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ARTICLE INFO ABSTRACT

Keywords: The Internet of Things concept has expanded to a large area of applications evolving to the point
Real-time communication of providing even real-time support. Critical applications become increasingly suitable at the
Internet of Things Edge Layer where real-time operations need to be supported at both node and network level thus
XBEE

communication becomes crucial. This paper presents a real-time communication solution based
on the highly popular XBee modules. We describe a predictable and modular driver for such
modules along with a full communication platform ready to be integrated into an IoT design for
real-time applications. The proposed communication module has been implemented at prototype
level and successfully validated through an extensive set of simulations and experiments.

Sensor networks

1. Introduction

The development of real-time and critical applications in the Internet of Things (IoT) concept is only natural, therefore expanding
the applicability of IoT to safety critical domains [1]. Being organized in three basic functional layers, namely Edge, Fog and
Cloud [2], an IoT network is intended to provide time critical monitoring and control functionalities at Edge Layer where the
implementation is generally represented by Wireless Sensor and Actuator Networks (WSANs) [3,4].

In order to adapt the Edge Layer of IoT to support critical applications, each software and hardware component of this layer
must be able to function in a real-time manner [5]. Such a requirement must not only be applied at node level through specific
application developing techniques and usage of a Real-Time Operating System (RTOS) [6] but must also be accompanied with
real-time communication [7] between the nodes of the network where the infrastructure permits it.

An extremely popular communication solution used in IoT Edge Layer is represented by the ZigBee stack [8] with significant
applicability in home automation or smart city [9], industrial applications [10], environmental monitoring and control systems [11,
12], automotive [13] or healthcare [14,15]. Moreover, ZigBee’s popularity and stability led to important studies and improvements
conducted by the scientific community in terms of security [16] or performance [17].

There are many hardware RF modules available on the market that implement the ZigBee stack. Some of the available solutions
are mature enough to be easily integrated into new IoT platforms but the lack of specifically designed drivers make this attempt
questionable. Such a solution is represented by the XBee device family provided by Digi International. The XBee RF device family
provides IoT solutions not only for ZigBee implementations [18] or their own proprietary similar solution DigiMesh [19] but also
for Lora [20], Cellular LTE [21] and even lower level sub 1 GHz [22,23] interfaces based also on DigiMesh. Such devices are used
in many new IoT or Wireless Sensor Networks (WSN) designs [24,25], are involved in scientifical studies [26-29] and are also used
as teaching platforms [30], mainly because they are a mature and easy to integrate technology.
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In this paper we present RTXBEE, a design and implementation for an embedded, platform independent real-time driver solution
for the XBee family. This solution extends our previously conducted experiments presented in [31] where an attempt was made in
this direction but with limited real-time functionality. We demonstrate the predictability of our solution with extensive experiments
and measurements. Furthermore, we present a real-time hardware platform ready to be integrated into predictable real-time IoT
designs. Our hardware solution fully implements the capabilities of the XBee module while providing a hard real-time full stack
SPI communication interface, based on PARSECS RT [32], directly available to be integrated into an IoT platform. Our main
contributions presented in this paper are the following:

» A modular, platform independent real-time driver to manage the XBee family devices for critical systems.

+ Based on our previous work, we extend the solution with additional software layers in order to provide a full real-time and
predictable design.

+ A double buffering solution was added in order to avoid any data loss from the XBee module.

+ An integrated hardware module prototype ready to be integrated into a new IoT design, implementing RTXBEE along with
our full stack hard real-time SPI communication protocol, namely PARSECS RT.

+ A full application layer API using PARSECS RT as transport protocol.

» We evaluate our work on both simulations and a real hardware platform through extensive experiments.

The reminder of the paper is organized as follows. A related work study is presented in Section 2. Section 3 presents our design,
coined as RTXBEE, while analyzing its real-time characteristics in Section 4. We provide the relevant experimental results in Section 5
whose aim is to support our solution, while concluding this paper in Section 6.

2. Related work

While XBEE devices have proven their efficiency by providing the communication interface in many projects from various fields,
the software driver still poses an issue when targeting critical and industrial IoT applications.

Regarding the software driver solutions required to interface the XBee modules with embedded systems, the manufacturer offers
a variety of implementations for many platforms and programming languages. A notable solution is the framework written in ANSI
C [33] for many hardware architectures and operating systems. This solution has the best potential for adapting it for critical IoT
application. The main advantage of Digi’s ANSI C driver is that it offers an extremely detailed implementation for most of their
devices. On the other hand, the driver does not offer any time guarantees although, in some platform ports, the implementation use
non-blocking I/0 operations. Furthermore, its potential for critical applications can also be justified that the driver’s architecture
is based on a main process function implementing the driver’s relative tick which is called by the user. However, given its current
limitations, it is not suitable for hard real-time applications.

Java [34] or Python [35] implementations from Digi are also available to be included into embedded applications. These solutions
are generally designed as a library with detailed implementation for all the functionalities of the XBee family modules. However,
these implementations, even if they are ported to some architectures, they are designed bu using a classical programming model using
blocking procedures which do not provide execution predictability. This aspect is crucial for real-time systems thus the manufacture
provided solution detrimentally affect their real-life application.

Aside from manufacturer provided drives, other third party solution offer similar features. An implementation close to the IoT
paradigm is the one provided for the RIOT (Real-time Internet of Things Operating System) operating system [36] but it is limited to
only certain XBee modules. Furthermore, even if RIOT targets IoT applications its real-time guarantees are extremely limited thus,
in a best case scenario, it may be suited for soft real-time applications. The may reason behind this limitation is that it provides
deterministic, preemptive, priority-based scheduling having even low latency interrupt support but without offering any deadline
guarantees [37].

