashing
techniques (SHA-1, MDS5). This choice was driven by the objective to
assess encryption schemes with different overheads that provide
increasing levels of protection. Most significantly, the algorithmic
choice is motivated by the constraints of embedded architectures.
Public key encryption schemes do not appear to be feasible on current
low-end embedded systems, not only because of code/data size and
processing constraints but also due to their high demand on power
consumption, which would severely limit the lifetime of mobile
devices such as nodes in a sensor network.

We obtained measurements to assess the overhead of encryption for
the aforementioned algorithms and platforms. We studied the impact
of the length of the data to encrypt as well as a variety of processor-
dependent parameters, as mentioned above. Results indicate a mostly
uniform cycle overhead for each word size (8/16/32 bit) but
differences between the three word-size classes. The impact on caches
was negligible while ISA support is limited to specific effects on
certain algorithms. Specifically, we were surprised to find that RC4
outperforms RC5 on encryption for the 8 and 16-bit architectures. This
is particularly interesting since RC5 was chosen for the Atmega in the
Berkeley Motes SPINS project [12]. Although the choice of RC5 for
SPINS was due to memory constraints — the block cipher could also be
used as a hash function — other 8-bit architectures may fare better with
RC4, as our results show. We also found that hashing techniques
require almost an order of a magnitude higher overhead. Based on our
results, we formulate an analytical model to assess the impact of
arbitrary embedded architectures as a multi-variant function for each
encryption scheme depending on processor frequency, word width,
ISA type and specific ISA support.

The paper is structured as follows. First, we contrast the different
encryption schemes and embedded platforms. Following this survey,
we present and interpret measurements from a variety of experiments.
From these results, we derive an analytical model. Our discussion of
related as well as future work and a summary of our contributions
conclude the paper.

2. ALGORITHMS

Our choice of algorithms represents popular symmetric encryption and
hashing function schemes that form an integral part of many security
protocols. RC4 [2] is used in IEEE 802.11 WEP [13], IDEA [2] and
MDS5 [2],[3] are part of PGP [11], SHA-1 [4] and MD5 [2][3] are
included in the security architecture for Internet Protocol (IPSEC)
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[14],[10], and RCS5 [1] has been suggested as a good algorithm for
sensor networks [12]. These algorithms offer variety in the mode in
which they operate and encompass different mathematical and data
manipulation operations. They work on different word sizes ranging
from 8 bits to 32 bits, and, hence, help assess the effectiveness of the
different architectures. Table 1 presents the parameters used in our
study.

Table 1: Encryption Schemes and Parameters

RC4 2] stream 128 bits 8 bits

IDEA [2] block 128 bits 64 bits
RC5 (1] block 64 bits 64 bits
MDS5 [2][3] 1-way hash 128 bits 512 bits
SHAI [4] 1-way hash 128 bits 512 bits

RC4 is a stream cipher symmetric key algorithm. This algorithm is
quite simple and operations involve the addition of 8 bit elements or
swapping variables in a 256-byte state table. RC4 supports variable
length keys. We consider a 128-bit key here.

IDEA (International Data Encryption Algorithm) is a symmetric-key
block cipher that operates on 64 bit plaintext blocks. The key is 128
bits long with the same algorithm used for both encryption and
decryption. The algorithm primarily includes operations from three
algebraic groups: XOR, addition modulo 216, multiplication modulo
216+1.

RC5 is a fast symmetric block cipher with a variety of parameters:
block size, key size and number of rounds. We currently focus on a
RCS5 implementation with a 64-bit data block and 64-bit key. It uses
the XOR, addition and rotation operations.

MDS5 is a one-way hash function that processes the input text in 512
bit blocks to generate a 128-bit hash value. The mathematical
operations that are involved in this algorithm are: XOR, AND, OR,
NOT and rotations. The algorithm also pads plaintext to 512 blocks
with the last 64 bits of the last block indicating the length of the
message.

SHA-1 is also a one-way hash function that produces a 160-bit output
when any message of any length less than 264 bits is input. The
operations are similar to MDS5 and constitute XOR, AND, OR, NOT
and rotations.

