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 A B S T R A C T

The Internet of Things concept has expanded to a large area of applications evolving to the point 
of providing even real-time support. Critical applications become increasingly suitable at the 
Edge Layer where real-time operations need to be supported at both node and network level thus 
communication becomes crucial. This paper presents a real-time communication solution based 
on the highly popular XBee modules. We describe a predictable and modular driver for such 
modules along with a full communication platform ready to be integrated into an IoT design for 
real-time applications. The proposed communication module has been implemented at prototype 
level and successfully validated through an extensive set of simulations and experiments.

. Introduction

The development of real-time and critical applications in the Internet of Things (IoT) concept is only natural, therefore expanding 
he applicability of IoT to safety critical domains [1]. Being organized in three basic functional layers, namely Edge, Fog and 
loud [2], an IoT network is intended to provide time critical monitoring and control functionalities at Edge Layer where the 
mplementation is generally represented by Wireless Sensor and Actuator Networks (WSANs) [3,4].
In order to adapt the Edge Layer of IoT to support critical applications, each software and hardware component of this layer 
ust be able to function in a real-time manner [5]. Such a requirement must not only be applied at node level through specific 
pplication developing techniques and usage of a Real-Time Operating System (RTOS) [6] but must also be accompanied with 
eal-time communication [7] between the nodes of the network where the infrastructure permits it.
An extremely popular communication solution used in IoT Edge Layer is represented by the ZigBee stack [8] with significant 

pplicability in home automation or smart city [9], industrial applications [10], environmental monitoring and control systems [11,
2], automotive [13] or healthcare [14,15]. Moreover, ZigBee’s popularity and stability led to important studies and improvements 
onducted by the scientific community in terms of security [16] or performance [17].
There are many hardware RF modules available on the market that implement the ZigBee stack. Some of the available solutions 

re mature enough to be easily integrated into new IoT platforms but the lack of specifically designed drivers make this attempt 
uestionable. Such a solution is represented by the XBee device family provided by Digi International. The XBee RF device family 
rovides IoT solutions not only for ZigBee implementations [18] or their own proprietary similar solution DigiMesh [19] but also 
or Lora [20], Cellular LTE [21] and even lower level sub 1 GHz [22,23] interfaces based also on DigiMesh. Such devices are used 
n many new IoT or Wireless Sensor Networks (WSN) designs [24,25], are involved in scientifical studies [26–29] and are also used 
s teaching platforms [30], mainly because they are a mature and easy to integrate technology.
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In this paper we present RTXBEE, a design and implementation for an embedded, platform independent real-time driver solution 
for the XBee family. This solution extends our previously conducted experiments presented in [31] where an attempt was made in 
this direction but with limited real-time functionality. We demonstrate the predictability of our solution with extensive experiments 
and measurements. Furthermore, we present a real-time hardware platform ready to be integrated into predictable real-time IoT 
designs. Our hardware solution fully implements the capabilities of the XBee module while providing a hard real-time full stack 
SPI communication interface, based on PARSECS_RT [32], directly available to be integrated into an IoT platform. Our main 
contributions presented in this paper are the following:

• A modular, platform independent real-time driver to manage the XBee family devices for critical systems.
• Based on our previous work, we extend the solution with additional software layers in order to provide a full real-time and 
predictable design.

• A double buffering solution was added in order to avoid any data loss from the XBee module.
• An integrated hardware module prototype ready to be integrated into a new IoT design, implementing RTXBEE along with 
our full stack hard real-time SPI communication protocol, namely PARSECS_RT.

• A full application layer API using PARSECS_RT as transport protocol.
• We evaluate our work on both simulations and a real hardware platform through extensive experiments.

The reminder of the paper is organized as follows. A related work study is presented in Section 2. Section 3 presents our design, 
coined as RTXBEE, while analyzing its real-time characteristics in Section 4. We provide the relevant experimental results in Section 5 
whose aim is to support our solution, while concluding this paper in Section 6.

2. Related work

While XBEE devices have proven their efficiency by providing the communication interface in many projects from various fields, 
the software driver still poses an issue when targeting critical and industrial IoT applications.

Regarding the software driver solutions required to interface the XBee modules with embedded systems, the manufacturer offers 
a variety of implementations for many platforms and programming languages. A notable solution is the framework written in ANSI 
C [33] for many hardware architectures and operating systems. This solution has the best potential for adapting it for critical IoT 
application. The main advantage of Digi’s ANSI C driver is that it offers an extremely detailed implementation for most of their 
devices. On the other hand, the driver does not offer any time guarantees although, in some platform ports, the implementation use 
non-blocking I/O operations. Furthermore, its potential for critical applications can also be justified that the driver’s architecture 
is based on a main process function implementing the driver’s relative tick which is called by the user. However, given its current 
limitations, it is not suitable for hard real-time applications.

Java [34] or Python [35] implementations from Digi are also available to be included into embedded applications. These solutions 
are generally designed as a library with detailed implementation for all the functionalities of the XBee family modules. However, 
these implementations, even if they are ported to some architectures, they are designed bu using a classical programming model using 
blocking procedures which do not provide execution predictability. This aspect is crucial for real-time systems thus the manufacture 
provided solution detrimentally affect their real-life application.

Aside from manufacturer provided drives, other third party solution offer similar features. An implementation close to the IoT 
paradigm is the one provided for the RIOT (Real-time Internet of Things Operating System) operating system [36] but it is limited to 
only certain XBee modules. Furthermore, even if RIOT targets IoT applications its real-time guarantees are extremely limited thus, 
in a best case scenario, it may be suited for soft real-time applications. The may reason behind this limitation is that it provides 
deterministic, preemptive, priority-based scheduling having even low latency interrupt support but without offering any deadline 
guarantees [37].

Another interesting approach is represented by a Linux kernel module implementing the XBEE driver [38]. This intriguing 
solution offers a very limited implementation for only one type of XBEE device through a network device serving as the interface 
with the user. Although its design is versatile the time constraints are not taken into account.