Another interesting approach is represented by a Linux kernel module implementing the XBEE driver [38]. This intriguing
solution offers a very limited implementation for only one type of XBEE device through a network device serving as the interface
with the user. Although its design is versatile the time constraints are not taken into account.

To the best of our knowledge, even with the continuous increase of the XBee family popularity, software solutions to support RF
modules application in real-time scenarios are still in an infancy stage. The main disadvantage of the existing solutions is represented
by the lack of predictability thus making their integration into real-time systems problematic.

In Table 1 we summarize the solutions we analyzed so far, by concentrating on the real-time aspects as well as their platform
dependency. In a best case scenario, existing drivers may be used in soft real-time applications but, to the best of our knowledge,
a hard real-time approach was not studied, leaving RTXBEE to tackle this gap for critical applications.

3. RTXBEE: XBEE real time driver

The work presented here is related to an initial experimental solution described in [31]. In this early work, only a partial idea
was presented with limited real-time support and compatible with a deprecated version of an XBee modules [39]. This initial
experimental solution introduced a simple three layer architecture for XBee Series 1 with limited functionalities and real-time
capabilities, thus only the first two layers were able to achieve hard real-time constraints.
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Table 1
Solution comparison.
Solution Real-time aspects Hardware/software Programming
platform Language
Digi XBee ANSI C Library [33] Soft real-time specific ports: DOS, C
mbed, Win32, Posix
Digi XBee Java Library [34] No real-time Hardware Platform Java

Independent - needs
Java runtime

Digi XBee Python library [35] No real-time Python running Python
hardware/software
platform
RIOT XBee Driver [36] Soft real-time RIOT Operating System C
Rob ODwyer XBEE Kernel Module [38] No real-time Linux C
RTXBEE Hard Real-Time Platform independent C
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Fig. 1. RTXBEE Driver Architecture.

In this paper we present a full real-time up-to-date solution for the XBee family devices designed not only for the ZigBee
compatible devices but also for other RF modules from the same device family. The solution presented here was tested and evaluated
in many scenarios and enabled the design and development of many other related IoT projects.

It is important to begin with a crucial observation regarding the XBee device family: all of the RF modules available are
compatible in terms of data transport and encoding thus the serialization is identical. Such an aspect greatly influenced our driver
architecture making it easily adaptable for all the related RF modules.

The solution we provide is organized as a layered architecture as presented in Fig. 1. Each layer was designed to be implemented
as a single task, but this does not limit the flexibility of implementation.

The first layer of RTXBEE is responsible to implement the basic UART communication with the XBee RF module at byte level.
This layer is divided into two submodules, one for reception (Layer 1 - RX) and one for transmission (Layer 1 - TX). The interfacing
between Layer 1 and the Layer 2 is represented by a pair of ring buffers, one for transmission and one for reception as described in
Fig. 2.

As it can be observed in Fig. 2, the RX ring buffer, denominated as xbee rx_ring buffer is written by the reception (RX) component
of Layer 1 when a byte is received and it is read by Layer 2. The same trivial functionality is handled by the transmission (TX)
component of Layer 1 using the TX ring buffer, namely xbee tx ring buffer. Although our solution was designed to be platform
independent, this layer is clearly dependent on the hardware platform thus it needs to implement platform specific operation in
order to handle the UART bus.

The raw bytes handled by Layer 1 are serialized and de-serialized by Layer 2 in order to obtain a XBEE General API Frame. This
frame is identical for all the modules of the RF XBee family and it is used to transport module specific commands and data. The
structure of the XBEE General API Frame is depicted in Fig. 3.

The frame begins with a Start-of-Frame (SOF) byte with the fixed value of 0x7E, followed by a two byte long length field (LEN)
which states the length of the payload in the DATA field. The frame is concluded by a checksum field meant for error detection and
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Fig. 4. XBEE General API Frame Assembly state machine.

calculated using (1) according to the manufacturer’s official documentation.
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Layer 2 is also divided i’ntlo two submodules one for RX and one for TX. Its main role is to assemble a correct and valid XBEE
General API Frame from the raw bytes received from Layer 1 RX. The same principle is applied to the TX flow. The frame assembly
process is low on complexity and its state machine is described in Fig. 4.

The XBEE General API Frame assembly process considers MSB reception byte order and is started upon the arrival of SOF byte
(with the fixed value of 0x7E). The process continues on receiving the LEN field in state (D) respectively (2 after it continues to
process the DATA field. The final role of this finite state machine is to receive the CHKSUM byte and then to validate the correctness
of the received data.

The interfacing of Layer 2 with the upper layer (i.e. Layer 3) is done through a series of buffers as depicted in Fig. 5. It is
noteworthy to mention that on the TX path only a single buffers provide the interfacing with the upper layers thus the XBee module
cannot handle multiple XBEE General API Frames at the same time. On the other hand, the RX path is subjected to a double buffering
interface. The reason behind this decision is to avoid any packet loss in the situation when the upper layers fail to process a received
frame in time. Such a situation will not occur in the case when the full version of RTXBEE is used. However, we designed this solution
in a modular way such as the layers may be used independently.

The two layers presented so far, namely Layer 1 and Layer 2, were designed to be compatible with any module in the XBee
family thus, until this point, the interfacing is not module specific. In the following paragraphs we will present the rest of RTXBEE,
represented by Layer 3 and Layer 4, which provide a full solution for the XBee modules implementing the ZigBee Stack, namely the
XBee Series 3 [18].
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Fig. 5. Layer 2 interfacing with Layer 3 using single TX buffer and RX double buffering.

