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Abstract: Understanding the process of reaching consensus or disagreement between the members
of a team is critical in many situations. Consensus and disagreement can refer to various aspects,
such as requirements that are collectively perceived to be important, shared goals, and solutions
that are jointly considered to be realistic and effective. Getting insight on how the end result of
the interaction process is influenced by parameters such as the similarity of the participants’ ex-
perience and behavior (e.g., their available concepts, the produced responses and their utility, the
preferred response generation method, and so on) is important for optimizing team performance
and for devising novel applications, i.e., systems for tutoring or self-improvement and smart human
computer interfaces. However, understanding the process of reaching consensus or disagreement
in teams raises a number of challenges as participants interact with each other through verbal com-
munications that express new ideas created based on their experience, goals, and input from other
participants. Social and emotional cues during interaction are important too. This paper presents a
new model, called Learning and Response Generating Agents, for studying the interaction process
during problem solving in small teams. As compared to similar work, the model, grounded in work
in psychology and sociology, studies consensus and disagreement formation when agents interact
with each other through symbolic, dynamically-produced responses with clauses of different types,
ambiguity, multiple abstraction levels, and associated emotional intensity and utility.

Keywords: agent models; problem solving; symbolic representations; optimized teams

MSC: 68T42; 93A16

1. Introduction

The core of many team-based applications is the process of reaching a set of commonly
agreed-upon ideas [1]. For example, problem framing identifies, prioritizes, restructures,
and distills the requirements of a problem [2,3]. Problem framing might require finding
creative solutions to improve the healthcare system in the USA [4] or making learning
in a university setting more fun [3]. It must find the requirements that are collectively
perceived by a group as important and useful [5–7]. Similarly, goal identification searches
for the common goals that inspire and drive a group and thus have value (utility) for
the participants [8]. Problem solving identifies solutions and solving methods considered
realistic and effective by the group [9]. Other related applications include optimizing team
performance through adjusting team composition, interaction, and behavior [10], or devis-
ing training procedures to improve the group activity of certain individuals [11]. Human
computer interfaces (HCIs) can also benefit from studying this process, as creating a digital
twin representation [12] of a user can help self-improvement by showing opportunities to
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improve education [13], comfort [14], and growth [8]. For example, ref. [13] proposes a
system that tracks coding and debugging to create a digital twin of a student’s learning
programming so that any learning shortcomings are identified and then addressed through
customized interventions.

The above cases refer to participants that interact by stating their ideas generated in
response to others’ inputs and their own beliefs and experiences. Emotional and social cues
are important in the process too [15,16]. The exchanged ideas are syllogisms [17]. More
precisely, ideas are “packets of meaning” [18], e.g., structures in which concepts (i.e., nouns)
have a role within a structure and are connected to each other by verbs. Concepts and
verbs are qualified through attributes and adverbs, respectively. A response is consistent
with the experience of the generating participant and, similarly, is understood by another
agent within the context of its own experience. Finally, the purpose of interaction is not to
optimize parameters of statistical models (like discussed in the related work section), but to
create outcomes (e.g., responses) that are either commonly agreed upom by the participants
(consensus or entrainment) [1,19] or represent a segregation of the participants based on
their beliefs, priorities, and experience.

Various kinds of ambiguities must be addressed by participants during their interac-
tion process. Each response is understood by a participant based on his/her experience, the
produced outcomes, and the representativeness of the outcome for the agent. A first kind
of ambiguity originates due to the specific experience of each participant, which results in
different understandings of the same response. A participant’s understanding of a response
is always slightly different from that of another participant or from the intended meaning
of the originator. A second kind of ambiguity emerges due to the gap between the goals
and needs of a member and the solutions found to address them. Arguably, a solution can
never fully address each member’s goals and objectives. Finally, the third kind of ambiguity
arises from the outcomes found for a goal and the goal itself. The nature and size of the
gap between goals and outcomes relate to the participant’s incentives and motivation to
participate in the interaction process.