To the best of our knowledge, even with the continuous increase of the XBee family popularity, software solutions to support RF 
modules application in real-time scenarios are still in an infancy stage. The main disadvantage of the existing solutions is represented 
by the lack of predictability thus making their integration into real-time systems problematic.

In Table  1 we summarize the solutions we analyzed so far, by concentrating on the real-time aspects as well as their platform 
dependency. In a best case scenario, existing drivers may be used in soft real-time applications but, to the best of our knowledge, 
a hard real-time approach was not studied, leaving RTXBEE to tackle this gap for critical applications.

3. RTXBEE: XBEE real time driver

The work presented here is related to an initial experimental solution described in [31]. In this early work, only a partial idea 
was presented with limited real-time support and compatible with a deprecated version of an XBee modules [39]. This initial 
experimental solution introduced a simple three layer architecture for XBee Series 1 with limited functionalities and real-time 
capabilities, thus only the first two layers were able to achieve hard real-time constraints.
2 
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Table 1
Solution comparison.
 Solution Real-time aspects Hardware/software

platform
Programming
Language

 

 Digi XBee ANSI C Library [33] Soft real-time specific ports: DOS, 
mbed, Win32, Posix

C  

 Digi XBee Java Library [34] No real-time Hardware Platform 
Independent - needs 
Java runtime

Java  

 Digi XBee Python library [35] No real-time Python running 
hardware/software 
platform

Python  

 RIOT XBee Driver [36] Soft real-time RIOT Operating System C  
 Rob ODwyer XBEE Kernel Module [38] No real-time Linux C  
 RTXBEE Hard Real-Time Platform independent 

(except for Layer 1)
C  

Fig. 1. RTXBEE Driver Architecture.

In this paper we present a full real-time up-to-date solution for the XBee family devices designed not only for the ZigBee 
compatible devices but also for other RF modules from the same device family. The solution presented here was tested and evaluated 
in many scenarios and enabled the design and development of many other related IoT projects.

It is important to begin with a crucial observation regarding the XBee device family: all of the RF modules available are 
compatible in terms of data transport and encoding thus the serialization is identical. Such an aspect greatly influenced our driver 
architecture making it easily adaptable for all the related RF modules.

The solution we provide is organized as a layered architecture as presented in Fig.  1. Each layer was designed to be implemented 
as a single task, but this does not limit the flexibility of implementation.

The first layer of RTXBEE is responsible to implement the basic UART communication with the XBee RF module at byte level. 
This layer is divided into two submodules, one for reception (Layer 1 - RX) and one for transmission (Layer 1 - TX). The interfacing 
between Layer 1 and the Layer 2 is represented by a pair of ring buffers, one for transmission and one for reception as described in 
Fig.  2.

As it can be observed in Fig.  2, the RX ring buffer, denominated as xbee_rx_ring_buffer is written by the reception (RX) component 
of Layer 1 when a byte is received and it is read by Layer 2. The same trivial functionality is handled by the transmission (TX) 
component of Layer 1 using the TX ring buffer, namely xbee_tx_ring_buffer. Although our solution was designed to be platform 
independent, this layer is clearly dependent on the hardware platform thus it needs to implement platform specific operation in 
order to handle the UART bus.

The raw bytes handled by Layer 1 are serialized and de-serialized by Layer 2 in order to obtain a XBEE General API Frame. This 
frame is identical for all the modules of the RF XBee family and it is used to transport module specific commands and data. The 
structure of the XBEE General API Frame is depicted in Fig.  3.

The frame begins with a Start-of-Frame (SOF) byte with the fixed value of 0x7E, followed by a two byte long length field (LEN) 
which states the length of the payload in the DATA field. The frame is concluded by a checksum field meant for error detection and 
3 
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Fig. 2. Layer 1 interfacing with Layer 2 using ring buffers.

Fig. 3. XBEE General API Frame structure.

Fig. 4. XBEE General API Frame Assembly state machine.

calculated using (1) according to the manufacturer’s official documentation. 

𝐶𝐾𝑆𝑈𝑀 = 0𝑥𝐹𝐹 −
𝑛
∑

𝑖=1
𝐵𝑦𝑡𝑒𝑖 (1)

Layer 2 is also divided into two submodules one for RX and one for TX. Its main role is to assemble a correct and valid XBEE 
General API Frame from the raw bytes received from Layer 1 RX. The same principle is applied to the TX flow. The frame assembly 
process is low on complexity and its state machine is described in Fig.  4.

The XBEE General API Frame assembly process considers MSB reception byte order and is started upon the arrival of SOF byte 
(with the fixed value of 0x7E). The process continues on receiving the LEN field in state 1⃝ respectively 2⃝ after it continues to 
process the DATA field. The final role of this finite state machine is to receive the CHKSUM byte and then to validate the correctness 
of the received data.

The interfacing of Layer 2 with the upper layer (i.e. Layer 3) is done through a series of buffers as depicted in Fig.  5. It is 
noteworthy to mention that on the TX path only a single buffers provide the interfacing with the upper layers thus the XBee module 
cannot handle multiple XBEE General API Frames at the same time. On the other hand, the RX path is subjected to a double buffering 
interface. The reason behind this decision is to avoid any packet loss in the situation when the upper layers fail to process a received 
frame in time. Such a situation will not occur in the case when the full version of RTXBEE is used. However, we designed this solution 
in a modular way such as the layers may be used independently.

The two layers presented so far, namely Layer 1 and Layer 2, were designed to be compatible with any module in the XBee 
family thus, until this point, the interfacing is not module specific. In the following paragraphs we will present the rest of RTXBEE, 
represented by Layer 3 and Layer 4, which provide a full solution for the XBee modules implementing the ZigBee Stack, namely the 
XBee Series 3 [18].
4 
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Fig. 5. Layer 2 interfacing with Layer 3 using single TX buffer and RX double buffering.