The main role of the Layer 3 of RTXBEE is to encode/decode specific API frames based on the unique identifier provided by the
first data byte (i.e., Byte,) of the XBEE General API Frame from Fig. 3. On the RX flow, this layer reads a XBEE General API Frame
from one of the two buffers written by Layer 2, decodes and validates a correct XBEE RF Series 3 API frame, and finally stores the
specific resulted frame into a message queue, denominated as layer 3 rx_message queue, later to be processed by Layer 4.

On the other hand, the transmission processes has a similar flow: Layer 4 interfaces with Layer 3 through a transmission message
queue, layer. 3 tx message_queue, which is consumed by Layer 3 in order to encode a XBEE General API Frame to be forwarded to the
rest of the stack. It is important to mention that on either path, RX or TX, if the API frame is not valid, this layer will ignore the
data, thus not forwarding the invalid frame to the upper/lower layer.

The most complex layer of RTXBEE is Layer 4 which is responsible for the entire control and monitoring of the XBee module. This
layer’s flow aims to provide a working and transparent RF ZigBee communication to the user in order to implement its application.

The flow of Layer 4, presented in Fig. 6, begins with a hardware reset procedure represented here by XBEE Module Reset state,
involving a low pulse of 1 ms on the module’s RESET pin. This ensures a predictable and clean start of the XBee module. Next, the
flow waits a 5 s time period to allow the XBee module to fully power-up prior to initiating the module configure procedure designated
as XBEE Module Configure. The configuration procedure is more complex and it will be detailed in the following paragraphs. As it
can be observed, the XBEE Module Configure state may generate certain errors which may or may not be recoverable. Errors such
as timeout or XBEE Module Not Joined will result in a restart of the main flow of Layer 4, while errors such as MODULE NOT
COMPATIBLE or MODULE FAULT will block the entire flow of RTXBEE, such events being clearly not recoverable.

A successful module configuration will lead to a fully active XBee module in state XBEE Module Idle and Ready after transitioning
through a preidle state, namely XBEE Module Preldle. The module is fully usable by the application through dedicated APIs while
remaining in XBEE Module Idle and Ready. This state is also responsible for keeping the XBee module in working conditions while
detecting possible functional issues. In such situations, the flow will transition to the already presented error states as shown in Fig.
6.

Regarding the XBEE Module Preldle, its purpose is to start periodic tasks that may occur such as a periodical node discovery
before switching to the final ready state.

As discussed before, a critical state in the main flow of Layer 4 is represented by the XBEE Module Configure in Fig. 6. The role
of this part of the flow is to identify the XBee module, configure it according to the parameters specified by the application layer
and finally to ensure that the module has joined the ZigBee network thus making it active for communication.

The configuration flow, described in the diagram in Fig. 7, firstly identifies the module by reading its MAC address in the form
of a 64 bit serial number. In the next step, the state of the XBee module’s internal network join status is checked. This implies
periodical polling the module for the network join status but subjected to a timeout. If the network association timeout expires,
RTXBEE treats this event as a potential error thus triggering a fresh start of the main flow of Layer 4 beginning with a hardware
reset of the module.

The network join operation is considered crucial, the XBee module being useless without taking part in a ZigBee network. After a
successful network join, the configuration flow continues by interrogating the XBee module for certain parameters such as: operating
channel, operating PAN ID, Network Address, Node Identifier, Power Level, Maximum Hops, Hardware and Software version. After
collecting these parameters, the configuration flow concludes thus the main flow of Layer 4 considers the XBee module to be ready
for the application layer.

As it can be observed in Fig. 7, the configuration flow can also signal errors to the main flow such as either recoverable ones as
communication timeout or also unrecoverable errors such as MODULE NOT COMPATIBLE or MODULE FAULT.

According to the architecture diagram presented in Fig. 1, Layer 4 is the final upper layer of RTXBEE's stack, directly interfacing
with the user’s application layer. The main functions of the API available to the user are described in Listing 1.
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XBEE2_MODULE_SETTINGS RTXBEE_GetSettings ();

bool RTXBEE_SetSettings (RTXBEE_MODULE SETTINGS xnew_settings);

bool RTXBEE_FlushQueues ();

RTXBEE_MODULE STATE RTXBEE_GetState ();

bool RTXBEE_RX_Packet(RTXBEE RX PACK =xpacket);

bool RTXBEE_TX_ Packet(RTXBEE_TX PACK xpacket, uint8_t xsent_frame_id);
NODE _LIST RTXBEE_GetNodeList ();

XBEE_STATISTICS GetStatistics ();

Listing 1: RTXBEE User API

The RTXBEE GetSettings and RTXBEE _SetSettings provide an interface for the user to read or change the main settings of the XBee
module. The call of the RTXBEE SetSettings API will inevitably trigger the restart of the main flow of Layer 4. The settings of the

XBee module are implemented using the structure presented in Listing 2.

typedef struct
{
uint8_t CH_OperatingChannel;
uint64_t OP_OperatingPanID;
uintl6_t ID_PANID;
uintl6_t MY_NetworkAddress;
uint64_t SHSL_SerialNumber;
charx NI_Nodeldentifier;
POWER _LEVEL PL_PowerLevel;
uintl6_t VR_FirmwareVersion;
uintl6_t HV_HardwareVersion;
XBEE2_ASSOCIATION_INDICATION_STATUS AI_AssociationIndication;
uint8_t NH_MaximumUnicastHops;
uint64_t unicast_transmission_timeout;
}XBEE2_MODULE_SETTINGS ;

Listing 2: XBee Module Settings Structure

Using RTXBEE API, the user may read the settings in Listing 2 through RTXBEE GetSettings or may also configure settings through