In summary, problem solving in a team produces a sequence (trace) of responses that
try to find the best consensus (agreement) between the produced responses and the goals,
objectives, and preferences of the team members. It has been argued that a trace describes
the high-level cognitive processes of the members [19]. As members have goals, beliefs,
and experiences that do not change during problem solving, the consensus found must
be valid under multiple assessment references. Responses are structures of clauses with
defined or partially defined roles, so that the response is consistent with the generating
member’s experience. Three kinds of ambiguities can occur during response understanding.
Finally, responses are created using procedures that combine clauses from experience and
received responses under the influence of emotional and social cues. These issues have
rarely been addressed by existing team-oriented models. Current models mainly consider
interacting agents that execute predefined actions on stochastic data guided by a cost
function but study less learning and the generation of symbolic knowledge. Most models
do not consider emotional or social cues either.

This paper proposes a novel agent-based model to study team-based problem solving
that results either in a consensus among members if they agree on solutions, or in dividing
members along their favorite solutions if there is disagreement between them. The goal of
the parametric model is to get insight into how parameters influence the process that leads
to either consensus or division. The two states can express various aspects, such as needs
in the case of problem-framing applications, goals in the case of finding shared utilities, or
solutions and solving methods. A consensus or division is reached if there are no significant
modifications to responses and if there is agreement on their associated utility. Model
parameters refer to the main primitives of the model, such as characterizing the similarity
among concepts (e.g., similarity of their meanings), associations between concepts and their
utility, structural frames used to create responses, addressing ambiguities in responses, and
combining responses to produce new outcomes.
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The proposed model is based on Learning and Response Generating Agents (LRGAs)
that interact with each other through responses, which are sentences (structures) with
nouns, verbs, adjectives, and adverbs. Knowledge (e.g., inputs, experience items in the
agent’s memory, and responses) are symbolic networks of concepts connected through
relations describing a role in the expected outcome (as depicted in Figure 1b). An LRGA
learns by updating its memory and concept access frequencies based on received ideas
and its own responses. As shown in Figure 1a, each LRGA first understands a received
input by finding the best match and difference between the input and the statements in
the agent’s memory, similar to the alignment process in psychology [20]. Word meaning is
defined using state-of-the-art databases in linguistics, such as the WordNet database [21].
The role of some of the response components (called clauses) can be ambiguous. Section 3.2
presents the input understanding method. After input understanding, an LRGA creates new
responses by combining concepts through strategies selected based on utility differences
and emotional and social cues. The strategies used by agents are enumerated at the bottom
of Figure 6. These strategies can perform the following activities: explore variants of a
response by adding more details or considering alternatives with similar meaning, establish
abstractions for a set of similar solutions, pick up new, less frequent concepts, and reason
with more abstract solutions by combining their related sentences. An LRGA’s motivation
to participate in the response generation process is determined by the difference between
an expected outcome and a received response. This difference is usually considered the
source of various emotions. Experiments discuss agent parameters that favor agreement or
disagreement between agents. The LRGA model was devised to study problems that require
generating new ideas accepted by all team members, such as problem-framing and common
ground identification, and to support new HCI for self-improvement and teaching.

Resulting emotions
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Figure 1. (a) Cognitive processing to generate a new response, and (b) matching and comparing
two ideas.

As detailed in Section 2, this work brings the following contributions as compared to
related work: (1) Grounded in theories in psychology and sociology, the model focuses
on understanding how agent interactions in small teams result in consensus or division.
(2) The model considers verbal structures as the main interaction element, which is a
more accurate expression of human communication [17]. Its semantics include clauses of
different types, word ambiguity, multiple levels of abstraction, and social and emotional
aspects. (3) Agents create new responses based on their goals and evolving experiences, in
which social and emotional cues are important.



Mathematics 2023, 11, 2602 4 of 28

The paper has the following structure. Section 2 summarizes related work. Section 3
presents an overview of the LRGA model, followed by response modeling, ambiguity solv-
ing, and response generation. Section 4 presents the model implementation. Experiments
are presented in Section 5. Section 6 discusses the model as compared to related work.
Section 7 end the paper.

2. Related Work

Psychology and sociology have approached team-based problem solving as a cog-
nitive process conducted in a social context [1]. In this approach, joint action represents
the interaction among team members that aim to achieve common goals, intentions, or
ground [1,8,22]. Interactions coordinate members through synchronization, entrainment,
alignment, and convergence [6,10] and depend on the conversational context and the team
members’ intentions and features [23]. For example, affiliative conversations have differ-
ent interaction characteristics than argumentative interactions. Abney et al. explain that
coordination is a complex process that occurs at different time-scales and hierarchical lev-
els [10]. A complex system of behavior emerges because of explicit and implicit matching
at the phonetic, phonologic, lexical, syntactic, semantic, and situational levels. However,
member coordination goes beyond speech attributes. Common ground knowledge, shared
visual information, and beliefs about the other team members influence postural and gaze
coordination [19]. Affective valuation is also important during interaction [16,24], such as
different interpretations of the external stimuli and distinct expectations for the outputs of
problem solving. Members must be committed to participating in the team effort.