3. HARDWARE PLATFORMS

We evaluate the performance of the cryptographic functions on five
different embedded processors, which were selected to span a broad
range of applications from low-end (4 MHz 8-bit Atmel AVR Atmega
103) to high-end (400 MHz 32-bit Intel XScale). For comparison we
also evaluate the performance of a workstation (with a 440 MHz 64-bit
SPARC CPU, operated in 32-bit mode), as depicted in Table 2.

Table 2: Hardware Platforms

Atmega 103 8 bits 4 MHz none
Atmega 128 8 bits 16 MHz none
M16C/10 16 bits 16 MHz none
SA-1110 32 bits 206 MHz 16/8KB
PXA250 32 bits 400 MHz 32/32KB
UltraSparc2 64/32 bits 440 MHz 16/16KB




3.1 Atmega 103/Atmega 128

The Atmega 103 implements the AVR architecture, a RISC
architecture featuring 8 bit native word size, 32 general-purpose
registers, and limited support for 16 bit operations. The processor
features a two-stage pipeline. This processor lacks multiply and divide
instructions. Data memory is byte-accessible and byte-aligned. The
Atmega 103 is in the middle of the performance spectrum of the AVR
device family. We use an Atmel STK300 evaluation board with a 4
MHz clock. On-chip memory consists of 4 kilobytes of SRAM and
128 kilobytes of Flash EEPROM. In addition, 32 kilobytes of external
SRAM are used (with a one cycle performance penalty). No cache
exists, and no coprocessor is available. The C compiler used is GCC
3.0. No operating system is used.

Running at 16MHz, the Atmega 128 is pin-compatible with the
Atmega 103 (which runs only at 4 MHz). With its improved clock rate,
the Atmega 128 is at the high end of the AVR family’s performance
spectrum. The performance is identical on a cycle-by-cycle basis, with
the exception of the addition of a two-cycle multiply instruction. Some
algorithms use multiplication; these were recompiled for the Atmega
128 and run to derive new execution times. Algorithms that do not use
multiplication have identical code whether for the Atmega 103 and
128, and they result in identical cycle counts.

3.2 M16C/10

The Mitsubishi M30102 implements the company’s M16C ISA, a
CISC architecture featuring a 16 bit native word size, four general
purpose registers and six address and pointer registers. This is a
widely used architecture in the automotive industry and has been
available for over ten years. The CPU is not pipelined; the
manufacturer states 75% of instructions take five or fewer cycles to
execute. The 16 MHz M30102 is in the middle of the performance
spectrum of the M16C device family; other devices are available with
clock rates of 24 MHz. There is no coprocessor available. We use a
Mitsubishi MSV30102-SKP evaluation board with a 16 MHz
M30102 and no external memory. No operating system is used.

This MCU offers 1 KB of SRAM and 24 KB of Flash EEPROM on-
board. No cache exists, and the memory is word-aligned (with a one-
cycle penalty for misaligned accesses). The C compiler used is
Mitsubishi's nc30 version 3.00.01, and -03 optimization is selected.

3.3 StrongARM SA-1110

The SA-1110 is a 32-bit Intel StrongARM RISC processor capable of
running at up to 206 MHz that implements the ARM v4 architecture.
The SA-1110 MMUs provide separate 32-entry translation look-aside
buffers (TLBs) for the instruction and data streams. The SA-1110
contains 16 Kbytes of instruction cache and 8 KB of data cache. The
memory bus interfaces to many device types including DRAM,
SDRAM and ROM. This processor forms the core of the iPAQ Pocket
PC, which was the platform we used to perform the measurements.
The Pocket PC comes with 32 MB of RAM. The operating system
used was Familiar Linux with code compiled using the GNU gcc
compiler.

3.4 XScale PXA250

The PXA250 is a low-power high-performance 32-bit Intel XScale™
core-based CPU (200, 300 and 400 MHz). It is ARM architecture
v.5TE compliant and a successor to the StrongARM processor. It is
based on Intel’s superpipelined RISC technology. The PXA250 has 32
KB of instruction and data caches. This processor is used in iPAQ
39xx series of Pocket PC 2002 with a RAM of 64 MB and 48 MB
flash ROM. The iPAQ used in our experiments is powered by Win CE.
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The eVC++ compiler provided by Microsoft was used for generating
code.