RTXBEE SetSettings such as the node identifier, power level or maximum unicast hops.

typedef enum

{
XBEE2_STATE_BEGIN,
XBEE2 _STATE_RESET,
XBEE2_STATE_ POWERUP,
XBEE2_STATE_CONFIGURE,
XBEE2 _STATE_PREIDLE,
XBEE2_STATE_IDLE,
XBEE2 STATE_MODULE_NOT_RESPONDING,
XBEE2_STATE_MODULE_NOT_RESPONDING_RETRY,
XBEE2_STATE_MODULE_NOT_COMPATIBLE,
XBEE2_STATE_MODULE_NOT_JOINED,
XBEE2_STATE_MODULE_NOT_JOINED_RETRY,
XBEE2_STATE_MODULE _FAULT,

}XBEE2 MODULE STATE;

Listing 3: RTXBEE Driver State

The current state of the RTXBEE driver, as described in Listing 3, may be queried by the user through the RTXBEE GetState
function, while the list of the other nodes in the network, obtained using the node discovery feature, may be interrogated through

the NODE_LIST RTXBEE_GetNodeList API.

The user may interrogate the RTXBEE driver for an already received RF packet through RTXBEE RT Packet. If an RF packet was
received, this call will return true and will write the content in the packet parameter. In order to sent an RF packet the user will
use the RTXBEE_TX Packet providing the packet to be sent through the packet parameter. In case of success, this call will return true

while writing the XBEE frame_id into the output parameter send frame_id.

Additionally, RTXBEE provides a statistical feedback to the user using the GetStatistics API from Listing 1. The statistical

information available to the user is presented in Listing 4:

typedef struct

{
uint32_t hardware_tx_retries;
uint32_t rx_packet_count;
uint32_t tx_packet_count;
uint32_t tx_packet_no_ack_count;
uint32_t tx_packet_cca_fail_count;
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uint32_t tx_packet_purged_count;
uint32_t tx_packet_invalid_dest_point_count;
uint32_t tx_packet_net_ack_fail_count;
uint32_t tx_packet_not_joined_count;
uint32_t tx_packet_self_addr_count;
uint32_t tx_packet_addr_not_found_count;
uint32_t tx_packet_no_route_count;
}XBEE_STATISTICS;

Listing 4: RTXBEE Driver RF Module Statistical data

Such statistical information may be of interest to the user to either debug certain network communication issues, evaluate
network performance or even identify a possible faulty XBee RF module.

4. Real-time analysis

The main reason for designing RTXBEE was to provide a predictable hard real-time solution for the popular XBee modules in
order to be applied into time critical IoT networks. This work is not intended to offer any guarantees regarding the functionality
of the XBee module itself but we will demonstrate the real-time behavior of the RTXBEE driver. In order to be able to function in
a real-time manner, RTXBEE requires the support of an underlying Real Time Operating System (RTOS) such as FreeRTOS [40], a
Linux system with real-time extensions similar to LitmusRT [41] or using latest Linux extension sched_ext [42]. Furthermore, even
if proper real-time support is offered by the RTOS, the task timings still need to be properly calculated.

This section will provide a formal analysis regarding the real-time aspects of RTXBEE. In order to begin this analysis we will need
to make the following simple considerations: (i) each Layer of RTXBEE as described in Fig. 1 will be implemented as a single task,
(ii) the processor used to implement RTXBEE may have a hardware receive FIFO within its UART controller, (iii) the application
layer, not being part of RTXBEE will not be analyzed but some minimum requirements about its time constraints will be overviewed.

We will first define the minimum execution frequency for the task implementing Layer 1 of RTXBEE, denoted as F;,. Considering
that in order to effectively transfer a single byte over the UART interface at a transfer speed identified by BAU D measured in bps
(bits per second), a number of 10 bits is required (8 data bits, 1 START bit and 1 STOP bit) and using FI FO to identify the number
of bytes of the hardware FIFO of the UART controller (a value of FI FO = 1 meaning no FIFO is available), the minimum execution
frequency of the task implementing Layer 1, F),,;y(L1), can be calculated using:

BAU D[bps]

F LD[Hz] = 2
min(LD[Hz] 0. FIFO )
Considering (2), the frequency of the task implementing Layer 1 needs to satisfy the following condition:

Fry 2 Fyyn(L1) 3

Usually, in RTOSs time restrictions are given as task execution periods rather than frequencies. In order to ease the rest of our
analysis we will consider:

+ Ty, - the execution period of the task implementing Layer 1 where T, = FL
Ll

» T}, - the execution period of the task implementing Layer 2
+ T3 - the execution period of the task implementing Layer 3
*+ Ty, - the execution period of the task implementing Layer 4

According to the official documentation [18], the smallest API frame is the Modem Status frame having only the mandatory
Frame Type along with one byte of payload. By adding the encoding of the XBEE General API Frame as defined in Fig. 3 we can
calculate that the minimum size of a XBEE General API Frame is 6 bytes. This value will impose the maximum period of the execution
of the task implementing Layer 2 (T;,):

T, <6-Tp, @

Regarding Layer 3, its execution period is dictated by the double buffering technique used to provide the interfacing with Layer
2:

T3 <2-Ty, (5)

As for Layer 4, its execution period is imposed by the size of the reception and transmission queues, denoted as QUEUE_SIZE
that handle the interfacing with Layer 3:

T;4s <QUEUE_SIZE -Tp, (6)

All of the above calculations provide the time conditions that need to be satisfied in order to provide a correct functionality,
otherwise, RTXBEE will clearly experience packet loss. The task execution periods are best handled when an RTOS is used. However,
on a practical approach, the schedulability is highly influenced by the amount of total tasks running in the system as well as the
Worst Case Execution Time (WCET) of each task. The later is clearly dependent on the CPU that executes these tasks.
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¢

Fig. 8. Real-Time communication module for XBee.