Related models in psychology and sociology propose different scenarios for inter-
actions in a team [1]. “Visual worlds”, arguably the simplest model, assumes that team
members follow an active-passive participant approach with no changing initiative and
little coordination between members [25]. The message model states that communication
is a probabilistic information flow at a certain rate, during which the sender and receiver
must employ the same encoding and decoding of the “packets of meaning” represented
by words [18]. Social interactions are less important, as there is no coordination, intention
recognition, role taking, or matching between the communicated details and the shared
common perspective [1]. In contrast, social aspects are addressed in the two-stage model
that focuses on lexical entrainment, shared perspective, and reuse of syntactic forms. Fowler
et al. indicate that parsing and speaking durations, speaking rates, turn durations, response
latencies, vocal intensities, and accents depend on coordination [26]. The interactive align-
ment model considers members’ perspective adjustment and the creation of mental models
about other team members [27,28]. Lowe et al. propose an extension to the Associative
Two-Process (ATP) theory to include social cues and affective states [24]. The model uses
temporal difference learning to express expectations and to include social cues. Learning
considers the magnitude and omission of rewards as well as the temporal difference be-
tween stimulus and learned outcome. The work argues not only for the importance of a
member’s intentional behavior towards a goal but also for the need for an agent to learn
the other’s behavior and then adjust accordingly. Finally, grounding models emphasize
the social, collaborative view, i.e., coordination of meaning, observation of each other, and
creation of mental models about others [1,19].

Computational models for describing team interaction have been proposed by work
on Multi-Agent Systems (MAS) [29–33]. KABOOM is the first agent model devised to
study the impact of the agent’s cognitive style on problem solving [34]. Based on the
Kirton Adaptation-Innovation Inventory (KAI), agents can prefer incremental adaptations
or radical changes to a solution. The model was used to solve engineering problems,
such as race car or beam design problems [35]. A MAS model studies the spreading of
cultural traits depending on the agent’s feature similarities [36]. However, most MAS
models are not grounded in psychology or sociology but instead attempt to solve complex
distributed optimization problems such as search and resource management in smart
traffic systems, cooperative navigation, UAV driving, and IoT communication [37–39].
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Agents explore different or partially overlapping problem sub-spaces by using their own
experience, objectives, and interpretation of the current situation. Some agents implement
Decentralized Partially Observable Markov Decision Processes, in which a centralized critic
is in charge of learning while agents operate decentralized [37,40]. Learning maximizes the
gradient of the next expected return or sequence of returns. A separate critic is proposed
for each agent in ref. [37], but at the cost of a lower learning convergence [40]. MAS models
also use dynamic learning to optimize the networked connectivity between agents, e.g.,
network topology and parameters, and control policies [37,39,40]. An important problem
is deciding the communication targets, e.g., sending a message only to the agents that
need it [40]. A solution is to use soft attention represented as weights depending on the
softmax criterion of the similarity of a message’s signature and a query vector describing
an agent’s hidden state [40]. The state of the common critic comprises all agent states and
is updated using all messages between agents. An alternative is presented in ref. [39], in
which messages of limited variance are sent to the receiving agents. Each agent locally
generates actions using a Gated Recurrent Unit (GRU) that creates an intermediate value
using the agent’s state and observation, followed by a Fully Connected layer that encodes
the intermediate value to generate the associated action value. Each agent combines its
own action values with those produced by the encoders for the messages from each other
agent. Another solution describes attention by comparing the embedding through a Multi
Layer Perceptron of an agent’s observation and actions with the embeddings received
from other agents [37]. A two-level attention model is proposed in ref. [38]: hard attention
describes the agents to which one must pay attention, and soft attention presents the weight
of the attention.