3.5 UltraSPARCII

The UltraSPARC 1I series of microprocessors are 64 bit RISC based
architectures. They implement the SPARC v9 architecture. It is a
superscalar, superpipelined micro-architecture. It has an on chip
instruction cache of 16 KB and on chip data cache of 16 KB. The
SPARC processor we used has a frequency of 440 MHz. The
processor has an external cache of 2 MB. The SPARC, unlike the
embedded architectures, is a generic processor. The Operating System
used was Sun Solaris with the code compiled in 32-bit mode using
GNU gcc.

4. EXPERIMENTS & ANALYSIS

In this section, we present the results of the execution times
measurements of the considered algorithms on the various
microcontroller architectures. We also develop an approximate model
for the execution times applicable to any microcontroller architecture.

4.1 Experimental Methods

Experiments were conducted for each architecture and algorithm. For
each of the considered platforms, we compiled the same
implementation of the considered algorithms without any
modifications. Input lengths were varied for encryption based on
hashing with fixed-sized packets to assess the effect of algorithmic
padding up to packet length. The block and hash algorithms operate on
plaintext that meets specific byte boundaries. In case the plaintext is
not a multiple of the block size, the plaintext is padded. The RC5 and
IDEA implementations work on block sizes of 64 bits. The MDS and
SHA-1 algorithms work on 512 bit blocks. The plaintext that is input
to all the symmetric cryptography algorithms is 128 bits long. We
work with incrementing sizes of plaintext with the hash algorithms
until we approach the second 512-bit block boundary. For one
architecture, the XScale, the experiments were conducted for two
frequency settings, namely 200 MHz and 400 MHz, while memory
access times remained the same. This experiment was conducted to
assess the impact of caches on the algorithms, which can be inferred
since memory fetches on a miss take fewer cycles for lower processor
frequencies while memory latency remains constant. Each functional
block of the algorithm, such as initialization, encryption and
decryption, was executed 1000 times with the same input, and results
were averaged over these runs. The timing information is obtained as
system time on all platforms, except for the low-end micro-controllers
where built-in timers are used.

4.2 Performance Assessment

Figure 1 depicts the execution time overhead for each of the
considered platforms and algorithms on a log scale. These numbers are
also depicted in Table 3. For the digest algorithms (MD5 and SHA1),
we used multiple plaintext sizes to emphasize the non-linear behavior
of those algorithms with the length of the plaintext. The main reason
for this nonlinear behavior is the existence of a minimum plaintext size
(64 bytes) for those algorithms, so smaller messages are padded up to
the minimum plaintext size. As expected, the slowest microcontroller
(Atmega 103 -4 MHz), which is also the simplest (from the point of
view of resources and capabilities), will take the longest time to
complete any of the analyzed cryptography algorithms.

A comparison of RC5 and RC4 on Atmega 103 reveals that the
encrypt times are close to each other. In fact, RC4 is slightly faster.
However, a similar comparison on StrongARM indicates RCS5 is three
times faster than RC4. This can be attributed to the fact that RCS
operates on 32-bit words while RC4 operates on 8-bit words.



Since the StrongARM utilizes a 32-bit word size, a 32-bit operation
occurs for every 8 bits needed by RC4, thereby reducing the efficiency
of the algorithm on higher end architectures. Since RC4 requires
accesses to the 256-byte state table for encryption of each byte, the
memory access delay can result in larger execution times, but this
penalty is almost absent in low-end processors like the Atmega 103.

