
Citation: Baciu, M.D.; Capota, E.A.;

Stângaciu, C.S.; Curiac, D.-I.; Micea,

M.V. Multi-Core Time-Triggered

OCBP-Based Scheduling for Mixed

Criticality Periodic Task Systems.

Sensors 2023, 23, 1960. https://

doi.org/10.3390/s23041960

Academic Editor: Omprakash

Kaiwartya

Received: 4 January 2023

Revised: 4 February 2023

Accepted: 7 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Multi-Core Time-Triggered OCBP-Based Scheduling for Mixed
Criticality Periodic Task Systems
Marian D. Baciu 1, Eugenia A. Capota 1, Cristina S. Stângaciu 1,* , Daniel-Ioan Curiac 2 and Mihai V. Micea 1

1 Computer and Information Technology Department, Politehnica University Timisoara, V. Parvan 2,
300223 Timisoara, Romania

2 Automation and Applied Informatics Department, Politehnica University Timisoara, V. Parvan 2,
300223 Timisoara, Romania

* Correspondence: cristina.stangaciu@cs.upt.ro; Tel.: +40-256-403-271

Abstract: Mixed criticality systems are one of the relatively new directions of development for the
classical real-time systems. As the real-time embedded systems become more and more complex,
incorporating different tasks with different criticality levels, the continuous development of mixed
criticality systems is only natural. These systems have practically entered every field where embedded
systems are present: avionics, automotive, medical systems, wearable devices, home automation,
industry and even the Internet of Things. While scheduling techniques have already been proposed
in the literature for different types of mixed criticality systems, the number of papers addressing
multiprocessor platforms running in a time-triggered mixed criticality environment is relatively
low. These algorithms are easier to certify due to their complete determinism and isolation between
components of different criticalities. Our research has centered on the problem of real-time scheduling
on multiprocessor platforms for periodic tasks in a time-triggered mixed criticality environment. A
partitioned, non-preemptive, table-driven scheduling algorithm was proposed, called Partitioned
Time-Triggered Own Criticality Based Priority, based on a uniprocessor mixed criticality method.
Furthermore, an analysis of the scheduling algorithm is provided in terms of success ratio by
comparing it against an event-driven and a time-triggered method.

Keywords: mixed criticality systems; real-time scheduling; embedded systems; non-preemptive
scheduling; multiprocessor systems; time-triggered scheduling

1. Introduction

Embedded real-time systems are becoming more present in our everyday life, from
fields such as automotive, avionics, military and industrial control systems to medical
equipment and even domestic applications and Internet of Things. A new trend in the
design of real-time and embedded systems is the integration of components with different
criticality levels into the same hardware platform. Mixed criticality systems (MCSs) are
“embedded computing platforms in which application functions of different criticality
share computation and/or communication resources” [1]. Additionally, these platforms
are migrating from single cores to multi-cores due to an increase in application complexity
and strict requirements such as cost, space, weight, power consumption and so on.

While multiple scheduling techniques have already been proposed in the literature for
different types of mixed criticality systems, the number of papers addressing multiproces-
sor platforms running in a time-triggered mixed criticality environment is relatively low
compared to event-driven approaches [2,3].

For a time-triggered environment, activities in the system are triggered by the pro-
gression of time [4]. The scheduling decisions made at each time instant follow the pre-
computed schedule stored in a scheduling table. These scheduling tables offer simplicity,
isolation between components of different criticalities, determinism and are easy to verify,

Sensors 2023, 23, 1960. https://doi.org/10.3390/s23041960 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23041960
https://doi.org/10.3390/s23041960
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6552-9226
https://orcid.org/0000-0001-6617-073X
https://orcid.org/0000-0002-8224-2032
https://doi.org/10.3390/s23041960
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23041960?type=check_update&version=1

Sensors 2023, 23, 1960 2 of 14

thus, they are very popular in safety critical systems subject to certification (ex. industrial
applications) [5]. In a mixed criticality platform, scheduling tables are constructed for each
criticality level of the system.

This current paper is an extended version of the paper [6] presented at the International
Symposium on Electronics and Telecommunications (ISETC) 2022, which proposed a non-
preemptive, table-driven algorithm for scheduling periodic tasks on a multiprocessor
platform. The method is based on the uniprocessor table-driven algorithm presented by
Baruah et al. [5], which uses the Own Criticality Based Priority technique for constructing
the job priority list. The main contributions of this paper [6] are listed below:

• The extension of a mixed criticality uniprocessor table-driven scheduling algorithm
to a mixed criticality algorithm for periodic tasks on a multiprocessor platform
(Sections 4.1, 4.2 and 4.6). The original method has been modified to employ a pe-
riodic mixed criticality job model (Sections 4.4 and 4.5).

• The proposal of a task partitioning heuristic for the multiprocessor mixed criticality
system (Section 4.3).

• The comparison of the newly developed algorithm in terms of success ratio with two
state-of-the-art methods (Section 5).

• This current paper aims to demonstrate the efficiency of algorithm [6] through:
• More experiments and comparisons.
• Additional details about the algorithm implementation.

The remainder of this paper is structured as follows: Section 2 covers some related
work regarding event-driven and time-triggered scheduling algorithms in mixed criticality
systems. Section 3 addresses the scheduling problems of the time-triggered real-time mixed
criticality systems. In Section 4, the Partitioned Time-Triggered Own Criticality Based Prior-
ity (P-TT-OCBP) multiprocessor scheduling algorithm is introduced and explained, while
in Section 5 we analyze the performance of our method by comparing it against an event-
driven scheduling method (P-EDF-VD) and a time-triggered algorithm (P_FENP_MC) in
terms of success ratio. Finally, Section 6 summarizes the conclusions.

2. Related Work

Since Vestal’s initial work [7] a number of studies have been introduced for mixed
criticality scheduling. Algorithms in mixed criticality systems (MCSs) can be classified
based on their scheduling points (i.e., the moments in time when scheduling decisions
occur) into two main categories: event-driven and time-triggered.

2.1. Event-Driven Scheduling Algorithms

Research in real-time scheduling for MCSs has been centered around event-driven ap-
proaches. In event-driven scheduling, the scheduling points are defined by task completion
and task arrival events [8]. Some examples of event-driven schedulers are [9–13].

A well-known event-driven scheduling algorithm in MCSs is Earliest Deadline First
with Virtual Deadlines (EDF-VD) [9] for two criticality levels (Hi (high) criticality and Lo
(low) criticality). Under EDF-VD, if the system is in Lo mode, each high criticality task is
assigned a virtual deadline, which is earlier than its actual deadline. If the system is in Hi
mode, high criticality tasks are scheduled according to their real deadlines.

By extending EDF-VD to support adaptive task dropping under task-level mode
switch, two uniprocessor algorithms were introduced in [10], namely EDF-Adaptive task
Dropping and EDF-AD-E (Enhanced). For multiprocessor platforms, a method is described
in [11] based on setting virtual deadlines from any feasible fluid rates, while in [12], a fluid-
based algorithm was implemented, which allows tasks to execute on the same processor
simultaneously. In [13], a semi-partitioned mixed criticality method is presented, which
offers low criticality task migration from one processor to another once mode switch occurs,
in order to improve the service of low criticality tasks in the high criticality mode.