A distinct body of work on MAS includes models in which agents communicate
through commitment-based protocols [30,41,42]. A commitment protocol assumes that
agents interact by assuming the debtor or creditor role, which implies agents’ commitment
to comply with the protocol. A social commitment is controlled by an antecedent and pro-
duces a consequence. A creditor agent makes its own decision based on its goals and beliefs
to detach from a social commitment. Each commitment protocol is a sequence of actions,
such as create, select, cancel, release, detach, satisfy, discharge, expire, violate, assign, and
delegate, that pursue a well-defined life-cycle, including states such as violated, satisfied,
and expired [30]. The formal definition of commitment antecedents and consequences as
logic propositions as well as the predefined sequence of actions of each protocol supports
protocol synthesis [43] and proving properties about agent teams [42]. As compared to
message-based agent interactions [44], which prescribe an automaton-like sequence of
steps, commitment protocols are more flexible in describing the nature and parameters of
an agent’s interactions [30].

The learning and response generation agent (LRGA) model in this paper does not
target distributed optimization or guaranteeing and proving properties about interacting
agents, like related MAS, but instead focuses on getting insight on how the parameters
of agent interactions influence open-ended problem solving in small teams. The LRGA
model is grounded in theories in psychology and sociology, such as the joint action inter-
action process. It arguably includes more complex semantics and social and emotional
descriptions. Instead of logic or statistical descriptions of knowledge and reaction, the
model considers verbal statements, which are a more accurate expression of human in-
teraction [17]. Furthermore, inputs, experiences, and responses are dynamic symbolic
networks of concepts at different levels of abstraction, defined by representative exemplars,
and connected through the relations defined by verbs. Network structures change based
on the context-specific understanding of responses. New responses are not the result of
Markovian Decision Processes as the states of an agent can change based on the joint
interaction process. Instead, agents respond based on their goals and evolving experience,
in which social and emotional cues are important. Moreover, convergence does not simply
describe stability, such as in the related work, but rather reaching a state in which every
agent feels that it produces the “right” responses according to its experience, goals, and
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other agents’ reactions. The computational complexity due to the distributed nature of
teams is low, as the considered teams are small, with about four to five members. Instead,
the high complexity arguably relates to the underlying semantics (e.g., responses) of the
agent’s experiences, goals, responses, and their interpretations. Also, understanding the
facets of agent adaptation (adjustment) is challenging, including the importance of shared
knowledge and social and emotional interactions. These aspects are important not only
for improving problem solving in teams, but in general for any human-in-the-loop Cyber-
Social computing application. More information on how the LRGA model was developed
based on insights from the related research literature can be found in the following section
(Section 3) of the paper.

3. Learning and Response Generating Agent Model Overview

Learning and response generating agents (LRGA) communicate with each other
through statements to present their ideas as part of problem solving. LRGAs produce
new statements (responses) by a cognitive-processing-inspired method using their own ex-
perience, their own pursued goals and priorities (modeled as utilities), responses from other
agents, and emotions. Figure 1a summarizes the process through which LRGAs create new
responses during their interactions. Responses can be created through two flows [6,45–47]:
a fast, top-down flow and a slow, bottom-up flow. The fast flow reacts to the received
inputs, present emotions, social interactions, and drawn attention to create responses that
incrementally change the input or experience. The slow flow offers planned solution build-
ing that uses the agent’s learning after generating a number of fast responses. Its responses
are at higher levels of abstraction. Urgency selects between the two flows.

Each LRGA executes two main activities as part of agent interaction, input under-
standing and response creation. Input understanding connects to an LRGA’s attention and
emotion, which are subsequently used in response creation.

Input understanding establishes a connection between a received input and the agent’s
own experience (e.g., representations in the agent’s memory). In addition to finding
similarities and differences between the input and experience, understanding handles
any ambiguities that exist after matching, e.g., due to the multiple roles that some input
fragments can have. Also, it processes inconsistencies between input and its own experience
and goals. Examples in Section 3.2 illustrate ambiguities during understanding. The
understanding process is shown in Figure 1b. It has two steps: (a) matching the fragments
and (b) stitching (relating) the fragments into the most likely sequence. Matching identifies
similarities between the fragments of the input and the fragments of the agent’s own
experience. Stitching ties fragments together in a new description (i.e., idea), either to
indicate a justification (purpose) or to show a consequence between fragments.