5. Implementation and experimental results

We implemented the RTXBEE solution mainly on hardware platforms that include autonomous communication modules ready
to be integrated into IoT nodes in order to provide a predictable communication.

One such implementation is a communication board for a real-time modular multiprocessor IoT node. This communication
module, as presented in Fig. 8, has its own microcontroller unit (MCU) which on one side manages the XBee RF module using our
RTXBEE solution and, on the other hand, offers an API through an SPI interface using the PARSECS_RT hard real-time communication
stack [32].

The API support of PARSECS RT provides the means to get the value of a parameter, set the value of a parameter or call a
remote procedure. The RTXBEE parameters that may be requested through the PARSECS RT stack are presented in Abstract Syntax
Notation One (ASN.1) Standard [43] in Listing 5.

PARAMETER_TYPE_ ID ::= ENUMERATED {
XBEE_MY_NETWORK_ADDRESS (0x01),
XBEE_SN_SERIAL_NUMBER (0x02),
XBEE_OP_OPERATING_PANID (0x03),
XBEE_ID_PANID (0x04),
XBEE_CH_OPERATING_CHANNEL (0x05),
XBEE_VR_FIRMWARE_VERSION (0x06),
XBEE_HV_HARDWARE _VERSION (0x07),
XBEE_PL_POWER_LEVEL (0x08),
XBEE_ND_COUNT (0x09),
XBEE_ND_NODE_INDEX (0x0A),
XBEE_TX_TIMEOUT_VALUE (0x0B),
XBEE_STATISTICS (0x0C),
RTXBEE_VERSION (OxFE),
¥

Listing 5: PARSECS_RT API - RTXBEE GetRequest Parameter List

As described in Section 3, some of the RF module’s parameters may be written by the user, thus finally causing a reconfiguration
procedure in order to apply the new settings. These parameters are exported through the PARSECS_RT API as enumerated in Listing
6.
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Fig. 9. Real-Time communication module for XBee - Block schematic.
PARAMETER TYPE ID ::= ENUMERATED {
XBEE_PL_POWER_LEVEL (0x08),
XBEE_TX_TIMEOUT_VALUE (0x0B),
RTXBEE_VERSION (OXFE),
}

Listing 6: PARSECS_RT API - RTXBEE SetRequest Parameter List

The packet exchange is implemented using the CallRequest API provided by PARSECS_RT with the methods enumerated in Listing

7.
METHOD_TYPE_ID ::= ENUMERATED {
XBEE_RECV_PACKET_NO_CONFIRM (0x01),
XBEE_SEND_PACKET_NO_CONFIRM (0x14),
XBEE_SEND_PACKET_WITH_CONFIRM (0x15),
b

Listing 7: PARSECS_RT API - RTXBEE CallRequest Method List

The user may request to send an RF packet using a remote CallRequest API identified by either XBEE SEND PACKET NO CONFIRM
or by using the API identified by XBEE SEND_PACKET WITH_CONFIRM. On the other hand, on the reception of a new RF packet from
the network, the host, connected via SPI to our real-time communication module, will be notified by another remote CallRequest
identified by the method type XBEE_RECV_PACKET NO_CONFIRM.

As stated before, the real-time communication module presented in Fig. 8, uses RTXBEE to handle the XBee RF module and
PARSECS RT for the real time SPI communication. Our hardware is built around a microcontroller manufactured by NXP, the
LPC2000 [44] family, as depicted in Fig. 9. The LPC2000 microcontrollers are based on the ARM7TDMI-S architecture known for
their predictable execution. The LPC2000 processor family are used in many embedded projects having a large amount of peripheral
devices include the UART and SPI which are significant for our solution [45]. The MCU is connected to the XBEE device via one
of its UART interfaces along with the dedicated GPIO pin in order to provide the hardware reset. On the other hand, the MCU also
interfaces with the host platform via the SPI bus which is handled by the PARSECS RT communication protocol transporting the
above presented APIL.

The operating system of our real-time communication module is represented by FreeRTOS [40]. The need for such an RTOS is
crucial in order to achieve the real-time constraints and have a deadline guarantee.

A detailed description of the most important parameters regarding the hardware and operating system performance is provided
in Table 2.

All of the timings required for certain operations within the RTXBEE driver are handled by real-time software timers [46,47]
having the resolution fixed to 1 ms. In order to implement all the required timings, six software timers were employed:

» xbee_powerup_timer - used to implement timings for hardware reset and module power up. According to the hardware
specifications of the XBEE module the reset low pulse was set to 300 ms. After the reset the module will need an additional
period of 7000 ms to fully boot.

» xbee_general_timeout_timer - used to implement all of the communication timeout situations. The duration of this timeout
is variable and it depends on each operation.