Sensors 2023, 23, 1960 3 of 14

2.2. Time-Triggered Scheduling Algorithms

Despite the popularity of event-driven algorithms, current practice in many safety
critical application domains favors time-triggered (TT) methods due to their complete
determinism, which facilitates certification. In the TT paradigm, scheduling decisions are
made at predetermined points in time [4]. Thus, a schedule is computed prior to run-
time for the entire execution of the system and is represented in a scheduling table. Each
scheduling decision made during run-time is determined by examining this scheduling
table. To the best of our knowledge, few papers have addressed time-triggered scheduling
in MCSs [4,14–17].

A scheduling algorithm with real-time, non-preemptive and table-driven characteris-
tics for MCSs is proposed in [14]. This algorithm guarantees a perfectly periodical execution
in time-triggered mixed criticality environments and was implemented in two variants,
i.e., Fixed Execution Non-Preemptive Mixed Criticality (FENP_MC) and P_FENP_MC
(Partitioned), to meet the demands of both uniprocessor and homogeneous multiprocessor
settings. The main advantage is that the algorithm assures a perfectly periodical (i.e.,
jitter-less) task execution in time-triggered mixed criticality environment, but its main
disadvantage is that it has a relatively low success ratio for a high processor utilization of
the task set to be scheduled.

The time-triggered algorithm presented in [15] is specifically designed for uniproces-
sor platforms and applies dynamic voltage and frequency scaling to reduce the energy
consumption. This paper proposes the first energy-efficient time-triggered algorithm for
MCSs. The schedule constructed by energy-efficient TT-Merge outperforms energy-efficient
EDF-VD [18]. However, the algorithm uses continuous frequency levels; therefore, it might
not be optimal with respect to energy consumption for discrete frequency levels, which
are more common in practice. Another noteworthy algorithm, but this time explicitly
developed for identical multiprocessor platforms executing mixed criticality tasks, is re-
ported in [16]. This algorithm performs better than previous time-triggered, multiprocessor
methods [17] in terms of scheduling overhead.

Baruah et al. [5] offer a method for building scheduling tables to allocate jobs’ pri-
orities according to the Own Criticality Based Priority (OCBP) algorithm [19]. By this,
a correct scheduling strategy driven by a priority-based mechanism has been provided.
Our algorithm extends this approach for building scheduling tables with the specific case
of periodic tasks, by considering the periodic task set as a collection of independent jobs
which explicitly enumerates all the jobs in the system. This paper also provides a parti-
tioning heuristic for the case of multiprocessor platforms. To our knowledge, very few
time-triggered algorithms for multiprocessor platforms exist in the literature.

Our time-triggered algorithm offers complete determinism and isolation between
components of different criticalities in comparison to the event-driven multiprocessor
algorithms described previously [11–13]. This ensures the certification of high criticality
functionalities under very conservative assumptions. In general, isolation between compo-
nents of different criticalities can cause very low resource utilization. This happens because
platform resources are reserved for the exclusive use of high criticality functionalities in
order to meet certification requirements under pessimistic assumptions. Due to isolation,
these resources cannot be reclaimed by less critical applications. However, the uniprocessor
time-triggered algorithm which our paper extends allows high utilization of platform
resources under less pessimistic assumptions. We have also decided to adapt the algorithm
for periodic tasks because they are independent, run cyclically and their characteristics are
known in advance.

In the following sections, the proposed scheduling algorithm is described, analyzed
and compared in terms of success ratio to two multiprocessor methods from the literature,
an event-driven and a time-triggered technique.

Sensors 2023, 23, 1960 4 of 14

3. Model and Problem Statement

The problem which we address in this paper is to implement a multiprocessor mixed
criticality scheduling algorithm by adapting a classical algorithm [5] to a periodic task
execution model and also to extend it from a uniprocessor system to a multiprocessor
one [20].

In this section, we formally define the mixed criticality job model used. For a dual
criticality system, we used a task model with the following properties, based on the
standard MCSs model [7,21] and an extension for periodic tasks [14]:

• An MCS executes in either of two modes: Hi-criticality mode or Lo-criticality mode.
• Each mixed-criticality task τi is characterized by a set of parameters [7,14]:

τi =

Ti, Di, Li,
{

Ci, Lj

∣∣∣ j ∈ {Lo, Hi}
}

,{
Si, Lj

∣∣∣ j ∈ {Lo, Hi}
} (1)

where Ti, Di and Li denote, respectively, the period, the deadline and the criticality
level (i.e., Lo or Hi) of the task i; Ci,Lj is a vector containing the worst-case execution
times (WCETs) for each criticality level; and Si,Lj is a vector where each element
represents the execution start time, relative to its release time, for each criticality level
that is lower than or equal to the task criticality level Li, with Si,Lj < Di.

• A task consists of a series of jobs that inherit some of the parameters of the task
(Ti,Di,Li). Furthermore, each job adds its own parameters, which means that the k-th
job of task i is characterized by the following:

Ji, k =
{

ai, k, di, k, ci, k, si, k, Ti, Di, Li
}

(2)

where:

◦ ai,k represents the arrival time of job k, with ai,k+1 − ai,k ≥ Ti.
◦ di,k is the absolute deadline of job k and can be obtained using di,k = ai,k + Di.
◦ ci,k expresses the execution time and depends on the criticality mode of the

system (e.g., for L = Lo, ci,k = Ci,Lo).
◦ si,k offers the absolute execution start time corresponding to job k and, similar

to ci,k, also depends on the criticality mode of the system.

4. Algorithm P-TT-OCBP

This section describes the mapping heuristic used for partitioning tasks to processors
and the non-preemptive scheduling algorithm implemented at the processor level. As men-
tioned before, the algorithm is an extension of the method described by Baruah et al. in [5].

4.1. Original Algorithm

The original algorithm [5] uses a sufficient MC-schedulability test, namely the Own
Criticality Based Priority [19] to find a complete ordering of the jobs. The priority assign-
ment list is constructed offline (Algorithm 1).

The job with the lowest priority is determined first: the lowest priority may be assigned
to a job Jk if there is at least ck,Lj units of time between its arrival time and its absolute
deadline available when every other job Jx is executed before Jk for cx,Lj units of time. OCBP
assumes that every job, other than Jk, has priority over Jk and ignores whether these jobs
meet their deadlines or not. The algorithm is applied repeatedly to the set of jobs (excluding
the lowest priority job), until all the jobs are ordered, or at some iteration, a lowest priority
job does not exist [22,23].

In [22], the OCBP method was compared, in terms of processor speedup factor, to two
techniques used for resource allocation and scheduling in MCSs and it was concluded that
the OCBP-schedulability test has better performance.

Sensors 2023, 23, 1960 5 of 14

Algorithm 1: Own Criticality Based Priority.