After input understanding, an LRGA’s attention and emotions are computationally
modeled by comparing its own experience and goals to the input. The model is based on
appraisal theory in psychology [48,49]. Figure 1b illustrates an LRGA’s emotion formation.
The consequence of an understood input, which is a prediction of the input effects, is
compared with the goals of the agent or its previous responses. The comparison produces a
set of differences (∆s), with a specific ∆ for each input fragment (clause), e.g., what, for who,
output, and so on. As shown in Figure 1b, specific emotions emerge depending on the
nature and degree of unexpectedness of ∆s, and whether ∆s refer to the agent (for self?)
or to other agents (for others?). Section 4 details the implementation of the attention and
emotion models.

Response generation dynamically combines the accessed fragments into a new response
and then predicts the impact of the response, e.g., its utility. A new response is created
using the strategies enumerated at the bottom of Figure 6. Based on our previous work
in refs. [6,50,51], these strategies explore variants of a response by adding more details
or considering alternatives of similar meaning, establish abstractions for a set of similar
responses, pick up less frequent concepts, and reason with more abstract responses by
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combining their structures. More details about the strategies are offered in Section 4, and
their implementation is discussed in Section 5.

The remainder of the section discusses the theory behind response structure, input
understanding, and response creation.

3.1. Response Structure and Symbolic Representation

The LRGA model assumes that in the most general case, an agent’s response relates an
objective to an implementation, which is a meaningful way of achieving the objective within
a certain purpose [6]. However, in the current software implementation, a response includes
only one of the two parts: the objective or the implementation serving a given purpose.

objective↔ implementation | purpose (1)

Symbol↔ expresses the association between objective and implementation, and a
symbol | describes the purpose within which the meaningful association exists, e.g., the
association has a meaning within this purpose.

An objective is a composition of fragments (clauses) with the roles of what, for who,
output, and consequence:

objective ≡ what ◦ consequence ◦ (output(1) ◦ ( f or who(11) . . . ◦ f or who(i1))) . . . ◦ (output(k) ◦ ( f or who(1k) . . . ◦ f or who(ik))) (2)

A fragment what declares the nature of the objective, fragment consequence introduces
the utility of the fragment what, fragment output expresses an output that refers to the
objective, and a fragment for who describes the beneficiary of an output (i.e., for whom is
the output meant). Symbol ◦ describes the composition of the fragments.

An implementation is a composition of fragments (clauses) with the roles of how, who,
when, and where:

implementation ≡

how(1) ◦ ((who(11) . . . ◦ who(m1)) ◦ (where(11) . . . ◦ where(r1)) ◦ (when(11) . . . ◦ when(p1))) . . . ◦ how(n)(. . .) (3)

A fragment how indicates an action towards realizing its associated objective, a frag-
ment who presents who is carrying out the action, and fragments when and where describe
the time and place of the action.

Note that Equation (1) expresses fragments that are associated with each other because
they co-occurred in a response. Each clause what can have associated one clause consequence
and multiple clauses output and alternative clauses how as indicated by symbol . . . and
distinguished by different superscripts. Symbol . . . and the superscripts inside parentheses
denote a sequence of multiple clauses of the same kind that are associated with the clause
appearing before the parentheses.

Example: Let’s consider the following statement: “Medicine should be affordable to
everyone, so that people feel secure”. Clause what is “Medicine should be affordable”,
clause for who is “everyone”, and clause output is “people feel secure”. In Equation (1), the
objective is the composition of the three clauses, what ◦ output ◦ f or who. The statement
“Medicine should be affordable to young people and seniors, so that people feel secure”
has two clauses for who, “young people” and “seniors”, hence the objective is what ◦
(output ◦ ( f or who(1) ◦ f or who(2))). Next, the statement “Medicine should be affordable
to young people and seniors, so that people feel secure and live independently” has two
clauses output, “people feel secure” and “live independently”, hence the objective is what ◦
(output(1) ◦ ( f or who(11) ◦ f or who(21))) ◦ (output(2) ◦ ( f or who(12) ◦ f or who(22))). Finally,
the statement “Taxes by big business should pay for medicine” is an implementation for the
above objective. Its clause how is “taxes pay” and its clause who is “big business”. Hence,
if this statement is a response to the previous statement during agent communication,
the following Equation (1) can be set-up as follows: what ◦ (output(1) ◦ ( f or who(11) ◦
f or who(21))) ◦ (output(2) ◦ ( f or who(12) ◦ f or who(22)))↔ how ◦ who.
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Finding an implementation for an objective, i.e., identifying the right part for the
left side of Equation (1), justifies the meaningfulness of the solution, as the objective is
achieved by the implementation. It serves as an argument for the correctness of the objec-
tive. Different reasoning styles can be used to find an implementation, which is a sequence
of connected clauses between a what clause and an output clause. The consequence of the
output results from inserting an agent’s relevant exemplars [52,53] in the experience for
the clauses of the response. A utility (meaningfulness) is associated with the outcomes.
Different consequences and hence utilities might be reached by different agents, as their
relevant exemplars (thus experiences) might be different. During their interactions, agents
can identify implementations, outputs, and consequences accepted by all agents (conver-
gence), or find reasons that justify for each agent its own chosen implementations, output,
and consequences, which are different from those chosen by another agent (divergence).