The main role of the Layer 3 of RTXBEE is to encode/decode specific API frames based on the unique identifier provided by the 
first data byte (i.e., 𝐵𝑦𝑡𝑒1) of the XBEE General API Frame from Fig.  3. On the RX flow, this layer reads a XBEE General API Frame
from one of the two buffers written by Layer 2, decodes and validates a correct XBEE RF Series 3 API frame, and finally stores the 
specific resulted frame into a message queue, denominated as layer_3_rx_message_queue, later to be processed by Layer 4.

On the other hand, the transmission processes has a similar flow: Layer 4 interfaces with Layer 3 through a transmission message 
queue, layer_3_tx_message_queue, which is consumed by Layer 3 in order to encode a XBEE General API Frame to be forwarded to the 
rest of the stack. It is important to mention that on either path, RX or TX, if the API frame is not valid, this layer will ignore the 
data, thus not forwarding the invalid frame to the upper/lower layer.

The most complex layer of RTXBEE is Layer 4 which is responsible for the entire control and monitoring of the XBee module. This 
layer’s flow aims to provide a working and transparent RF ZigBee communication to the user in order to implement its application.

The flow of Layer 4, presented in Fig.  6, begins with a hardware reset procedure represented here by XBEE Module Reset state, 
involving a low pulse of 1 ms on the module’s 𝑅𝐸𝑆𝐸𝑇  pin. This ensures a predictable and clean start of the XBee module. Next, the 
flow waits a 5 s time period to allow the XBee module to fully power-up prior to initiating the module configure procedure designated 
as XBEE Module Configure. The configuration procedure is more complex and it will be detailed in the following paragraphs. As it 
can be observed, the XBEE Module Configure state may generate certain errors which may or may not be recoverable. Errors such 
as timeout or XBEE Module Not Joined will result in a restart of the main flow of Layer 4, while errors such as MODULE NOT 
COMPATIBLE or MODULE FAULT  will block the entire flow of RTXBEE, such events being clearly not recoverable.

A successful module configuration will lead to a fully active XBee module in state XBEE Module Idle and Ready after transitioning 
through a preidle state, namely XBEE Module PreIdle. The module is fully usable by the application through dedicated APIs while 
remaining in XBEE Module Idle and Ready. This state is also responsible for keeping the XBee module in working conditions while 
detecting possible functional issues. In such situations, the flow will transition to the already presented error states as shown in Fig. 
6.

Regarding the XBEE Module PreIdle, its purpose is to start periodic tasks that may occur such as a periodical node discovery 
before switching to the final ready state.

As discussed before, a critical state in the main flow of Layer 4 is represented by the XBEE Module Configure in Fig.  6. The role 
of this part of the flow is to identify the XBee module, configure it according to the parameters specified by the application layer 
and finally to ensure that the module has joined the ZigBee network thus making it active for communication.

The configuration flow, described in the diagram in Fig.  7, firstly identifies the module by reading its MAC address in the form 
of a 64 bit serial number. In the next step, the state of the XBee module’s internal network join status is checked. This implies 
periodical polling the module for the network join status but subjected to a timeout. If the network association timeout expires, 
RTXBEE treats this event as a potential error thus triggering a fresh start of the main flow of Layer 4 beginning with a hardware 
reset of the module.

The network join operation is considered crucial, the XBee module being useless without taking part in a ZigBee network. After a 
successful network join, the configuration flow continues by interrogating the XBee module for certain parameters such as: operating 
channel, operating PAN ID, Network Address, Node Identifier, Power Level, Maximum Hops, Hardware and Software version. After 
collecting these parameters, the configuration flow concludes thus the main flow of Layer 4 considers the XBee module to be ready 
for the application layer.

As it can be observed in Fig.  7, the configuration flow can also signal errors to the main flow such as either recoverable ones as 
communication timeout or also unrecoverable errors such as MODULE NOT COMPATIBLE or MODULE FAULT.

According to the architecture diagram presented in Fig.  1, Layer 4 is the final upper layer of RTXBEE’s stack, directly interfacing 
with the user’s application layer. The main functions of the API available to the user are described in Listing 1.
5 
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Fig. 6. Layer 4 Main Flow.

Fig. 7. Layer 4 XBee Series 3 Module Configure Flow.
6 
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XBEE2_MODULE_SETTINGS RTXBEE_GetSettings ( ) ;
bool RTXBEE_SetSett ings (RTXBEE_MODULE_SETTINGS ∗new_se t t ings ) ;
bool RTXBEE_FlushQueues ( ) ;
RTXBEE_MODULE_STATE RTXBEE_GetState ( ) ;
bool RTXBEE_RX_Packet (RTXBEE_RX_PACK ∗packet ) ;
bool RTXBEE_TX_Packet (RTXBEE_TX_PACK ∗packet , u i n t 8 _ t ∗ s en t _ f r ame _ id ) ;
NODE_LIST RTXBEE_GetNodeList ( ) ;
XBEE_STATISTICS G e t S t a t i s t i c s ( ) ;

Listing 1: RTXBEE User API

The RTXBEE_GetSettings and RTXBEE_SetSettings provide an interface for the user to read or change the main settings of the XBee 
module. The call of the RTXBEE_SetSettings API will inevitably trigger the restart of the main flow of Layer 4. The settings of the 
XBee module are implemented using the structure presented in Listing 2.
typedef struct
{
u i n t 8 _ t CH_OperatingChannel ;
u in t64 _ t OP_OperatingPanID ;
u in t16 _ t ID_PANID ;
u in t16 _ t MY_NetworkAddress ;
u in t64 _ t SHSL_SerialNumber ;
char∗ NI _Node Iden t i f i e r ;
POWER_LEVEL PL_PowerLevel ;
u in t16 _ t VR_FirmwareVersion ;
u in t16 _ t HV_HardwareVersion ;
XBEE2_ASSOCIATION_INDICATION_STATUS AI _A s soc i a t i on Ind i ca t i on ;
u i n t 8 _ t NH_MaximumUnicastHops ;
u in t64 _ t un i ca s t _ t r an smi s s i on _ t imeou t ;

}XBEE2_MODULE_SETTINGS ;