Input: ∆p (the job list for processor p)
Output: Yp (the priority list for processor p)
sort ∆p in non-decreasing order by di, k
for k ∈

{
0, 1, . . . , size o f ∆p

}
do

sumLo ← 0
sumHi← 0
for j ∈

{
0, 1, . . . , size o f ∆p

}
do

if j 6= k then
sumLo ← sumLo + cj, Lo
if Lk = Hi then

sumHi← sumHi + cj, Hi
end if

end if
end for
if Lk = Lo and dk − sumLo ≥ ck, Lo then

add Jk to Yp

end if
if Lk = Hi and dk − sumLo ≥ ck, Lo and dk − sumHi ≥ ck, Hi then

add Jk to Yp
end if

end for

4.2. Working Hypothesis

For the proposed scheduling algorithm, we have considered a homogenous multicore
(where the number of cores is equivalent to the number of processors), non-preemptive,
dual criticality system (i.e., a mixed criticality system with two criticality levels: low and
high), running periodical tasks.

• A dual criticality system is defined to execute in one of two modes: Lo-criticality mode
and Hi-criticality mode.

• Each job is characterized by the set of parameters described in (2), with C(Lo) ≤ C(Hi).
• The system starts in Lo-criticality mode and does not change as long as jobs execute

within their Lo-criticality WCETs.
• If any job overruns its Lo-criticality WCET, then a criticality mode change occurs.
• As the system instantly moves to Hi-criticality mode, all Lo-criticality jobs are dropped

(they are no longer executed). Hi-criticality jobs are allowed to run according to their
Hi-criticality WCETs.

• The system remains in Hi-criticality mode.
• In this paper, we only consider the mode change from Lo-criticality to Hi-criticality.

4.3. Partitioning Tasks to Processors

As the demand for increased performance and general-purpose programmability
grows, general-purpose multi-core processors are being adopted in all segments of the
industry. By adding more specifications while preserving reasonable power characteristics,
parallel processing improves performance [24]. Thus, our algorithm was developed for
mixed criticality multiprocessor platforms.

The task mapping algorithm that we are using is based on a well-known task parti-
tioning heuristic from the literature, namely first fit decreasing (FFD) [25].

Tasks are selected one by one from the task set and added in each processor, where
two conditions must be verified: the current processor utilization (for both Lo-criticality
mode and Hi-criticality mode), which is the sum of utilizations for all the tasks on the
processor, must not exceed 1 [26]. Tasks are sorted in non-decreasing order of their periods.

The task partitioning method is described below:

Sensors 2023, 23, 1960 6 of 14

• The utilization of each task is computed based on the criticality level (3): for Hi-
criticality tasks there will be two utilizations (one for each criticality level).

Ui,Lj =
Ci, Lj

Ti
(3)

• Tasks are selected one by one from the task set and added into each processor where a
test is performed.

• Two conditions must be verified (4):

(1) The current total processor utilization in Lo-criticality mode UPq(Lo) must not
exceed 1.

(2) The current total processor utilization in Hi-criticality mode UPq(Hi) must not
exceed 1.

UPq(Lo) ≤ 1 and UPq(Hi) ≤ 1 (4)

• If the above two conditions are met, the task will be assigned to Pq and the total
processor utilizations are updated.

• If one of the two conditions returns failure, the task is removed from Pq and added
into the next processor, where the same test is performed

These steps are repeated until all the tasks are partitioned into processors.

4.4. Constructing the List of Jobs at the Processor Level

The periodic tasks on each processor are represented as a collection of independent
jobs, obtained by explicitly enumerating all the jobs over the hyperperiod interval.

Each job inherits a set of parameters from the task (Ti,Di,Li,Ci), to which we add an
arrival time and absolute deadline of the job according to (5) and (6):

ai, k = ai,k−1 + Ti (5)

di, k = ai, k + Di (6)

4.5. Scheduling at the Processor Level

The priority list is constructed using an algorithm called Own Criticality Based Priority
(OCBP) [5], where priorities are assigned to jobs based on the following criteria:

• The job list to be prioritized must be parsed in non-decreasing order of deadlines di,k.
• The criticality level of the first job k from the list is verified:

◦ If the criticality level is Lo we compute the sum of the Lo-criticality WCETs
(sum(Lo)) for the rest of the jobs.

◦ If the criticality level is Hi we compute two sums, one for Lo-criticality WCETs
(sum(Lo)) and one for Hi-criticality WCETs (sum(Hi)) for the rest of the jobs.

• Next, the algorithm checks if job k can be added in the priority list, depending on its
criticality level:

◦ For a Lo-criticality level:

di, k − sum(Lo) ≥ Ci, LLo (7)

◦ For a Hi-criticality level, two conditions must be met:{
di, k − sum(Lo) ≥ Ci, LLo
di, k − sum(Hi) ≥ Ci, LHi

(8)

• If these conditions are met, job k is moved from the list of jobs to the priority list.
Otherwise, the next job k + 1 in the list is taken, until the entire list of jobs is verified.

• If jobs are still in the list after the list of jobs is parsed at least once, the same algorithm
is computed again, until no more jobs are left.

Sensors 2023, 23, 1960 7 of 14

• If at least two jobs remain in the list of jobs which cannot be prioritized, the set of tasks
is deemed not schedulable.

• The resulting priority list is sorted in non-decreasing order of deadlines. The schedule
is constructed based on the priority list as follows:

• The first job is extracted from the priority list, with si,k = 0.
• We then compute the completion time (cti,k) of the job:

cti, k = si, k + ci, k (9)

• For the next k − 1 jobs, we compare the arrival time with the previous job completion
time: if the completion time is greater than the arrival time, then the start time will take
on the value of the previous job completion time; otherwise, the start time will be equal
to the current job arrival time. The completion time is computed using Equation (9).

Our scheduler creates, in an offline phase, two dispatch tables for each processor (one
for the Lo-criticality mode and one for the Hi-criticality mode), called scheduling tables.

The scheduling table for processor q (

Sensors 2023, 23, x FOR PEER REVIEW 7 of 14

• We then compute the completion time (cti,k) of the job:𝑐𝑡 , = 𝑠 , + 𝑐 , (9)
• For the next k − 1 jobs, we compare the arrival time with the previous job completion

time: if the completion time is greater than the arrival time, then the start time will
take on the value of the previous job completion time; otherwise, the start time will
be equal to the current job arrival time. The completion time is computed using Equa-
tion (9).
Our scheduler creates, in an offline phase, two dispatch tables for each processor (one

for the Lo-criticality mode and one for the Hi-criticality mode), called scheduling tables.
The scheduling table for processor q (ȴ q) is presented below as an array of structures: ȴ = {𝑇𝑎𝑠𝑘𝐼𝐷, 𝐽𝑜𝑏𝐼𝐷, 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒} (10)

where ȴq is sorted in non-decreasing order of the job start time on each processor.
Next, we present an example in order to illustrate the construction of our scheduling

tables for a single processor platform. Let us consider the task set presented in Table 1:

Table 1. Four-task set example.