A comparison between RC5 and IDEA on the Atmega 103 reveals that
RCS5 is 1.5 times faster than IDEA, although they both work on 64-bit
blocks. The workhorse of the IDEA algorithm is the multiply
instruction while for RC5 it is rotations. Although both are costly
operations on Atmega 103 (since there is a lack of native multiply and
variable-length bit shifts), the frequency of the operations makes IDEA
more costly.
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Figure 1: Execution times [us] for algorithms, platforms and plaintext sizes [bytes]
Table 3: Execution times [us] for algorithms, platforms and plaintext sizes [bytes]
Algorithm | Size | Action | Atmega103 | Atmegal28 | M16C/10 | StrongARM | Xscale(400) | Xscale(200) Sparc(440)
MD5 0 | Digest 5863 1466 1083 46 26 53 23
1-26 | Digest 5890 1473 1075 46 26 53 23
62-80| Digest 10888 2722 2011 74 45 90 39
SHA-1 1 | Digest 15249 3812 2651 69 51 102 27
3 | Digest 15781 3945 5303 69 50 103 27
56 | Digest 14543 3636 7955 133 102 205 55
64 | Digest 31107 7777 10907 145 103 207 56
RC5 16 Init 9641 2410 2074 41 45 91 28
Enc 1651 413 197 3 3 6 2
Dec 1636 409 202
IDEA 16 | Initenc 1523 381 727 26 21 47 11
Init dec 9417 2354 1927 76 35 69 36
Enc 2555 325 596 16 17
Dec 2614 325 597 16 8 17 9
RC4 Init 1886 472 2455 155 108 216 96
Enc 344 86 123 10 5 9 4
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Figure 2: Clock cycles for algorithms, platforms and various plaintext sizes [bytes]

To isolate the influence of the existence of a multiply instruction we
compiled the IDEA algorithm for Atmega 128. Atmega 103 and
Atmega 128 microcontrollers almost have identical architectures. The
main difference is that Atmega 128 has a native two cycles multiply
instruction. Confirming our expectations, the Atmega 128 performs
significantly better on IDEA (10220 clock cycles for Atmega 103 vs.
5200 for Atmega 128), i.e., the performance is comparable to the level
of RCS.

To eliminate the influence of the clock frequency (which spans two
orders of magnitude from 4 MHz for Atmega 103 to 440 MHz for the
SPARC), Figure 2 depicts the results in terms of clock cycles instead
of wall-clock time, as in Figure 1. Clock cycles, depicted on a
logarithmic scale, indicate the overhead in terms of executed
instructions for scalar architectures. The most significant observation is
that, depending on the word size of the architecture, cycle overhead
falls into three classes. Again, consider the impact of the log-scale,
which causes diverging results to appear closer than they are. Class
one, the 8-bit architectures, requires additional loops for architectural
shortcomings, such as a missing variable-length bit-shift operation.
Instead, the Atmega has to resort to a sequence of single bit-shifts.
Class two, the 16-bit architectures, lie between the 8-bit and 32-bit
neighbors, as expected. Class three, the 32-bit architectures, comprises
a third range of cycle overheads fairly close to each other (StrongARM,
XScale and SPARC).

In some cases, the results for the Atmega 103 and the M16C/10 are
surprisingly close, which can be attributed to multi-cycle instructions
on M16C/10, while the Atmega 128, a RISC with multiply support,
performs significantly better. This shows that a RISC design can
compensate for its limited instruction set and bus width.

The SA1110 and the XScale exhibit similar performance, which stems
from their common RISC based ISA at identical bus widths. Both
these processors outperform 8-bit and 16-bit micro-controllers roughly
by a factor of two. Finally, the SPARC processor, outperformed all
other processors in most cases, both in absolute time as well as in
clock cycles. This performance of the SPARC is due to a combination
of its instruction parallelism (super-scalar RISC design) and multi-
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level cache hierarchy. Recall that SPARC executables were compiled
for the 32-bit SPARC binary format, which means that the SPARC
should be treated as a 32-bit architecture in these experiments since its
64-bit design is not being exploited. Notice that the XScale performed
slightly better than the SPARC for SHA-1 and IDEA encodes/decodes,
which can be attributes to the XScale’s larger L1 caches (without L2)
and faster memory. Overall, the impact of caches is small. This is
realistic given that communicated data will be cached prior/after
communication for pre-/post-processing, respectively. Hence,
messages in excess of 80 bytes should not result in significant changes.