The model describes each response using a symbolic representation, as illustrated
in Figure 2. Response fragments (clauses) what, for who, output, consequence, how, who,
where, and when include concepts (e.g., nouns and pronouns) linked through verbs. Each
concept is described by a Structured Symbolic Representation (SSR), as shown in Figure 2a.
The figure presents concept i with features (attributes) f (k)i . Some features correspond to
physical attributes, such as an image, shape, or color. A concept or some of its features are
activated using the following two rules: (i) Activating the concept subsequently activates its
features f (k)i too. (ii) Activating a feature always activates the entire concept. In addition, bi-
directional links between the concept and its features, characterized by labels, describe the
probability that activating one activates the other too: de fi,m is the probability of activating

feature f (m)
i when concept i is activated, and upm,i is the probability of activating concept i

if feature f (m)
i is activated. Each feature is defined by a set of representative samples. Some

concepts or features are connected to specific emotions.

ffor who

(a) (b)

verb 

(1)

what output

(c)
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Figure 2. Response description: (a) Structured symbolic representation (SSR), (b) using verbs to
connect concepts, and (c) description of the objective and implementation parts.

Verbs describe relations between concept attributes and concepts described as groups
of features. The work of Fauconnier and Turner, among others, explains that verbs define
different relations, i.e., part-whole, similarity, analogy, disanalogy, category, identity, rep-
resentation, cause-effect, intentionality, role, property, time, and space [17]. The model
groups relations into the following four semantic categories: property (P), identity (I),
cause-effect (C), and role (R). Hence, a verb defines a mixture of relations pertaining to the
four categories and involving different concept features:
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verb =< {relCatP
1 , relCatP

2 , ..., relCatP
x }, {relCatI

1 , relCatI
2 , ..., relCatI

y }, {relCatC
1 , ..., relCatC

z }, {relCatR
1 , ..., relCatR

w } > (4)

Label CatP refers to relations that describe properties, label CatI to relations for identity,
label CatC to relations expressing cause-effect, and label CatR to relations presenting roles.
Each value of reli is a verb’s likelihood to represent a certain kind of relation among the
properties of the concepts in a response. Some values reli result explicitly, if there is no
doubt about their meaning in a clause or are found during response understanding if a
response is ambiguous. Figure 2b illustrates how verbs connect concepts in an SSR. A verb
connects features of the related concepts, such as feature f (2)i of concept i and feature f (..)j

of concept j, and feature f (..)i of concept i and feature f (j)
1 of concept j.

3.2. Input Understanding during Agent Interaction

The proposed model for input understanding finds the best matching of a newly
received response to the agent’s experience and context while solving ambiguities about
the input clauses, e.g., when the type of a clause is not fully decided. It finds the types of
undecided clauses so that conflicts with the agent’s experience and previous responses are
minimized. Conflicts can relate to the logical consistency of the responses for more formal
responses and to related emotional feelings in the case of ad-hoc responses. Input under-
standing is formulated as the following maximization problem:

max clause matching such that min resulting con f licts (5)

Example: Let’s assume that an LRGA receives the following response: “Medicare
should cover nursing homes”. Clause “nursing homes” could refer to a place (clause where),
a time (clause when), or the recipient of an action (clause for who). Best matching assigns
a clause type among the three possibilities (clauses where, when, or for who) that has the
fewest conflicts with the agent’s beliefs, experience, and previous responses. For example,
if the discussion was about social categories such as students and the unemployed, then
the clause type is more likely to be for who because another clause type would conflict with
the context set-up with the previous responses. However, an agent’s belief saying that
“Government should support only elderly persons” suggests that the clause type should be
when, as supporting any other social category also living in a nursing home would conflict
with the belief.