Task 𝑻𝒊 𝑫𝒊 𝑳𝒊 𝑪𝒊,𝑳𝑳𝒐 𝑪𝒊,𝑳𝑯𝒊 𝜏 8 8 1 4 -𝜏 12 12 2 5 7𝜏 16 16 1 5 -𝜏 24 24 2 1 4

Tables 2 and 3 illustrate the scheduling tables for Lo-criticality mode and Hi-critical-
ity mode of the task set example, presented in Table 1.

Table 2. Lo-criticality mode scheduling table for the task set in Table 1.

TaskID JobID StartTime
0 0 0
1 0 4
2 0 5
0 1 10
3 0 14
1 1 15
0 2 16
2 1 20
0 3 25
1 2 29
0 4 32
3 1 36
2 2 37
1 3 42
0 5 43

Table 3. Hi-criticality mode scheduling table for the task set in Table 1.

TaskID JobID StartTime
1 0 0
3 0 3
1 1 12
1 2 24
3 1 27

q) is presented below as an array of structures:

Sensors 2023, 23, x FOR PEER REVIEW 7 of 14

• We then compute the completion time (cti,k) of the job:𝑐𝑡 , = 𝑠 , + 𝑐 , (9)
• For the next k − 1 jobs, we compare the arrival time with the previous job completion

time: if the completion time is greater than the arrival time, then the start time will
take on the value of the previous job completion time; otherwise, the start time will
be equal to the current job arrival time. The completion time is computed using Equa-
tion (9).
Our scheduler creates, in an offline phase, two dispatch tables for each processor (one

for the Lo-criticality mode and one for the Hi-criticality mode), called scheduling tables.
The scheduling table for processor q (ȴ q) is presented below as an array of structures: ȴ = {𝑇𝑎𝑠𝑘𝐼𝐷, 𝐽𝑜𝑏𝐼𝐷, 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒} (10)

where ȴq is sorted in non-decreasing order of the job start time on each processor.
Next, we present an example in order to illustrate the construction of our scheduling

tables for a single processor platform. Let us consider the task set presented in Table 1:

Table 1. Four-task set example.

Task 𝑻𝒊 𝑫𝒊 𝑳𝒊 𝑪𝒊,𝑳𝑳𝒐 𝑪𝒊,𝑳𝑯𝒊 𝜏 8 8 1 4 -𝜏 12 12 2 5 7𝜏 16 16 1 5 -𝜏 24 24 2 1 4

Tables 2 and 3 illustrate the scheduling tables for Lo-criticality mode and Hi-critical-
ity mode of the task set example, presented in Table 1.

Table 2. Lo-criticality mode scheduling table for the task set in Table 1.

TaskID JobID StartTime
0 0 0
1 0 4
2 0 5
0 1 10
3 0 14
1 1 15
0 2 16
2 1 20
0 3 25
1 2 29
0 4 32
3 1 36
2 2 37
1 3 42
0 5 43

Table 3. Hi-criticality mode scheduling table for the task set in Table 1.

TaskID JobID StartTime
1 0 0
3 0 3
1 1 12
1 2 24
3 1 27

q = {TaskID, JobID, StartTime} (10)

where

Sensors 2023, 23, x FOR PEER REVIEW 7 of 14

• We then compute the completion time (cti,k) of the job:𝑐𝑡 , = 𝑠 , + 𝑐 , (9)
• For the next k − 1 jobs, we compare the arrival time with the previous job completion

time: if the completion time is greater than the arrival time, then the start time will
take on the value of the previous job completion time; otherwise, the start time will
be equal to the current job arrival time. The completion time is computed using Equa-
tion (9).
Our scheduler creates, in an offline phase, two dispatch tables for each processor (one

for the Lo-criticality mode and one for the Hi-criticality mode), called scheduling tables.
The scheduling table for processor q (ȴ q) is presented below as an array of structures: ȴ = {𝑇𝑎𝑠𝑘𝐼𝐷, 𝐽𝑜𝑏𝐼𝐷, 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒} (10)

where ȴq is sorted in non-decreasing order of the job start time on each processor.
Next, we present an example in order to illustrate the construction of our scheduling

tables for a single processor platform. Let us consider the task set presented in Table 1:

Table 1. Four-task set example.

Task 𝑻𝒊 𝑫𝒊 𝑳𝒊 𝑪𝒊,𝑳𝑳𝒐 𝑪𝒊,𝑳𝑯𝒊 𝜏 8 8 1 4 -𝜏 12 12 2 5 7𝜏 16 16 1 5 -𝜏 24 24 2 1 4

Tables 2 and 3 illustrate the scheduling tables for Lo-criticality mode and Hi-critical-
ity mode of the task set example, presented in Table 1.

Table 2. Lo-criticality mode scheduling table for the task set in Table 1.

TaskID JobID StartTime
0 0 0
1 0 4
2 0 5
0 1 10
3 0 14
1 1 15
0 2 16
2 1 20
0 3 25
1 2 29
0 4 32
3 1 36
2 2 37
1 3 42
0 5 43

Table 3. Hi-criticality mode scheduling table for the task set in Table 1.

TaskID JobID StartTime
1 0 0
3 0 3
1 1 12
1 2 24
3 1 27

q is sorted in non-decreasing order of the job start time on each processor.
Next, we present an example in order to illustrate the construction of our scheduling

tables for a single processor platform. Let us consider the task set presented in Table 1:

Table 1. Four-task set example.

Task Ti Di Li Ci, LLo Ci, LHi

τ0 8 8 1 4 -
τ1 12 12 2 5 7
τ2 16 16 1 5 -
τ3 24 24 2 1 4

Tables 2 and 3 illustrate the scheduling tables for Lo-criticality mode and Hi-criticality
mode of the task set example, presented in Table 1.

Table 2. Lo-criticality mode scheduling table for the task set in Table 1.

TaskID JobID StartTime

0 0 0
1 0 4
2 0 5
0 1 10
3 0 14
1 1 15
0 2 16
2 1 20
0 3 25
1 2 29
0 4 32
3 1 36
2 2 37
1 3 42
0 5 43

Sensors 2023, 23, 1960 8 of 14

Table 3. Hi-criticality mode scheduling table for the task set in Table 1.

TaskID JobID StartTime

1 0 0
3 0 3
1 1 12
1 2 24
3 1 27
1 3 36

4.6. System Execution

The system execution flowchart is illustrated in Figure 1. Each task in the task set
is partitioned on processors using the first fit decreasing (FFD) algorithm [25]. At the
processor level, two job lists are created (a list for all the jobs on the processor and a list
containing only the jobs of Hi-criticality tasks) by explicitly enumerating the jobs of the
tasks assigned to the processor. Then, the priority list construction is verified by using the
Own Criticality Based Priority (OCBP) method for the two modes of the system. If the
priority list creation fails, the task set is unschedulable. Otherwise, two scheduling tables
are constructed, one for each criticality mode of the system.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 14

1 3 36

4.6. System Execution
The system execution flowchart is illustrated in Figure 1. Each task in the task set is

partitioned on processors using the first fit decreasing (FFD) algorithm [25]. At the pro-
cessor level, two job lists are created (a list for all the jobs on the processor and a list con-
taining only the jobs of Hi-criticality tasks) by explicitly enumerating the jobs of the tasks
assigned to the processor. Then, the priority list construction is verified by using the Own
Criticality Based Priority (OCBP) method for the two modes of the system. If the priority
list creation fails, the task set is unschedulable. Otherwise, two scheduling tables are con-
structed, one for each criticality mode of the system.