Listing 2: XBee Module Settings Structure

Using RTXBEE API, the user may read the settings in Listing 2 through RTXBEE_GetSettings or may also configure settings through
RTXBEE_SetSettings such as the node identifier, power level or maximum unicast hops.
typedef enum
{
XBEE2_STATE_BEGIN ,
XBEE2_STATE_RESET ,
XBEE2_STATE_POWERUP ,
XBEE2_STATE_CONFIGURE ,
XBEE2_STATE_PREIDLE ,
XBEE2_STATE_IDLE ,
XBEE2_STATE_MODULE_NOT_RESPONDING ,
XBEE2_STATE_MODULE_NOT_RESPONDING_RETRY ,
XBEE2_STATE_MODULE_NOT_COMPATIBLE ,
XBEE2_STATE_MODULE_NOT_JOINED ,
XBEE2_STATE_MODULE_NOT_JOINED_RETRY ,
XBEE2_STATE_MODULE_FAULT ,

}XBEE2_MODULE_STATE ;

Listing 3: RTXBEE Driver State

The current state of the RTXBEE driver, as described in Listing 3, may be queried by the user through the RTXBEE_GetState
function, while the list of the other nodes in the network, obtained using the node discovery feature, may be interrogated through 
the NODE_LIST RTXBEE_GetNodeList API.

The user may interrogate the RTXBEE driver for an already received RF packet through RTXBEE_RT_Packet. If an RF packet was 
received, this call will return true and will write the content in the packet parameter. In order to sent an RF packet the user will 
use the RTXBEE_TX_Packet providing the packet to be sent through the packet parameter. In case of success, this call will return true
while writing the XBEE frame_id into the output parameter send_frame_id.

Additionally, RTXBEE provides a statistical feedback to the user using the GetStatistics API from Listing 1. The statistical 
information available to the user is presented in Listing 4:
typedef struct
{
u in t32 _ t ha rdware _ t x _ r e t r i e s ;
u in t32 _ t rx _packe t _ count ;
u in t32 _ t t x _packe t _ count ;
u in t32 _ t t x _packe t _no _ack _count ;
u in t32 _ t t x _ p a c k e t _ c c a _ f a i l _ c o un t ;
7 
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u in t32 _ t tx _packet _purged_count ;
u in t32 _ t t x _ p a c k e t _ i n v a l i d _ d e s t _ p o i n t _ c oun t ;
u in t32 _ t t x _ p a c k e t _ n e t _ a c k _ f a i l _ c o un t ;
u in t32 _ t t x _packe t _no t _ j o i ned _ coun t ;
u in t32 _ t t x _ p a ck e t _ s e l f _ a dd r _ c oun t ;
u in t32 _ t tx _packe t _addr _no t _ found_count ;
u in t32 _ t t x _packe t _no _ rou te _ coun t ;

}XBEE_STATISTICS ;

Listing 4: RTXBEE Driver RF Module Statistical data

Such statistical information may be of interest to the user to either debug certain network communication issues, evaluate 
network performance or even identify a possible faulty XBee RF module.

4. Real-time analysis

The main reason for designing RTXBEE was to provide a predictable hard real-time solution for the popular XBee modules in 
order to be applied into time critical IoT networks. This work is not intended to offer any guarantees regarding the functionality 
of the XBee module itself but we will demonstrate the real-time behavior of the RTXBEE driver. In order to be able to function in 
a real-time manner, RTXBEE requires the support of an underlying Real Time Operating System (RTOS) such as FreeRTOS [40], a 
Linux system with real-time extensions similar to LitmusRT [41] or using latest Linux extension sched_ext [42]. Furthermore, even 
if proper real-time support is offered by the RTOS, the task timings still need to be properly calculated.

This section will provide a formal analysis regarding the real-time aspects of RTXBEE. In order to begin this analysis we will need 
to make the following simple considerations: (i) each Layer of RTXBEE as described in Fig.  1 will be implemented as a single task, 
(ii) the processor used to implement RTXBEE may have a hardware receive FIFO within its UART controller, (iii) the application 
layer, not being part of RTXBEE will not be analyzed but some minimum requirements about its time constraints will be overviewed.

We will first define the minimum execution frequency for the task implementing Layer 1 of RTXBEE, denoted as 𝐹𝐿1. Considering 
that in order to effectively transfer a single byte over the UART interface at a transfer speed identified by 𝐵𝐴𝑈𝐷 measured in  bps 
(bits per second), a number of 10 bits is required (8 data bits, 1 START bit and 1 STOP bit) and using 𝐹𝐼𝐹𝑂 to identify the number 
of bytes of the hardware FIFO of the UART controller (a value of 𝐹𝐼𝐹𝑂 = 1 meaning no FIFO is available), the minimum execution 
frequency of the task implementing Layer 1, 𝐹𝑀𝐼𝑁 (𝐿1), can be calculated using: 

𝐹𝑀𝐼𝑁 (𝐿1)[𝐻𝑧] =
𝐵𝐴𝑈𝐷[𝑏𝑝𝑠]
10 ⋅ 𝐹𝐼𝐹𝑂

(2)

Considering (2), the frequency of the task implementing Layer 1 needs to satisfy the following condition: 
𝐹𝐿1 ≥ 𝐹𝑀𝐼𝑁 (𝐿1) (3)

Usually, in RTOSs time restrictions are given as task execution periods rather than frequencies. In order to ease the rest of our 
analysis we will consider:

• 𝑇𝐿1 - the execution period of the task implementing Layer 1 where 𝑇𝐿1 = 1
𝐹𝐿1

• 𝑇𝐿2 - the execution period of the task implementing Layer 2
• 𝑇𝐿3 - the execution period of the task implementing Layer 3
• 𝑇𝐿4 - the execution period of the task implementing Layer 4

According to the official documentation [18], the smallest API frame is the Modem Status frame having only the mandatory 
Frame Type along with one byte of payload. By adding the encoding of the XBEE General API Frame as defined in Fig.  3 we can 
calculate that the minimum size of a XBEE General API Frame is 6 bytes. This value will impose the maximum period of the execution 
of the task implementing Layer 2 (𝑇𝐿2): 