Comparing the two message digest algorithms (MDS5 and SHAI), we
show that prior results [8,9] extend to embedded architectures: MD5 is
significantly faster than SHAI. Similarly, the symmetric key
encryption of RC5 outperforms IDEA. The initialization overheads are
significant for all encryption algorithms (RCS5, IDEA and RC4),
especially for small plaintexts (as previously reported for general-
purpose ISAs in [11]).

From these results, clear factors emerge in terms of the effect of word
size and architecture, memory access latency, costliness of basic
operations (such as multiply and rotations) on the overall performance.
We also studied the variance of execution times, which is of particular
interest for real-time systems. Results indicate that variances in
execution times rarely occur for most encryption algorithms since data
processing proceeds without case distinctions, and data accesses tend
to be regular as well as pre-cached at encryption time. Few exceptions
exist, which are caused by data dependencies, but even then alternate
paths tend to be balanced. In general, the algorithms do not contain
significant differences in execution due to conditionals, nor do they
vary depending on the input length since data padding up to packet
size is applied. Hence, our results are not only valuable to assess the
feasibility of encryption schemes for arbitrary embedded architectures,
they also impact the analysis of worst-case execution times suitable for
schedulability analysis in the context of real-time systems.



4.3 Impact of Native Data Size

After normalizing the different clock frequencies in Figure 2, we still
observe a significant performance gap between different classes of

processors. More precisely, architectures with larger word size perform
better than architectures with smaller words.

4 mAtmega103 mAtmega128 OM16C/10 [ StrongARM
] M |0OXscale(200) m Xscale(400) m Sparc(440)

3

2 R )

Normalized cycles*bits in word

o w Digst |
& Digst |

o

Figure 3: Normalized overhead for algorithms, platforms and plaintext sizes [bytes]

This is expected because most cryptographic methods use operations
on large words. Naturally, implementing large bit operations on
architectures with large bus widths is more efficient than
implementations on those with a small bus. For a meaningful
comparison of different architectures, we consider the influence of
various bus sizes. Figure 3 shows the time measurements normalized
both as a function of the clock frequency and of the bus width, and
then compared with (divided by) the SPARC processor performance.
The lower a bar is, the more efficient its ISA and the better it is able to
use its native word width. Bars below 1 are possible due to other ISA
factors which improve efficiency relative to the baseline architecture,
such as single-cycle multibit shifting and fast memory access.

The results in Figure 3 show that the performance overhead
normalized by the word width and relative to the reference architecture
(SPARC) is surprisingly close for most algorithms and platforms. By
normalizing by the word size, we introduce a novel metric that
provides a refreshing view from a different angle. The surprisingly
close results were somewhat unexpected given the significant
differences not accounted for in the normalization operation (number
of registers, availability of certain instructions in the ISA, presence and
size of cache memory, RISC/CISC architecture etc.). Hence, we
conclude that, on the average, these variables do not influence the
execution times significantly.

Figure 3 also depicts a few outliers. The M16C performs poorly on our
metric for SHA-1, which indicates architectural problems with data
sizes and operations of the algorithm. Furthermore, the Atmega
microcontrollers are leading the pack with the lowest normalized
performance overhead for some algorithms (MDS5, IDEA, RC4). This
can be explained by the fact that only some operations benefit from
larger bus sizes while others, such as branch operations, do not. In
other words, the Atmega is a remarkably efficient RISC architecture
that fares well considering its small bus width. Based on these results,
a hypothetical Atmega processor at high processor frequencies might
outperform any of the other architectures.

156

[
Ll
0
0
4.4 Code Memory Size
12000
_ B AVR B M16C
- 10000 01 SPARC O Xscale
% 8000 H StrongARM
2
N 6000 —
(7]
£ 4000
S
2000 H n
0 4
MD5 SHA1 RC5  IDEA  RC4 Average

Figure 4: Code sizes for algorithms

Sensor nodes may be implemented with low-cost processors which
lack large amounts of program memory, making code size important.
Figure 4 shows the code sizes for the cryptographic functions but
excludes all scaffolding, library and other code. MDS5 requires
significantly more code than other algorithms, while RC4 is the most
efficient. The AVR architecture requires significantly more space than
other ISAs for its code due to its limited instruction set and eight-bit
native data. Finally, the StrongARM requires much more memory than
the other 32 bit architectures, which appears to be due to the
development tools.