Figure 1. System execution flowchart.

5. Evaluation
In this section we will undertake an experimental comparison between P-TT-OCBP

and two other multiprocessor scheduling methods: an event-driven, non-preemptive al-
gorithm which uses the FFD [25] heuristic for task partitioning to processors, namely Par-
titioned Earliest Deadline First with Virtual Deadlines (P-EDF-VD) [27] and a table-
driven, non-preemptive, perfectly periodical scheduling method, called Partitioned Fixed
Execution Non-Preemptive Mixed Criticality (P_FENP_MC) [14]. All tasks were ran-
domly generated in Matlab (R2018b) and the simulation environment was developed for
multiprocessor mixed criticality systems, using C++.

5.1. Task Set Generation
In our experiments, we employed randomly generated task sets inside a dual criti-

cality platform (Lo, Hi) that were generated using a variant [28] of the workload-genera-
tion algorithm provided by Guan et al. [29]. The methodology used for generating the task
sets is similar with the one used in [14] and generates the parameters of each new task τi
as follows:
• Period: Ti is drawn using a uniform distribution on [10, 50].
• Deadline: Di = Ti.
• Criticality level: Li = Hi with a given probability PHi; otherwise, Li = Lo.
• Utilization: Ui,Lj (see Equation (3)), is a vector of size l, where l is the number of criti-

cality levels. The utilizations are generated using five input parameters [28]:
o Ubound:

Figure 1. System execution flowchart.

5. Evaluation

In this section we will undertake an experimental comparison between P-TT-OCBP and
two other multiprocessor scheduling methods: an event-driven, non-preemptive algorithm
which uses the FFD [25] heuristic for task partitioning to processors, namely Partitioned
Earliest Deadline First with Virtual Deadlines (P-EDF-VD) [27] and a table-driven, non-
preemptive, perfectly periodical scheduling method, called Partitioned Fixed Execution
Non-Preemptive Mixed Criticality (P_FENP_MC) [14]. All tasks were randomly generated
in Matlab (R2018b) and the simulation environment was developed for multiprocessor
mixed criticality systems, using C++.

5.1. Task Set Generation

In our experiments, we employed randomly generated task sets inside a dual criticality
platform (Lo, Hi) that were generated using a variant [28] of the workload-generation
algorithm provided by Guan et al. [29]. The methodology used for generating the task
sets is similar with the one used in [14] and generates the parameters of each new task τi
as follows:

Sensors 2023, 23, 1960 9 of 14

• Period: Ti is drawn using a uniform distribution on [10, 50].
• Deadline: Di = Ti.
• Criticality level: Li = Hi with a given probability PHi; otherwise, Li = Lo.
• Utilization: Ui,Lj (see Equation (3)), is a vector of size l, where l is the number of

criticality levels. The utilizations are generated using five input parameters [28]:

◦ Ubound:
Ubound = max(ULo(τ), UHi(τ)) (11)

ULo(τ) = ∑
τi∈τ

Ui,LLo (12)

UHi(τ) = ∑
Mi∈Hi(τ)

Ui,LHi (13)

where Hi(τ) is the subset of the entire task set τ which contains only the Hi-
criticality tasks.

◦ [UL,UU]: The range of the task utilization, with 0 ≤ UL ≤ UU ≤ 1.
◦ [ZL,ZU]: The range of the ratio between Hi-criticality utilization of a task and

Lo-criticality utilization, where 0 ≤ ZL ≤ ZU.

• WCET: (a) for Lo-criticality level: Ci,LLo = Ui,LLo ·Ti and (b) for Hi-criticality level:
Ci,LHi = Ui,LHi ·Ti if Li = Hi, otherwise Ci,LHi = Ci,LLo .

• Start time: Si,LHi = Si,LLo = 0

5.2. Execution Example and Comparison

An example of a task set is provided in Table 4 in order to illustrate the execution of our
scheduling algorithm on a platform with two processors. The same task set is scheduled in
Figure 2 using P-EDF-VD and P_FENP_MC for comparison.

Scheduling for both Lo- and Hi-criticality modes is illustrated in Table 4:

Table 4. Five-task set example.

Task Ti Di Li Ci, LLo Ci, LHi

τ0 6 6 1 1 -
τ1 24 24 2 5 6
τ2 12 12 2 4 5
τ3 28 28 1 8 -
τ4 56 56 2 12 14

5.3. Success Ratio

In this section we will undertake an experimental evaluation on a dual criticality,
multiprocessor platform between our algorithm P-TT-OCBP and two known scheduling
methods in a non-preemptive context: P-EDF-VD and P_FENP_MC.

Each data point from the graph captions is determined by randomly generating
1000 task sets.

In Figure 3 we have four graphs with the number of processors ascending from 2 to 4,
from 4 to 8 and from 8 to 12 processors. For each graph, the task set utilization bound on
the x-axis ranges from 0.2 to 0.8 times the number of processors divided by 2, in steps of
0.1. The results of our experimental evaluation show that our algorithm has a high success
ratio in comparison to P-EDF-VD and P_FENP_MC.

Sensors 2023, 23, 1960 10 of 14Sensors 2023, 23, x FOR PEER REVIEW 10 of 14

Figure 2. Schedule of the task set example using 3 methods: Partitioned Time-Triggered Own Crit-
icality Based Priority (P-TT-OCBP), Partitioned Fixed Execution Non-Preemptive Mixed Criticality
(P_FENP_MC) and Partitioned Earliest Deadline First with Virtual Deadlines (P-EDF-VD), a non-
preemptive variant.

5.3. Success Ratio
In this section we will undertake an experimental evaluation on a dual criticality,

multiprocessor platform between our algorithm P-TT-OCBP and two known scheduling
methods in a non-preemptive context: P-EDF-VD and P_FENP_MC.

Each data point from the graph captions is determined by randomly generating 1000
task sets.

In Figure 3 we have four graphs with the number of processors ascending from 2 to
4, from 4 to 8 and from 8 to 12 processors. For each graph, the task set utilization bound
on the x-axis ranges from 0.2 to 0.8 times the number of processors divided by 2, in steps
of 0.1. The results of our experimental evaluation show that our algorithm has a high suc-
cess ratio in comparison to P-EDF-VD and P_FENP_MC.

Figure 2. Schedule of the task set example using 3 methods: Partitioned Time-Triggered Own
Criticality Based Priority (P-TT-OCBP), Partitioned Fixed Execution Non-Preemptive Mixed Criticality
(P_FENP_MC) and Partitioned Earliest Deadline First with Virtual Deadlines (P-EDF-VD), a non-
preemptive variant.