𝑇𝐿2 ≤ 6 ⋅ 𝑇𝐿1 (4)

Regarding Layer 3, its execution period is dictated by the double buffering technique used to provide the interfacing with Layer 
2: 

𝑇𝐿3 ≤ 2 ⋅ 𝑇𝐿2 (5)

As for Layer 4, its execution period is imposed by the size of the reception and transmission queues, denoted as 𝑄𝑈𝐸𝑈𝐸_𝑆𝐼𝑍𝐸
that handle the interfacing with Layer 3: 

𝑇𝐿4 ≤ 𝑄𝑈𝐸𝑈𝐸_𝑆𝐼𝑍𝐸 ⋅ 𝑇𝐿3 (6)

All of the above calculations provide the time conditions that need to be satisfied in order to provide a correct functionality, 
otherwise, RTXBEE will clearly experience packet loss. The task execution periods are best handled when an RTOS is used. However, 
on a practical approach, the schedulability is highly influenced by the amount of total tasks running in the system as well as the 
Worst Case Execution Time (WCET) of each task. The later is clearly dependent on the CPU that executes these tasks.
8 
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Fig. 8. Real-Time communication module for XBee.

5. Implementation and experimental results

We implemented the RTXBEE solution mainly on hardware platforms that include autonomous communication modules ready 
to be integrated into IoT nodes in order to provide a predictable communication.

One such implementation is a communication board for a real-time modular multiprocessor IoT node. This communication 
module, as presented in Fig.  8, has its own microcontroller unit (MCU) which on one side manages the XBee RF module using our 
RTXBEE solution and, on the other hand, offers an API through an SPI interface using the PARSECS_RT hard real-time communication 
stack [32].

The API support of PARSECS_RT provides the means to get the value of a parameter, set the value of a parameter or call a 
remote procedure. The RTXBEE parameters that may be requested through the PARSECS_RT stack are presented in Abstract Syntax 
Notation One (ASN.1) Standard [43] in Listing 5.

PARAMETER_TYPE_ID : := ENUMERATED {
XBEE_MY_NETWORK_ADDRESS (0x01 ) ,
XBEE_SN_SERIAL_NUMBER (0x02 ) ,
XBEE_OP_OPERATING_PANID (0x03 ) ,
XBEE_ID_PANID (0x04 ) ,
XBEE_CH_OPERATING_CHANNEL (0x05 ) ,
XBEE_VR_FIRMWARE_VERSION (0x06 ) ,
XBEE_HV_HARDWARE_VERSION (0x07 ) ,
XBEE_PL_POWER_LEVEL (0x08 ) ,
XBEE_ND_COUNT (0x09 ) ,
XBEE_ND_NODE_INDEX (0x0A ) ,
XBEE_TX_TIMEOUT_VALUE (0x0B ) ,
XBEE_STATISTICS (0x0C ) ,
RTXBEE_VERSION (0xFE ) ,
}

Listing 5: PARSECS_RT API - RTXBEE GetRequest Parameter List

As described in Section 3, some of the RF module’s parameters may be written by the user, thus finally causing a reconfiguration 
rocedure in order to apply the new settings. These parameters are exported through the PARSECS_RT API as enumerated in Listing 
.
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Fig. 9. Real-Time communication module for XBee - Block schematic.

PARAMETER_TYPE_ID : := ENUMERATED {
XBEE_PL_POWER_LEVEL (0x08 ) ,
XBEE_TX_TIMEOUT_VALUE (0x0B ) ,
RTXBEE_VERSION (0xFE ) ,
}

Listing 6: PARSECS_RT API - RTXBEE SetRequest Parameter List

The packet exchange is implemented using the CallRequest API provided by PARSECS_RT with the methods enumerated in Listing 
7.

METHOD_TYPE_ID : := ENUMERATED {
XBEE_RECV_PACKET_NO_CONFIRM (0x01 ) ,
XBEE_SEND_PACKET_NO_CONFIRM (0x14 ) ,
XBEE_SEND_PACKET_WITH_CONFIRM (0x15 ) ,
}

Listing 7: PARSECS_RT API - RTXBEE CallRequest Method List

The user may request to send an RF packet using a remote CallRequest API identified by either XBEE_SEND_PACKET_NO_CONFIRM
or by using the API identified by XBEE_SEND_PACKET_WITH_CONFIRM. On the other hand, on the reception of a new RF packet from 
the network, the host, connected via SPI to our real-time communication module, will be notified by another remote CallRequest 
identified by the method type XBEE_RECV_PACKET_NO_CONFIRM.

As stated before, the real-time communication module presented in Fig.  8, uses RTXBEE to handle the XBee RF module and 
PARSECS_RT for the real time SPI communication. Our hardware is built around a microcontroller manufactured by NXP, the 
LPC2000 [44] family, as depicted in Fig.  9. The LPC2000 microcontrollers are based on the ARM7TDMI-S architecture known for 
their predictable execution. The LPC2000 processor family are used in many embedded projects having a large amount of peripheral 
devices include the UART and SPI which are significant for our solution [45]. The MCU is connected to the XBEE device via one 
of its UART interfaces along with the dedicated GPIO pin in order to provide the hardware reset. On the other hand, the MCU also 
interfaces with the host platform via the SPI bus which is handled by the PARSECS_RT communication protocol transporting the 
above presented API.

The operating system of our real-time communication module is represented by FreeRTOS [40]. The need for such an RTOS is 
crucial in order to achieve the real-time constraints and have a deadline guarantee.

A detailed description of the most important parameters regarding the hardware and operating system performance is provided 
in Table  2.

All of the timings required for certain operations within the RTXBEE driver are handled by real-time software timers [46,47] 
having the resolution fixed to 1 ms. In order to implement all the required timings, six software timers were employed:

• xbee_powerup_timer - used to implement timings for hardware reset and module power up. According to the hardware 
specifications of the XBEE module the reset low pulse was set to 300ms. After the reset the module will need an additional 
period of 7000ms to fully boot.