10
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Table 2

Real time communication module parameters.
Parameter Value
CPU Core Freq 58.9824 MHz
CPU Peripheral Freq 14.7456 MHz
CPU RAM Memory 32KB
CPU Flash Memory 128 KB
XBee BAUD Rate 57600 bps
FreeRTOS Version V11.1.0
FreeRTOS Heap Size 12KB
FreeRTOS Tick 10KHz

Table 3

Communication Module Running Tasks.
Task name Task short name Task description
Task_TimerSoftware TS The software timer engine that allows

the RTXBEE timings to be implemented

Task_XBeeLayerl XBEE1 Layer 1 RTXBEE
Task_XBeeLayer2 XBEE2 Layer 2 RTXBEE
Task_XBeeLayer3 XBEE3 Layer 3 RTXBEE
Task_XBeeLayer4 XBEE4 Layer 4 RTXBEE
Task_ PARSECS_LL SPILL PARSECS_RT Low Level Substack
Task_PARSECS_HL SPI_HL PARSECS RT High Level Substack
Task_AppTask_1 APP1 Internal Application task 1
Task_AppTask_2 APP2 Internal Application task 2

xbee_configuration_timeout_timer - used to implement the configuration procedure timeout. This timer practically guards
the configuration process and limits this procedure to a value of 10s. According to the driver flows presented earlier this
timeout will trigger a full reconfiguration process of the module starting with a full reset procedure.
xbee_not_responding_retry_timer - used to implement a general timeout that triggers a module not responding event which
leads to a restart of the Layer 4 Main Flow in Fig. 6

xbee_node_discovery_period_timer - a periodic timer that initiates a node discovery procedure. This timer keeps track of the
periodic node discovery process where the XBee module practically triggers a network scan. The period for this procedure is
configurable and set as default to 60s

xbee_association_timer - used to implement the network join timeout. This timer is crucial to the configuration process thus
it practically defines the node’s association timeout. The purpose of the XBee node is to be associated to the network. If the
node fails to correctly associate to an existing network this timer will trigger a full reconfiguration process beginning with a
hardware reset.

The real-time communication module presented in Fig. 8 offers a complete predictable communication solution using 9 FreeRTOS
tasks as described in Table 3 while their interaction flow is depicted in Fig. 10.

As it can be observed in Table 3 and in Fig. 10 the main tasks responsible for implementing RTXBEE are denominated as XBEE1-4.
Also, in order to obtain the timings required by the driver, software timers were used as presented earlier in this chapter, which are
handled by the TimerSoftware task designated as TS. The PARSECS_RT communication stack is achieved by the SPI LL and SPI_HL
responsible for the Low Level and the High Level Substack. The last two tasks, denominated as APP1 and APP2, are responsible
for implementing the main flow of the application of the communication module presented in Fig. 8 . The role of the APP1 task
is to forward all the RF data packets from the XBee network to the master host connected via PARSECS_RT SPI protocol with our
communication module. On the hand, a similar role is attributed to the APP2 task. This task must mainly handle the API over the
PARSECS _RT protocol as described in Listing 5, Listing 6 and Listing 7.

The interaction and the execution flow of these tasks is depicted in Fig. 10. The purpose of the communication module prototype
that we designed as the board in Fig. 8 having the hardware diagram in Fig. 9 and the task flow in Fig. 10 is to provide an off-the-shelf
communication module ready to be integrated into a new IoT design where the time constraints represent crucial requirements.

In order for these tasks to be properly executed by a RTOS, in our case FreeRTOS, certain time parameters need to be determined,
such as the task execution period along with its WCET.

In Table 4 we present the time parameters for each task, along with the execution priorities.

The execution period for the tasks implementing the RTXBEE driver (i.e. XBEE1-4) were calculated using Egs. (2), (3), (4), (5)
and (6) considering the values in Table 2 focusing on the XBee BAUD rate of 57600 bps.

An accurate calculation of the WCET still poses a significant challenge, thus we obtained this parameter experimentally through
extensive measurements with the help of a logic analyzer. Some detailed examples regarding this aspect will be presented later
in this section. Using the same principle, along with the WCET values, we determined the Average Execution Time (AET) and the
Minimum Execution Time (MET).

11
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Fig. 10. Real-Time communication module for XBee - Task communication flow.

Table 4

Task time parameters.
Task Criticality Rate mon. Period WCET AET MET

priority priority [us] [ps] [us] [ps]

TS 9 8 1000 40 23 17
XBEE1 8 7 2500 150 6 5.5
XBEE2 7 4 15000 240 5.8 3.5
XBEE3 5 3 30000 250 10 9.5
XBEE4 5 2 50000 2800 59.5 3
SPILL 8 9 500 50 15 10.5
SPIHL 6 6 3000 450 9.9 9.5
APP1 5 1 50000 2100 26 1.5
APP2 5 5 12500 1800 8 3

Along with these values, in Table 4 we added the task priorities that we used in our experiments. As FreeRTOS, like many
real-time operating systems, provides a priority based scheduling, we need to determine and specify the priority for each task. We
considered two possible approaches: give priorities based on tasks criticality (i.e. importance, in this context) or based on their
activation frequency (i.e. Rate Monotonic priority).

In our implementation, we have chosen the latter, because by doing so, we actually use the Rate Monotonic scheduling
algorithm [48,49], a static priority based algorithm in which the priorities are assigned based on the task activation rate (i.e. the
task with the highest activation frequency, implicitly with the lowest period, is assigned the highest priority, the next priority is
assigned to the task with the next activation rate value, and so on). This algorithm is known to be optimal among uniprocessor fixed
priority scheduling algorithms [48]. Regarding the tasks periods, we have chosen to harmonically relate their values with respect
to the smallest value. As it can be observed in Table 4, the task having the minimum period is SPI_LL, thus, we have chosen all of
the other task periods to be a multiple of the period of the SPI LL task, while still respecting the time constrains imposed for each
task by the Egs. (2), (3), (4), (5) and (6). We have chosen this approach in order to increase the general Rate Monotonic utilization
bound for processor utilization which is about 0.69 (i.e. 69%) by default. By using proper harmonic relations between periods, this
bound can be theoretically raised to 100% [50].