For Figure 4, the number of processors on the x-axis ranges from 2 to 12, in steps
of 2. It must be noted that between the four graphs, the Base Utilization bound
(Ubound = BUbound × (number o f processors/2)), ranges from 0.2 to 0.8, in steps of 0.2. The
number of tasks in a task set varies according to the task set utilization bound. Therefore, a
lower value on the x-axis decreases the number of tasks in a task set, while a higher value
increases it.

Sensors 2023, 23, 1960 11 of 14
Sensors 2023, 23, x FOR PEER REVIEW 11 of 14

Figure 3. Success ratio by varying the utilization bound. UL = 0.05, UU = 0.75, ZL = 1, ZU = 4.

For Figure 4, the number of processors on the x-axis ranges from 2 to 12, in steps of
2. It must be noted that between the four graphs, the Base Utilization bound (𝑈 = 𝐵𝑈 × (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠/2)), ranges from 0.2 to 0.8, in steps of 0.2. The num-
ber of tasks in a task set varies according to the task set utilization bound. Therefore, a
lower value on the x-axis decreases the number of tasks in a task set, while a higher value
increases it.

0
0.2
0.4
0.6
0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

SU
CC

ES
S

RA
TI

O

UTILIZATION BOUND
2-PROCESSOR SYSTEM, PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0
0.2
0.4
0.6
0.8

1

0.4 0.6 0.8 1 1.2 1.4 1.6

SU
CC

ES
S

RA
TI

O

UTILIZATION BOUND
4-PROCESSOR SYSTEM, PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0
0.2
0.4
0.6
0.8

1

0.8 1.2 1.6 2 2.4 2.8 3.2

SU
CC

ES
S

RA
TI

O

UTILIZATION BOUND
8-PROCESSOR SYSTEM, PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0
0.2
0.4
0.6
0.8

1

1.2 1.8 2.4 3 3.6 4.2 4.8

SU
CC

ES
S

RA
TI

O

UTILIZATION BOUND
12-PROCESSOR SYSTEM, PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0
0.2
0.4
0.6
0.8

1

2 4 6 8 1 0 1 2

SU
CC

ES
S

RA
TI

O

NUMBER OF PROCESSORS
UBOUND = 0.2*(NUMBER OF PROCESSORS/2), PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0
0.2
0.4
0.6
0.8

1

2 4 6 8 1 0 1 2

SU
CC

ES
S

RA
TI

O

NUMBER OF PROCESSORS
UBOUND = 0.4*(NUMBER OF PROCESSORS/2), PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

Figure 3. Success ratio by varying the utilization bound. UL = 0.05, UU = 0.75, ZL = 1, ZU = 4.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 14

Figure 3. Success ratio by varying the utilization bound. UL = 0.05, UU = 0.75, ZL = 1, ZU = 4.

For Figure 4, the number of processors on the x-axis ranges from 2 to 12, in steps of
2. It must be noted that between the four graphs, the Base Utilization bound (𝑈 = 𝐵𝑈 × (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠/2)), ranges from 0.2 to 0.8, in steps of 0.2. The num-
ber of tasks in a task set varies according to the task set utilization bound. Therefore, a
lower value on the x-axis decreases the number of tasks in a task set, while a higher value
increases it.

0
0.2
0.4
0.6
0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

SU
CC

ES
S

RA
TI

O

UTILIZATION BOUND
2-PROCESSOR SYSTEM, PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0
0.2
0.4
0.6
0.8

1

0.4 0.6 0.8 1 1.2 1.4 1.6

SU
CC

ES
S

RA
TI

O

UTILIZATION BOUND
4-PROCESSOR SYSTEM, PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0
0.2
0.4
0.6
0.8

1

0.8 1.2 1.6 2 2.4 2.8 3.2

SU
CC

ES
S

RA
TI

O

UTILIZATION BOUND
8-PROCESSOR SYSTEM, PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0
0.2
0.4
0.6
0.8

1

1.2 1.8 2.4 3 3.6 4.2 4.8

SU
CC

ES
S

RA
TI

O

UTILIZATION BOUND
12-PROCESSOR SYSTEM, PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0
0.2
0.4
0.6
0.8

1

2 4 6 8 1 0 1 2

SU
CC

ES
S

RA
TI

O

NUMBER OF PROCESSORS
UBOUND = 0.2*(NUMBER OF PROCESSORS/2), PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0
0.2
0.4
0.6
0.8

1

2 4 6 8 1 0 1 2

SU
CC

ES
S

RA
TI

O

NUMBER OF PROCESSORS
UBOUND = 0.4*(NUMBER OF PROCESSORS/2), PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBPSensors 2023, 23, x FOR PEER REVIEW 12 of 14

Figure 4. Success ratio by varying the number of processors. UL = 0.05, UU = 0.75, ZL = 1, ZU = 4.

An apparently superior performance of P_FENP_MC for the first two graphs can be
attributed to the particular implementation of the algorithm, which includes the mapping
test executed when partitioning tasks to processors.

In Figure 5, the task set base utilization bound (BUbound) ranges on the x-axis from 0.2
to 0.8, in steps of 0.1. It can be seen that the performance of the algorithm decreases when
the number of processors increases. This is because the FFD heuristic, presented in Section
4.3 of this paper, allocates tasks on a processor as long as the total utilization of the pro-
cessor is lower than or equal to 1. Since the utilization bound is higher when the number
of processors increases, 𝑈𝑏𝑜𝑢𝑛𝑑 = 𝐵𝑈𝑏𝑜𝑢𝑛𝑑 × (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠/2), there is a
higher chance of the task mapping being unsuccessful or the scheduling algorithm at the
processor level failing.

Figure 5. Success ratio of P-TT-OCBP by varying the base utilization bound and the number of pro-
cessors. UL = 0.05, UU = 0.75, ZL = 1, ZU = 4.

6. Conclusions
As the complexity of safety critical applications increases, it is important to facilitate

certification and to ensure efficient resource utilization. In this paper, we have proposed
an algorithm for scheduling periodic tasks on multiprocessor mixed criticality systems,
namely Partitioned Time-Triggered Own Criticality Based Priority (P-TT-OCBP). Our

0
0.2
0.4
0.6
0.8

1

2 4 6 8 1 0 1 2

SU
CC

ES
S

RA
TI

O

NUMBER OF PROCESSORS
UBOUND = 0.6*(NUMBER OF PROCESSORS/2), PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0
0.2
0.4
0.6
0.8

1

2 4 6 8 1 0 1 2

SU
CC

ES
S

RA
TI

O

NUMBER OF PROCESSORS
UBOUND = 0.8*(NUMBER OF PROCESSORS/2), PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0

0.2

0.4

0.6

0.8

1

0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8

SU
CC

ES
S

RA
TI

O

BASE UTILIZATION BOUND (BUBOUND)
UBOUND = BUBOUND*(NUMBER OF PROCESSORS/2), PHI = 0.4

SUCCESS RATIO OF P-TT-OCBP

2-cores

4-cores

6-cores

8-cores

10-cores

12-cores

Figure 4. Success ratio by varying the number of processors. UL = 0.05, UU = 0.75, ZL = 1, ZU = 4.