• xbee_general_timeout_timer - used to implement all of the communication timeout situations. The duration of this timeout 
is variable and it depends on each operation.
10 
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Table 2
Real time communication module parameters.
 Parameter Value  
 CPU Core Freq 58.9824MHz 
 CPU Peripheral Freq 14.7456MHz 
 CPU RAM Memory 32KB  
 CPU Flash Memory 128KB  
 XBee BAUD Rate 57 600 bps  
 FreeRTOS Version V11.1.0  
 FreeRTOS Heap Size 12KB  
 FreeRTOS Tick 10KHz  

Table 3
Communication Module Running Tasks.
 Task name Task short name Task description  
 Task_TimerSoftware TS The software timer engine that allows

the RTXBEE timings to be implemented
 

 Task_XBeeLayer1 XBEE1 Layer 1 RTXBEE  
 Task_XBeeLayer2 XBEE2 Layer 2 RTXBEE  
 Task_XBeeLayer3 XBEE3 Layer 3 RTXBEE  
 Task_XBeeLayer4 XBEE4 Layer 4 RTXBEE  
 Task_PARSECS_LL SPI_LL PARSECS_RT Low Level Substack  
 Task_PARSECS_HL SPI_HL PARSECS_RT High Level Substack  
 Task_AppTask_1 APP1 Internal Application task 1  
 Task_AppTask_2 APP2 Internal Application task 2  

• xbee_configuration_timeout_timer - used to implement the configuration procedure timeout. This timer practically guards 
the configuration process and limits this procedure to a value of 10 s. According to the driver flows presented earlier this 
timeout will trigger a full reconfiguration process of the module starting with a full reset procedure.

• xbee_not_responding_retry_timer - used to implement a general timeout that triggers a module not responding event which 
leads to a restart of the Layer 4 Main Flow in Fig.  6

• xbee_node_discovery_period_timer - a periodic timer that initiates a node discovery procedure. This timer keeps track of the 
periodic node discovery process where the XBee module practically triggers a network scan. The period for this procedure is 
configurable and set as default to 60 s

• xbee_association_timer - used to implement the network join timeout. This timer is crucial to the configuration process thus 
it practically defines the node’s association timeout. The purpose of the XBee node is to be associated to the network. If the 
node fails to correctly associate to an existing network this timer will trigger a full reconfiguration process beginning with a 
hardware reset.

The real-time communication module presented in Fig.  8 offers a complete predictable communication solution using 9 FreeRTOS 
tasks as described in Table  3 while their interaction flow is depicted in Fig.  10.

As it can be observed in Table  3 and in Fig.  10 the main tasks responsible for implementing RTXBEE are denominated as XBEE1-4. 
Also, in order to obtain the timings required by the driver, software timers were used as presented earlier in this chapter, which are 
handled by the TimerSoftware task designated as TS. The PARSECS_RT communication stack is achieved by the SPI_LL and SPI_HL 
responsible for the Low Level and the High Level Substack. The last two tasks, denominated as APP1 and APP2, are responsible 
for implementing the main flow of the application of the communication module presented in Fig.  8 . The role of the APP1 task 
is to forward all the RF data packets from the XBee network to the master host connected via PARSECS_RT SPI protocol with our 
communication module. On the hand, a similar role is attributed to the APP2 task. This task must mainly handle the API over the 
PARSECS_RT protocol as described in Listing 5, Listing 6 and Listing 7.

The interaction and the execution flow of these tasks is depicted in Fig.  10. The purpose of the communication module prototype 
that we designed as the board in Fig.  8 having the hardware diagram in Fig.  9 and the task flow in Fig.  10 is to provide an off-the-shelf 
communication module ready to be integrated into a new IoT design where the time constraints represent crucial requirements.

In order for these tasks to be properly executed by a RTOS, in our case FreeRTOS, certain time parameters need to be determined, 
such as the task execution period along with its WCET.

In Table  4 we present the time parameters for each task, along with the execution priorities.
The execution period for the tasks implementing the RTXBEE driver (i.e. XBEE1-4) were calculated using Eqs. (2), (3), (4), (5) 

and (6) considering the values in Table  2 focusing on the XBee BAUD rate of 57600 bps.
An accurate calculation of the WCET still poses a significant challenge, thus we obtained this parameter experimentally through 

extensive measurements with the help of a logic analyzer. Some detailed examples regarding this aspect will be presented later 
in this section. Using the same principle, along with the WCET values, we determined the Average Execution Time (AET) and the 
Minimum Execution Time (MET).
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Fig. 10. Real-Time communication module for XBee - Task communication flow.

Table 4
Task time parameters.
 Task Criticality

priority
Rate mon.
priority

Period 
[μs]

WCET 
[μs]

AET 
[μs]

MET 
[μs]

 

 TS 9 8 1000 40 23 17  
 XBEE1 8 7 2500 150 6 5.5  
 XBEE2 7 4 15000 240 5.8 3.5  
 XBEE3 5 3 30000 250 10 9.5  
 XBEE4 5 2 50000 2800 59.5 3  
 SPI_LL 8 9 500 50 15 10.5  
 SPI_HL 6 6 3000 450 9.9 9.5  
 APP1 5 1 50000 2100 26 1.5  
 APP2 5 5 12500 1800 8 3  

Along with these values, in Table  4 we added the task priorities that we used in our experiments. As FreeRTOS, like many 
real-time operating systems, provides a priority based scheduling, we need to determine and specify the priority for each task. We 
considered two possible approaches: give priorities based on tasks criticality (i.e. importance, in this context) or based on their 
activation frequency (i.e. Rate Monotonic priority).