4.5 Performance Model

We observed that the word length and architectural features, namely
the complexity of the ISA (RISC vs. CISC) and support for certain
ALU operations (variable-sized shifts, multiply) are the causes of
variations. From these findings and the experimental data, we can
derive a multi-variant model that allows the interpolation of
performance for other architectures. The objectives of such a model are



threefold. First, the feasibility of existing encryption schemes can be
derived by just implementing one scheme on an architecture. Second,
encryption overhead can be assessed based on architectural parameters
to drive architecture design for a specific encryption scheme and
formulate minimum requirements. Third, new encryption schemes
only need to be assessed on a subset of reference platforms while their
performance on other platforms can be derived from the model.

First, a simple model is introduced. The results of this model is
imprecise as there are many variables that influence the execution
times of any program (e.g., the presence of variable-sized bit shift and
multiplication instructions, presence and size of cache memory, RISC
vs. CISC design etc.). The objective of this model is to aid a designer
in computing a rough estimate of the execution times for a given
encryption algorithm and a particular microprocessor. This rough
estimate is especially useful for new architectures. It will allows one to
assess if a certain encryption (or hashing) will meet given timing
constraints for this particular algorithm, on a projected architecture.
Hence, the objective is provide approximate (accurate to a factor of
two) execution times of the algorithms. We derived the following
performance model:

a+be rtextilengt h/ blocksize _I
freq e bus_width

t e (tXt_len) = (1)

processor_

where[ | is the ceiling function, text_length is the size of the plaintext
in bytes, processor frequency and bus width are the frequency and
bus width of the microcontroller, respectively. The parameters a and b
depend on the algorithm being evaluated, and block size is the size of
the blocks in the algorithm. Parameter a includes all the initialization
overheads while b captures the time spent in operations repeated for
each block.

For the algorithms considered, we derive the parameters a and b,
which minimize the least square relative error as given in Table 4.

Checking the model against the measured results, one can see that
most values are within 10%--20% of the measured value. For some
measurements and architectures the error is almost twice (or half) of
the measured value. This motivates the need to refine the model, as
discussed in the following.

The model in (1) is refined to account for other parameters that affect
the execution times. For example, some algorithms can take advantage
of the existence of a multiply instruction. In Figure 3, it becomes
evident that the architecture of the microprocessor (RISC vs CISC)
favors the short instructions of the RISC architecture.

Table 4: Parameters for performance model

203656 86298

MD5 512
SHA1 60980 458660 s
RCS 352114 40061 6
init/encrypt

RC5 352114 39981 61
init/decrypt

IDEA encrypt 67751 80617 64
IDEA decrypt 385562 84066 o1
RC4 68540 13591 "

Therefore, a more detailed model for the parameters a and b can be
derived as follows:

2
3)

a=ag,gp Tayy Tagisc
b=bg,se +byur + Brisc

where agasg and bpasg are the base parameters shown in Table 4, ayy
and by are adjustments of those parameters, which take into account
the presence of absence of a multiplication instruction, and ag;sc and
brisc take into account the type of the microprocessor architecture
(CISC/RISC). For algorithms not using multiplication (e.g., MD5), the
adjustments aMUL and bMUL will be zero. For algorithms that can
take advantage of a multiplication operation (e.g., IDEA) the
parameters aMUL and bMUL can be computed by comparing the
results for Atmega 103, which does not have the multiplication
instruction, and the other microcontrollers. The adjustments aMUL
and bMUL resulting from this comparison for the IDEA encryption
algorithm are:

Table 5: Parameters ayy;, and by, for the the IDEA encryption

algorithm
w/ MUL instr. 19016 -1143
w/o MUL instr. -14330 8252

Similarly, the influence of the CISC vs. RISC architectures can be
separated by considering the M16C/10 (CISC) and the other
microcontrollers, which all are RISC architectures.
For example, for the MDS5 the parameters aRISC and bRISC are:
Table 6: Parameters ag;sc and bgsc for the the IDEA encryption
algorithm

RISC 3207 1661

CISC 77175 -103593
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Using the model presented, one can predict the performance of a
particular algorithm on a specific architecture even before the
architecture is implemented. In Figure 5, the measured times and the
predicted times are plotted as a function of the length of the plaintext
for MDS for a few of the architectures considered in this paper.