An apparently superior performance of P_FENP_MC for the first two graphs can be
attributed to the particular implementation of the algorithm, which includes the mapping
test executed when partitioning tasks to processors.

Sensors 2023, 23, 1960 12 of 14

In Figure 5, the task set base utilization bound (BUbound) ranges on the x-axis from
0.2 to 0.8, in steps of 0.1. It can be seen that the performance of the algorithm decreases
when the number of processors increases. This is because the FFD heuristic, presented in
Section 4.3 of this paper, allocates tasks on a processor as long as the total utilization of
the processor is lower than or equal to 1. Since the utilization bound is higher when the
number of processors increases, Ubound = BUbound × (number o f processors/2), there is a
higher chance of the task mapping being unsuccessful or the scheduling algorithm at the
processor level failing.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 14

Figure 4. Success ratio by varying the number of processors. UL = 0.05, UU = 0.75, ZL = 1, ZU = 4.

An apparently superior performance of P_FENP_MC for the first two graphs can be
attributed to the particular implementation of the algorithm, which includes the mapping
test executed when partitioning tasks to processors.

In Figure 5, the task set base utilization bound (BUbound) ranges on the x-axis from 0.2
to 0.8, in steps of 0.1. It can be seen that the performance of the algorithm decreases when
the number of processors increases. This is because the FFD heuristic, presented in Section
4.3 of this paper, allocates tasks on a processor as long as the total utilization of the pro-
cessor is lower than or equal to 1. Since the utilization bound is higher when the number
of processors increases, 𝑈𝑏𝑜𝑢𝑛𝑑 = 𝐵𝑈𝑏𝑜𝑢𝑛𝑑 × (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠/2), there is a
higher chance of the task mapping being unsuccessful or the scheduling algorithm at the
processor level failing.

Figure 5. Success ratio of P-TT-OCBP by varying the base utilization bound and the number of pro-
cessors. UL = 0.05, UU = 0.75, ZL = 1, ZU = 4.

6. Conclusions
As the complexity of safety critical applications increases, it is important to facilitate

certification and to ensure efficient resource utilization. In this paper, we have proposed
an algorithm for scheduling periodic tasks on multiprocessor mixed criticality systems,
namely Partitioned Time-Triggered Own Criticality Based Priority (P-TT-OCBP). Our

0
0.2
0.4
0.6
0.8

1

2 4 6 8 1 0 1 2

SU
CC

ES
S

RA
TI

O

NUMBER OF PROCESSORS
UBOUND = 0.6*(NUMBER OF PROCESSORS/2), PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0
0.2
0.4
0.6
0.8

1

2 4 6 8 1 0 1 2

SU
CC

ES
S

RA
TI

O

NUMBER OF PROCESSORS
UBOUND = 0.8*(NUMBER OF PROCESSORS/2), PHI = 0.4

SUCCESS RATIO
P-EDF-
VD
P_FENP
_MC
P-TT-
OCBP

0

0.2

0.4

0.6

0.8

1

0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8

SU
CC

ES
S

RA
TI

O

BASE UTILIZATION BOUND (BUBOUND)
UBOUND = BUBOUND*(NUMBER OF PROCESSORS/2), PHI = 0.4

SUCCESS RATIO OF P-TT-OCBP

2-cores

4-cores

6-cores

8-cores

10-cores

12-cores

Figure 5. Success ratio of P-TT-OCBP by varying the base utilization bound and the number of
processors. UL = 0.05, UU = 0.75, ZL = 1, ZU = 4.

6. Conclusions

As the complexity of safety critical applications increases, it is important to facilitate
certification and to ensure efficient resource utilization. In this paper, we have proposed an
algorithm for scheduling periodic tasks on multiprocessor mixed criticality systems, namely
Partitioned Time-Triggered Own Criticality Based Priority (P-TT-OCBP). Our approach
is based on a polynomial-time algorithm for generating time-triggered schedules and
extended to deal with periodic tasks on multiprocessor platforms.

In addition, the algorithm performance was compared with an event-driven method,
P-EDF-VD, and a table-driven approach, P_FENP_MC, in a non-preemptive context.

The experimental results show that our algorithm has a high success ratio when the
number of processors is low. The higher the number of processors, the lower the success
ratio due to the increased total utilization on each processor (the number of tasks scheduled
on a processor is determined by the utilization bound). P-TT-OCBP outperforms the other
two algorithms in terms of success ratio when the number of processors is low; however,
if the number of processors increases, P_FENP_MC performs better due to the additional
mapping test executed while partitioning tasks to processors.

As future work, practical implementations of the algorithm can be proposed for
different real-time operating systems or real-time extensions of general-purpose operating
systems such as Litmus-RT (a multiprocessor RT extension for Linux), which already
provides support for time-triggered execution environment. The algorithm can also be
adapted to heterogeneous multiprocessor mixed criticality systems.

Author Contributions: Conceptualization, E.A.C., C.S.S. and M.V.M.; methodology, M.D.B., E.A.C.
and C.S.S.; software, M.D.B. and E.A.C.; validation, C.S.S., M.V.M. and D.-I.C.; formal analysis, M.V.M.
and D.-I.C.; investigation, M.D.B. and E.A.C.; resources, M.V.M. and D.-I.C.; data curation, C.S.S.

Sensors 2023, 23, 1960 13 of 14

and D.-I.C.; writing—original draft preparation, M.D.B., E.A.C. and C.S.S.; writing—review and
editing, C.S.S. and D.-I.C.; visualization, C.S.S., M.V.M. and D.-I.C.; supervision, M.V.M. and D.-I.C.;
project administration, M.V.M.; funding acquisition, D.-I.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ernst, R.; Di Natale, M. Mixed Criticality Systems—A History of Misconceptions? IEEE Des. Test 2016, 33, 65–74. [CrossRef]
2. Burns, A.; Davis, R.I. A Survey of Research into Mixed Criticality Systems. ACM Comput. Surv. 2017, 50, 1–37. [CrossRef]
3. Capota, E.A.; Stangaciu, C.S.; Micea, M.V.; Curiac, D.-I. Towards mixed criticality task scheduling in cyber physical systems:

Challenges and perspectives. J. Syst. Softw. 2019, 156, 204–216.
4. Goswami, D.; Lukasiewycz, M.; Schneider, R.; Chakraborty, S. Time-triggered implementations of mixed-criticality automotive

software. In Proceedings of the 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany,
12–16 March 2012; pp. 1227–1232.

5. Baruah, S.; Fohler, G. Certification-cognizant time-triggered scheduling of mixed-criticality systems. In Proceedings of the 2011
IEEE 32nd Real-Time Systems Symposium, Vienna, Austria, 29 November–2 December 2011; pp. 3–12.

6. Baciu, M.D.; Capota, E.A.; Stangaciu, C.S.; Curiac, C.-D.; Micea, M.V. Multi-Core Time-Triggered OCBP-Based Scheduling
for Mixed Criticality Periodic Task Systems. In Proceedings of the 2022 IEEE International Symposium on Electronics and
Telecommunications (ISETC2022), Timisoara, Romania, 10–11 November 2022.