In our implementation, we have chosen the latter, because by doing so, we actually use the Rate Monotonic scheduling 
algorithm [48,49], a static priority based algorithm in which the priorities are assigned based on the task activation rate (i.e. the 
task with the highest activation frequency, implicitly with the lowest period, is assigned the highest priority, the next priority is 
assigned to the task with the next activation rate value, and so on). This algorithm is known to be optimal among uniprocessor fixed 
priority scheduling algorithms [48]. Regarding the tasks periods, we have chosen to harmonically relate their values with respect 
to the smallest value. As it can be observed in Table  4, the task having the minimum period is SPI_LL, thus, we have chosen all of 
the other task periods to be a multiple of the period of the SPI_LL task, while still respecting the time constrains imposed for each 
task by the Eqs. (2), (3), (4), (5) and (6). We have chosen this approach in order to increase the general Rate Monotonic utilization 
bound for processor utilization which is about 0.69 (i.e. 69%) by default. By using proper harmonic relations between periods, this 
bound can be theoretically raised to 100% [50].

Another way of assigning priorities is to take into consideration the task’s level of importance in the system, using the direct 
priority scheduling approach. In our scenario, FreeRTOS was configured to support 10 levels of priorities, from 0 to 9, where 9 is 
the highest priority level. The priorities were assigned from the most important level to the lesser ones. Thus, TS task was assigned 
the highest priority as the application directly depends on it, because it provides the time support for functionalities implemented 
by tasks, e.g. timeout. The XBEE1 and SPI_LL received the next lower priority level, and so on.

Another crucial aspect that needs to analyzed is regarded to CPU usage in three different situations: worst case execution, average 
execution and minimum execution (idle). While the idle or average CPU usage is useful in most cases, in real-time environments 
the absolute maximum CPU usage needs to be considered. 

𝑈 [%] = 𝐸𝑇
𝑇

⋅ 100 (7)
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Table 5
CPU Usage.
 Task MAX 

CPU
%

AVG 
CPU
%

MIN 
CPU
%

 

 TS 4.00 2.30 1.70  
 XBEE1 6.00 0.24 0.22  
 XBEE2 1.60 0.04 0.02  
 XBEE3 0.83 0.03 0.03  
 XBEE4 5.60 0.12 0.01  
 SPI_LL 10.00 3.00 2.10  
 SPI_HL 15.00 0.33 0.32  
 APP1 4.20 0.05 0.01  
 APP2 14.40 0.06 0.02  
 TOTAL 61.63 6.18 4.43

Fig. 11. CPU Usage.

In order to calculate the execution time for each task in any scenario we make use of the equation in (7) where 𝐸𝑇  represents 
the execution time of the task and 𝑇  the task execution period. Using the above Eq. (7) over the values in Table  4 we obtained the 
maximum, average and minimum CPU usage values presented in Table  5.

As it can be observed, the total CPU usage in a worst case scenario is presenting as a reasonable value thus still allowing other 
tasks to be added in order to extend current functionalities. On the other hand, comparing this value with the average and minimum 
CPU usage we can clearly point out the noticeable difference suggesting a very pessimistic behavior for the worst case scenario as it 
is true for most of the real-time systems. Because the maximum CPU usage value is below 69%, the task set is schedulable with Rate 
Monotonic algorithm regardless of the task period values. Still, in order to increase the schedulability up to 100% it is recommended 
to use harmonic period values.

In order to ease the analysis of the CPU usage, Fig.  11 depicts the values from Table  5 in a graphical manner for each task using 
a base 2 logarithmic axis for CPU usage. This representation helps us understand the pessimistic estimation for each task and also 
to have a clear overview over the total CPU usage of the system. We can easily observe that in the case of tasks SPI_LL and TS the 
maximum CPU usage based on WCET is not too pessimistic as we would expect, thus, in an average usage these two tasks need 
roughly the same amount of CPU TIME. The situation is different for the rest of the tasks where the CPU is not actually fully used 
in an average execution. Clearly, overall, the system will allow the execution of very low priority tasks such as logging, debugging 
or monitoring tasks given the pessimistic estimation.

The important question at hand is why the WCET estimation is so pessimistic in the cast of most tasks. As we stated before 
in this paper, the WCET parameter was determined experimentally by measuring the execution time of each task in the situation 
where the workload was maximum. The WCET estimation was measured for each task individually. Considering this aspect, in a 
normal usage of the system, it is extremely unlikely that in a moment in time all the tasks will occupy the processor as in a WCET 
estimation. However, in a real-time scenario, the system needs to be ready for such a situation.

We validated the task set schedulability using values from Table  2 in the SimSo simulator [51] for a hyperperiod of 150000 μs, 
value given by the least common multiple of the tasks’ periods. The first part of the simulation is depicted in Figs.  12 and 13, 
where a time unit represents 10 μs. The simulations were performed using both Rate Monotonic and Criticality based approach for 
assigning priorities and both proved approached proved to be feasible.
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Fig. 12. Task Simulation in SimSo, using WCET execution model and Rate Monotonic Priorities.

Fig. 13. Task Simulation in SimSo, using WCET execution model and Criticality-based Priorities.

As we can see from Figs.  12 and 13, there is no deadline miss in either of the cases. Thus for this CPU utilization level both 
approaches for assigning priorities depicted in Table  4 are feasible. The difference between them resides only in the order of the 
task execution.

Considering the fact that we designed this driver for embedded systems low on resources, the analysis of the memory footprint is 
necessary. With the aid of memory analysis APIs provided by FreeRTOS, we were able to extract the memory usage of the software 
modules present in the system as presented in Table  6 reaching a total footprint of about 23 KB.

In order to further demonstrate and analyze our solution in term of real-time behavior, we performed measurements of the tasks 
timings using a Saleae Logic Pro16 Analyzer [52]. In order to obtain the time measurements we used classical embedded approach: 
we used a dedicated GPIO for each task which is toggled to logic LOW at the beginning of the task execution and back to logic 
HIGH at end of the task execution. The waveforms were then captured using the Logic Analyzer. A sample of these measurements 
is presented in Fig.  14.
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Table 6
Memory Usage.
Software 
Component

FreeRTOS 
Stack 
[bytes]

Data 
memory 
[bytes]

Total 
memory 
[bytes]

 TimerSoftware 96 402 498
 RTXBEE 1344 7333 8677
 PARSECS_RT 888 6071 6959
 APP 1144 3807 4951
 CPU Stack 512 512
 FreeRTOS 996 996

 TOTAL 22593

Fig. 14. Logic Analyzer Task Timings Measurements.