5. RELATED WORK

Prior work has shown that public key cryptographic algorithms can be
a viable solution for constrained high-end wireless devices [6]. RSA
key generation on smart cards [20] further shows that the generation of
up to 1024 bit prime numbers is costly both in terms of time and
energy for embedded systems (~20 sec on a 3.57 MHz Infineon
SLE66CX160S). Even if keys were pre-generated, communication of
lengthy public keys as well as their storage for each sensor node in
range adds to these costs. Multiply operations in cryptographic
schemes as a potential source of power consumption has been
evaluated on low-end microcontrollers [17]. A secure architecture for
constrained systems (like sensors) has been implemented in SPINS
[12].

Other papers have analyzed the timing of encryption algorithms on
higher end machines such as the performance analysis of MD5 [21]




where timing requirements on various high-end architectures have
been shown and in [16] where various symmetric key ciphers’
performance have been measured in cycles and analyzed. Change in
various processing times with changes in MIPS capability of a
processor has been modeled [14]. Some symmetric and asymmetric
key algorithms have been evaluated on higher end microprocessors on
the basis of power consumption [7]. Cryptographic overhead for
performance critical systems [22] using a hash, secret key and public
key examples for high-end and one embedded architecture (16MHz
Motorola 68K). Also, general benchmarks for speed have been
computed on a Celeron processor [8]. Our work attempts to bridge the
gaps by assessing the performance of algorithms on different platforms

and evaluates the overhead of each algorithm on different architectures.

To our knowledge, there is currently no published work that focuses
on evaluation of different cryptographic algorithms on embedded
architectures, particularly for low-end systems, such as 8-bit and 16-bit
architectures.

6. FUTURE WORK

Our proposed model helps to extrapolate the performance of a
algorithm on different platforms. This could be enhanced to consider

10° —| =*= Atmegal103 measured

individual operations in each algorithm and provide a generic model
where performance of any algorithm on any platform can be
extrapolated. Many ad-hoc network security protocol schemes suggest
the use of a variety of cryptographic algorithms. The model could be
scaled to estimate the performance of these schemes. There are also
some fast encryption algorithm, such as SEAL 3.0 [17], TEA [18] or
TREYFER [19], that show very good performance in software
implementations. These could be evaluated. However, more
information on the strengths of these algorithms is necessary.

7. CONCLUSION

In this paper, we presented a survey investigating the computational
requirements for a number of cryptographic algorithms and embedded
architectures. The measurements obtained cover a wide class of
commonly used encryption protocols and determine the impact of
embedded architectures on
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Figure 5: Measured and predicted execution times for MD5



performance. Our experiments indicate a mostly uniform cycle
overhead for each word size (8/16/32 bit) but differences between the
three word-size classes. The impact on caches is negligible while ISA
support is limited to specific effects on certain algorithms. Specifically,
we were surprised to find that RC4 outperforms RC5 on encryption in
low-end processors, compared to the choice of RC5 for current sensor
networks [12]. Hashing techniques require almost an order of a
magnitude higher overhead.

We also derived a model to assess the computational overhead of
embedded architectures for encryption protocols in general. Our
analytical model assesses the impact of arbitrary embedded
architectures as a multi-variant function for each encryption scheme
depending on processor frequency, word width, ISA type and specific
ISA support. This allows one to project computational limitations and
determine the threshold of feasible encryption schemes under a set of
the constraints for an embedded architecture.

Overall, our results are not only valuable to assess the feasibility of
encryption schemes for arbitrary embedded architectures, but they also
provide the basis for modeling encryption overheads across platforms.
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