7. Vestal, S. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance. In Proceedings of
the 28th IEEE International Real-Time Systems Symposium (RTSS 2007), Tucson, AZ, USA, 3–6 December 2007; pp. 239–243.

8. Giannopoulou, G.; Stoimenov, N.; Huang, P.; Thiele, L. Scheduling of mixed-criticality applications on resource-sharing multicore
systems. In Proceedings of the 2013 International Conference on Embedded Software (EMSOFT), Montreal, QC, Canada,
29 September–4 October 2013; pp. 1–15.

9. Baruah, S.; Bonifaci, V.; d’Angelo, G.; Marchetti-Spaccamela, A.; Van Der Ster, S.; Stougie, L. Mixed-criticality scheduling of
sporadic task systems. In European Symposium on Algorithms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 555–566.

10. Lee, J.; Chwa, H.S.; Phan, L.T.; Shin, I.; Lee, I. MC-ADAPT: Adaptive task dropping in mixed-criticality scheduling.
ACM Trans. Embed. Comput. Syst. 2017, 16, 1–21.

11. Yang, K.; Bhuiyan, A.; Guo, Z. F2VD: Fluid rates to virtual deadlines for precise mixed-criticality scheduling on a varying-speed
processor. In Proceedings of the 2020 IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Diego, CA,
USA, 2–5 November 2020; pp. 1–9.

12. Lee, J.; Ramanathan, S.; Phan, K.-M.; Easwaran, A.; Shin, I.; Lee, I. MC-Fluid: Multi-Core Fluid-Based Mixed-Criticality Scheduling.
IEEE Trans. Comput. 2017, 67, 469–483. [CrossRef]

13. Capota, E.A.; Stangaciu, C.S.; Micea, M.V.; Curiac, D.-I. Towards Fully Jitterless Applications: Periodic Scheduling in Multiproces-
sor MCSs Using a Table-Driven Approach. Appl. Sci. 2020, 10, 6702. [CrossRef]

14. Ramanathan, S.; Easwaran, A. Mixed-criticality scheduling on multiprocessors with service guarantees. In Proceedings of the
2018 IEEE 21st International Symposium on Real-Time Distributed Computing (ISORC), Singapore, 29–31 May 2018; pp. 17–24.

15. Behera, L.; Bhaduri, P. An energy-efficient time-triggered scheduling algorithm for mixed-criticality systems. Des. Autom. Embed. Syst.
2019, 24, 79–109. [CrossRef]

16. Behera, L.; Bhaduri, P. Time-triggered scheduling for multiprocessor mixed-criticality systems. In Proceedings of the International
Conference on Distributed Computing and Internet Technology, Bhubaneswar, India, 11–13 January 2018; Springer: Cham,
Switzerland; pp. 135–151.

17. Socci, D.; Poplavko, P.; Bensalem, S.; Bozga, M. Time-triggered mixed-critical scheduler on single and multi-processor platforms.
In Proceedings of the 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE
7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded
Software and Systems, New York, NY, USA, 24–26 August 2015; pp. 684–687.

18. Zhang, Y.-W.; Cai, N. Energy efficient EDF-VD-based mixed-criticality scheduling with shared resources. J. Syst. Arch. 2021,
119, 102246.

19. Baruah, S.; Li, H.; Stougie, L. Towards the design of certifiable mixed-criticality systems. In Proceedings of the 2010 16th IEEE
Real-Time and Embedded Technology and Applications Symposium, Stockholm, Sweden, 12–15 April 2010; pp. 13–22.

20. Stângaciu, C.S.; Capota, E.A.; Stângaciu, V.; Micea, M.V.; Curiac, D.I. A Hardware-Aware Application Execution Model in
Mixed-Criticality Internet of Things. Mathematics 2022, 10, 1537.

21. Baruah, S.; Burns, A.; Davis, R.I. Response-time analysis for mixed criticality systems. In Proceedings of the 2011 IEEE 32nd
Real-Time Systems Symposium, Vienna, Austria, 29 November–2 December 2011; pp. 34–43.

22. Baruah, S.; Bonifaci, V.; D’Angelo, G.; Li, H.; Marchetti-Spaccamela, A.; Megow, N.; Stougie, L. Scheduling real-time mixed-
criticality jobs. In Proceedings of the International Symposium on Mathematical Foundations of Computer Science, Brno, Czech
Republic, 23–27 August 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 90–101.

http://doi.org/10.1109/MDAT.2016.2594790
http://doi.org/10.1145/3131347
http://doi.org/10.1109/TC.2017.2759765
http://doi.org/10.3390/app10196702
http://doi.org/10.1007/s10617-019-09232-3

Sensors 2023, 23, 1960 14 of 14

23. Baruah, S.; Li, H.; Stougie, L. Mixed-criticality scheduling: Improved resource-augmentation results. In Proceedings of the CATA,
Honolulu, HI, USA, 24–26 March 2010; pp. 217–223.

24. Blake, G.; Dreslinski, R.G.; Mudge, T. A survey of multicore processors. IEEE Signal Process. Mag. 2009, 26, 26–37.
25. Alahmadi, A.; Alnowiser, A.; Zhu, M.M.; Che, D.; Ghodous, P. Enhanced first-fit decreasing algorithm for energy-aware

job scheduling in cloud. In Proceedings of the 2014 International Conference on Computational Science and Computational
Intelligence, Las Vegas, NV, USA, 10–13 March 2014; Volume 2, pp. 69–74.

26. Pathan, R.M. Improving the quality-of-service for scheduling mixed-criticality systems on multiprocessors. In Proceedings of the
29th Euromicro Conference on Real-Time Systems (ECRTS 2017), Dubrovnik, Croatia, 27–30 June 2017.

27. Su, H.; Zhu, D.; Mossé, D. Scheduling algorithms for elastic mixed-criticality tasks in multicore systems. In Proceedings of the
2013 IEEE 19th International Conference on Embedded and Real-Time Computing Systems and Applications, Taipei, Taiwan,
19–21 August 2013; pp. 352–357.

28. Li, H.; Baruah, S. Outstanding paper award: Global mixed-criticality scheduling on multiprocessors. In Proceedings of the 2012
24th Euromicro Conference on Real-Time Systems, Pisa, Italy, 11–13 July 2012; pp. 166–175.

29. Guan, N.; Ekberg, P.; Stigge, M.; Yi, W. Improving the scheduling of certifiable mixed-criticality sporadic task systems. In Technical
Report 2013–008; Department of Information Technology, Uppsala University: Uppsala, Sweden, 2013.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Event-Driven Scheduling Algorithms
	Time-Triggered Scheduling Algorithms

	Model and Problem Statement
	Algorithm P-TT-OCBP
	Original Algorithm
	Working Hypothesis
	Partitioning Tasks to Processors
	Constructing the List of Jobs at the Processor Level
	Scheduling at the Processor Level
	System Execution

	Evaluation
	Task Set Generation
	Execution Example and Comparison
	Success Ratio

	Conclusions
	References