To better explain the presented measurements we used timing interval markers for each channel. Fig.  14 depicts the measure-
ments for all the tasks described in Table  3 but we concentrated only on the tasks regarding our RTXBEE solution. For the first 
three tasks of RTXBEE (XBEE1, XBEE2, XBEE3) the time measurements are presented on the right side of the figure designated as 
M1, M2 and M3. The timing measurements for the last task of RTXBEE, namely XBEE4, are presented in the floating window on 
the bottom of the figure. We used the values of 𝐿𝑀𝐴𝑋 , 𝐿𝐴𝑉 𝐺 and 𝐿𝑀𝐼𝑁  to measure the WCET, AET and MET while the task period 
may be identified by the 𝑇𝐴𝑉 𝐺 field.

Given the fact that we designed RTXBEE to be platform independent (except for Layer 1) we could easily adapt it in order to 
evaluate its functionalities and deterministic behavior on another hardware platform and operating system. RTXBEE was thus ported 
on a Raspberry PI3 Model B V1.2 having a quad core CPU running at 1.2 GHz with 1 GB of RAM memory [53]. The XBee module 
was connected to the Raspberry PI3 board via a simple USB to Serial Adapter. The operating system is ArchLinuxARM having the 
LitmusRT [41] kernel patch applied. We took advantage of the 4 CPU cores and we configured the LitmusRT scheduler having the 
parameters as described in 7.

A similar execution context as the one for the LPC2000 implementation is presented in the logic analyzer capture in Fig.  15, 
having the same time parameters measured as in Fig.  14.

While considering the space limitations to present the extended data in the paper, we also provided the captured measurements 
as supplementary materials to this paper [54]. The data repository contains 2 saved captures from the Logical Analyzer which can 
be studied by using the Saleae Logic software [52]. Furthermore, in order to reproduce these measurements two extensions need to 
be installed along the main Logic Analyzer software, directly from the Extensions Manager: Pulse Stats by Peter Jaquiery [55] and 
Pulse Interval Stats by Coriander V. Pines [56]. It is also important to mention that all the timing markers have been included in 
the supplementary capture files.
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Table 7
Task time periods - RTXBEE on Linux with Litmus.
 Task Litmus priority CPU Affinity Litmus Reservation ID Period 𝜇s 
 TS 2 1 1002 1000  
 XBEE1 1 2 1003 1200  
 XBEE2 2 2 1004 6000  
 XBEE3 3 3 1005 10000  
 XBEE4 4 3 1006 40000  
 SPI_LL 3 0 1000 1000  
 SPI_HL 5 0 1001 6000  

Fig. 15. Logic Analyzer Task Timings Measurements - RTXBEE on Litmus.

The key aspect of our solution is represented by its predictability, stability and determinism compared to a classical approach. 
In order to prove the stability of RTXBEE we compared its execution against the manufacturer provided solution [33]. Considering 
the same evaluation setup with the Raspberry PI3 platform, along with the same task context, we evaluated RTXBEE and Digi-XBEE 
ANSI C library from the deterministic point of view.

The determinism was evaluated by performing a set of measurements of the same transaction (a request and a response) with 
the XBEE module. We have chosen a simple transaction where we request the least significant part of the serial number by issuing 
the SL command to the XBEE module and reading back its response. The justification for this choice is that we need to establish the 
determinism of the RTXBEE stack compared to the manufacturer driver and not the XBEE module itself. For instance, choosing an RF 
transmission transaction would not be appropriate thus the transaction period would be greatly influenced by the RF communication 
medium.

The measurement result of the transaction period using RTXBEE and the manufacturer provided driver is presented in Fig.  16 
where each point represents a transaction period. The red plot represents the execution periods of the manufacturer provided driver 
while the blue plot represented the transaction period of RTXBEE.

We can clearly observe that even if the performance of RTXBEE is lower compared to the manufacturer’s driver, the predictability 
and stability of RTXBEE is easily observed. In a real-time system determinism is the key factor having a greater importance than 
performance.
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Fig. 16. XBEE Transaction Period.

6. Conclusions

In this paper we present RTXBEE, an embedded and real-time communication solution for IoT, based on the XBee RF modules. 
The architecture encompasses 4 layers where the first two layers provide a universal time-bounded implementation for the general 
API interface of the XBee modules family.

The latter two layers are dependent on the specific module that is used for communication. We channeled the functionality 
flow for the last two layers to fully implement the feature of the XBee Series 3 RF module oriented on ZigBee communication. The 
predictable methodology that we used in this case can be adapted to implement the functionalities of other types of RF modules 
from the XBee family.

Furthermore, a hardware prototype was built not only to demonstrate the effectiveness of RTXBEE but to also deliver an 
integrated communication solution to be integrated into an IoT node design. By integrating with the PARSECS_RT stack over SPI, 
we provided an API in order for a host connected to our prototype to be able to use XBee series RF modules for communicating 
within the Edge of an IoT network.

The real-time behavior was not only formally described but it was also validated through simulations and real hardware 
implementation having FreeRTOS as an underlying embedded real-time operating system.

In terms of scalability, the first two layers of RTXBEE may be used without any changes with all types of XBee devices currently 
available. Regarding the last two layers of RTXBEE, they need to be adapted for each device type specifically using the same 
methodology. Providing a version of RTXBEE for all the XBee family devices is currently our ongoing future work.

The current limitations of the work we present in this paper are represented by the fact that we implemented the functionalities 
for the XBee Series 3 for ZigBee networks. Although the first two layers of RTXBEE are universal for all the XBee device family, we 
intend to include all the RF modules into RTXBEE making it a full communication software solution for IoT.

RTXBEE has successfully proven its effectiveness in designing a hybrid platform where classical real-time wireless sensor networks 
were integrated into an IoT network by making use of the MQTT-SN application protocol [57] which was transported using our 
solution presented in this paper.
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