Another way of assigning priorities is to take into consideration the task’s level of importance in the system, using the direct
priority scheduling approach. In our scenario, FreeRTOS was configured to support 10 levels of priorities, from 0 to 9, where 9 is
the highest priority level. The priorities were assigned from the most important level to the lesser ones. Thus, TS task was assigned
the highest priority as the application directly depends on it, because it provides the time support for functionalities implemented
by tasks, e.g. timeout. The XBEE1 and SPI_LL received the next lower priority level, and so on.

Another crucial aspect that needs to analyzed is regarded to CPU usage in three different situations: worst case execution, average
execution and minimum execution (idle). While the idle or average CPU usage is useful in most cases, in real-time environments
the absolute maximum CPU usage needs to be considered.

Ul%] = % -100 @
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Table 5
CPU Usage.
Task MAX AVG MIN
CPU CPU CPU
% % %

TS 4.00 2.30 1.70
XBEE1 6.00 0.24 0.22
XBEE2 1.60 0.04 0.02
XBEE3 0.83 0.03 0.03
XBEE4 5.60 0.12 0.01
SPILL 10.00 3.00 2.10
SPI_HL 15.00 0.33 0.32
APP1 4.20 0.05 0.01
APP2 14.40 0.06 0.02
TOTAL 61.63 6.18 4.43
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12.50% -+
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313% - [
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0.78% +
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Fig. 11. CPU Usage.

In order to calculate the execution time for each task in any scenario we make use of the equation in (7) where ET represents
the execution time of the task and T the task execution period. Using the above Eq. (7) over the values in Table 4 we obtained the
maximum, average and minimum CPU usage values presented in Table 5.

As it can be observed, the total CPU usage in a worst case scenario is presenting as a reasonable value thus still allowing other
tasks to be added in order to extend current functionalities. On the other hand, comparing this value with the average and minimum
CPU usage we can clearly point out the noticeable difference suggesting a very pessimistic behavior for the worst case scenario as it
is true for most of the real-time systems. Because the maximum CPU usage value is below 69%, the task set is schedulable with Rate
Monotonic algorithm regardless of the task period values. Still, in order to increase the schedulability up to 100% it is recommended
to use harmonic period values.

In order to ease the analysis of the CPU usage, Fig. 11 depicts the values from Table 5 in a graphical manner for each task using
a base 2 logarithmic axis for CPU usage. This representation helps us understand the pessimistic estimation for each task and also
to have a clear overview over the total CPU usage of the system. We can easily observe that in the case of tasks SPI LL and TS the
maximum CPU usage based on WCET is not too pessimistic as we would expect, thus, in an average usage these two tasks need
roughly the same amount of CPU TIME. The situation is different for the rest of the tasks where the CPU is not actually fully used
in an average execution. Clearly, overall, the system will allow the execution of very low priority tasks such as logging, debugging
or monitoring tasks given the pessimistic estimation.

The important question at hand is why the WCET estimation is so pessimistic in the cast of most tasks. As we stated before
in this paper, the WCET parameter was determined experimentally by measuring the execution time of each task in the situation
where the workload was maximum. The WCET estimation was measured for each task individually. Considering this aspect, in a
normal usage of the system, it is extremely unlikely that in a moment in time all the tasks will occupy the processor as in a WCET
estimation. However, in a real-time scenario, the system needs to be ready for such a situation.

We validated the task set schedulability using values from Table 2 in the SimSo simulator [51] for a hyperperiod of 150000 ps,
value given by the least common multiple of the tasks’ periods. The first part of the simulation is depicted in Figs. 12 and 13,
where a time unit represents 10 ps. The simulations were performed using both Rate Monotonic and Criticality based approach for
assigning priorities and both proved approached proved to be feasible.
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Fig. 12. Task Simulation in SimSo, using WCET execution model and Rate Monotonic Priorities.

Fig. 13. Task Simulation in SimSo, using WCET execution model and Criticality-based Priorities.

As we can see from Figs. 12 and 13, there is no deadline miss in either of the cases. Thus for this CPU utilization level both
approaches for assigning priorities depicted in Table 4 are feasible. The difference between them resides only in the order of the
task execution.

Considering the fact that we designed this driver for embedded systems low on resources, the analysis of the memory footprint is
necessary. With the aid of memory analysis APIs provided by FreeRTOS, we were able to extract the memory usage of the software
modules present in the system as presented in Table 6 reaching a total footprint of about 23 KB.

In order to further demonstrate and analyze our solution in term of real-time behavior, we performed measurements of the tasks
timings using a Saleae Logic Prol6 Analyzer [52]. In order to obtain the time measurements we used classical embedded approach:
we used a dedicated GPIO for each task which is toggled to logic LOW at the beginning of the task execution and back to logic
HIGH at end of the task execution. The waveforms were then captured using the Logic Analyzer. A sample of these measurements
is presented in Fig. 14.
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Table 6

Memory Usage.

Software FreeRTOS Data Total

Component Stack memory memory

[bytes] [bytes] [bytes]

TimerSoftware 96 402 498
RTXBEE 1344 7333 8677
PARSECS_RT 888 6071 6959
APP 1144 3807 4951
CPU Stack 512 512
FreeRTOS 996 996
TOTAL 22593

132.716760641 av 49.998 ms
s

47.749 ms -~ 49.938 ms

51.507
59.533 s
1.993 ms

Fig. 14. Logic Analyzer Task Timings Measurements.

To better explain the presented measurements we used timing interval markers for each channel. Fig. 14 depicts the measure-
ments for all the tasks described in Table 3 but we concentrated only on the tasks regarding our RTXBEE solution. For the first
three tasks of RTXBEE (XBEE1, XBEE2, XBEE3) the time measurements are presented on the right side of the figure designated as
M1, M2 and M3. The timing measurements for the last task of RTXBEE, namely XBEE4, are presented in the floating window on
the bottom of the figure. We used the values of Ly, 4y, L,y and Ly, ;y to measure the WCET, AET and MET while the task period
may be identified by the T, field.

Given the fact that we designed RTXBEE to be platform independent (except for Layer 1) we could easily adapt it in order to
evaluate its functionalities and deterministic behavior on another hardware platform and operating system. RTXBEE was thus ported
on a Raspberry PI3 Model B V1.2 having a quad core CPU running at 1.2 GHz with 1 GB of RAM memory [53]. The XBee module
was connected to the Raspberry PI3 board via a simple USB to Serial Adapter. The operating system is ArchLinuxARM having the
Litmus®T [41] kernel patch applied. We took advantage of the 4 CPU cores and we configured the LitmusRT scheduler having the
parameters as described in 7.

A similar execution context as the one for the LPC2000 implementation is presented in the logic analyzer capture in Fig. 15,
having the same time parameters measured as in Fig. 14.

While considering the space limitations to present the extended data in the paper, we also provided the captured measurements
as supplementary materials to this paper [54]. The data repository contains 2 saved captures from the Logical Analyzer which can
be studied by using the Saleae Logic software [52]. Furthermore, in order to reproduce these measurements two extensions need to
be installed along the main Logic Analyzer software, directly from the Extensions Manager: Pulse Stats by Peter Jaquiery [55] and
Pulse Interval Stats by Coriander V. Pines [56]. It is also important to mention that all the timing markers have been included in
the supplementary capture files.
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Table 7

Task time periods - RTXBEE on Linux with Litmus.
Task Litmus priority CPU Affinity Litmus Reservation ID Period us
TS 2 1 1002 1000
XBEE1 1 2 1003 1200
XBEE2 2 2 1004 6000
XBEE3 3 3 1005 10000
XBEE4 4 3 1006 40000
SPILL 3 0 1000 1000
SPI_HL 5 0 1001 6000

+20 ms K +40 ms +50 ms +60 ms +70 ms

SO ot

g (Rt T
.“ Il

’ . V2 54328 688 5

23.553985695 s vg 40 ms
39.915 ms 39.996 ms
5.801 ps 40.077 ms
2.08 ps 3.434 ps
815.266 ns — 6.56 ps

4.182 ps
10.065 ms

800 ns

Fig. 15. Logic Analyzer Task Timings Measurements - RTXBEE on Litmus.

The key aspect of our solution is represented by its predictability, stability and determinism compared to a classical approach.
In order to prove the stability of RTXBEE we compared its execution against the manufacturer provided solution [33]. Considering
the same evaluation setup with the Raspberry PI3 platform, along with the same task context, we evaluated RTXBEE and Digi-XBEE
ANSI C library from the deterministic point of view.

The determinism was evaluated by performing a set of measurements of the same transaction (a request and a response) with
the XBEE module. We have chosen a simple transaction where we request the least significant part of the serial number by issuing
the SL command to the XBEE module and reading back its response. The justification for this choice is that we need to establish the
determinism of the RTXBEE stack compared to the manufacturer driver and not the XBEE module itself. For instance, choosing an RF
transmission transaction would not be appropriate thus the transaction period would be greatly influenced by the RF communication
medium.

The measurement result of the transaction period using RTXBEE and the manufacturer provided driver is presented in Fig. 16
where each point represents a transaction period. The red plot represents the execution periods of the manufacturer provided driver
while the blue plot represented the transaction period of RTXBEE.

We can clearly observe that even if the performance of RTXBEE is lower compared to the manufacturer’s driver, the predictability
and stability of RTXBEE is easily observed. In a real-time system determinism is the key factor having a greater importance than
performance.
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Fig. 16. XBEE Transaction Period.

6. Conclusions

In this paper we present RTXBEE, an embedded and real-time communication solution for IoT, based on the XBee RF modules.
The architecture encompasses 4 layers where the first two layers provide a universal time-bounded implementation for the general
API interface of the XBee modules family.

The latter two layers are dependent on the specific module that is used for communication. We channeled the functionality
flow for the last two layers to fully implement the feature of the XBee Series 3 RF module oriented on ZigBee communication. The
predictable methodology that we used in this case can be adapted to implement the functionalities of other types of RF modules
from the XBee family.

Furthermore, a hardware prototype was built not only to demonstrate the effectiveness of RTXBEE but to also deliver an
integrated communication solution to be integrated into an IoT node design. By integrating with the PARSECS RT stack over SPI,
we provided an API in order for a host connected to our prototype to be able to use XBee series RF modules for communicating
within the Edge of an IoT network.

The real-time behavior was not only formally described but it was also validated through simulations and real hardware
implementation having FreeRTOS as an underlying embedded real-time operating system.

In terms of scalability, the first two layers of RTXBEE may be used without any changes with all types of XBee devices currently
available. Regarding the last two layers of RTXBEE, they need to be adapted for each device type specifically using the same
methodology. Providing a version of RTXBEE for all the XBee family devices is currently our ongoing future work.

The current limitations of the work we present in this paper are represented by the fact that we implemented the functionalities
for the XBee Series 3 for ZigBee networks. Although the first two layers of RTXBEE are universal for all the XBee device family, we
intend to include all the RF modules into RTXBEE making it a full communication software solution for IoT.

RTXBEE has successfully proven its effectiveness in designing a hybrid platform where classical real-time wireless sensor networks
were integrated into an IoT network by making use of the MQTT-SN application protocol [57] which was transported using our
solution presented in this paper.
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