Example: Best matching also considers ambiguities due to verbs. Let’s assume a
response states that “Seminars must teach physicians about new available things”. The
verb “teach” introduces relations between the attributes of the concepts “seminars” and
“physicians”. Even though a knowledge-related property of physicians, such as being
well-trained or knowledgeable, is extended by the verb, it does not indicate if the verb
indicates a new capacity (feature) of physicians (e.g., leaders, mentors, coordinators, etc.)
or a specific procedure (i.e., performing a certain treatment). So, there is a certain degree of
ambiguity introduced by the verb, and it must be solved by best matching. Similarly, clause
output is not explicitly defined in this case, as the response only mentions that new things
become available to physicians, even though these things will likely become available to
their patients too.

Understanding input responses through the maximization in Equation (5) uses clause
matching and stitching, as shown in Figure 3. Concept features are labeled as fi,j in the
figure and pertain to the four categories, CatP, CatI , CatC, and CatR. Figure 3 also shows
the relations rel1, relk, and rely introduced by verbs verb1 and verb2 that connect the features
of the three concepts (i.e., nouns) in the figure. Depending on the features involved in
the most representative relations that connect it, a concept is characterized by its typical
purpose, defined as the most frequent relations of its features. Some ideas about response
understanding are also discussed in ref. [54].
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Figure 3. Matching and stitching of received input and agent experience.

Matching finds the correspondence between the concepts of an input and those in the
agent’s experience, e.g., concept concept 1 corresponds to concept concept A, and concept
concept 2 to concept concept B in Figure 3. Concept concepti is matched to concept conceptX ,
if the following equation is maximized in an agent’s memory:

matched(concepti, conceptX) = max
X∈experience

similarity(concepti, conceptX)

∑Y∈experience concepti,Y
(6)

Y describes concepts in the agent’s memory, and metric similarity describes the similarity
of two concepts.

Stitching finds the maximum clause matching between the clauses of an input and an
agent’s own experience while minimizing the number of conflicts between the matched
clauses. As a result, stitching assigns the most likely identities to any ambiguous relations
in the input by finding unknown values relCatX

i in description (4) (CatX is one of the four
categories CatP, CatI , CatC, and CatR). Figure 3 illustrates the matching process. In this
case, ambiguity relates to the fact that the types of the input clauses depend on the relations
of verb verb1, which can pertain to categories CatI (identity) or CatR (role). Similarly,
verb verb2 can pertain to multiple categories. A relation in category CatI is more likely
to suggest a clause what, while a relation in category CatR a clause how. Verb verbx in the
agent’s own experience can be associated with verb verb1 of the response or with verb verb2.
Stitching finds the most likely categories of unknown relations, and the sequencing order
of the matched clauses (i.e., the maximum clause matching refers to verb verb1 or to
verb verb2). Assuming a Bayesian model, the expected relationship category is as follows:

prob(relCatX |out, prec) =
prob(out, prec|relCatX ) prob(relCatX )

prob(out, prec)
(7)

Hence, a response is understood by computing the probabilities in Equation (7), in
which the frequencies of the entire experience of the LRGA or the frequencies of the
input within a limited time window before the current response are used. Addressing
ambiguous concepts and relations during matching and stitching is as follows. First,
a prediction is made using a concept’s typical purposes. Each concept is considered
independently, and its observed features and relation types are used to predict the role
of the concept. This prediction describes the most frequent cases. Similar to the real
world [55], differences between expected results and observed results capture the attention
of the agent. Furthermore, the agent starts to adjust matching and stitching to reflect the
observed differences. The resolution of the ambiguities can, however, are changed by a
later input in order to maintain the consistency of the entire sequence. For example, it is
possible that the assumptions set for input ambiguities are changed by a subsequent input.
Resolution uses matching and stitching between (i) two inputs with what clauses that are
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synonyms, similar, detailing, or generalizations of each other, (ii) two inputs with matched
clauses for who and who, and (iii) two inputs in which matching uses output and how clauses.

3.3. Response Creation during Agent Interaction

Figure 4 presents agent interactions for a case in which agents agreed with each other
as well as for two cases in which they disagreed. The figure shows how different kinds of
clauses connect to each other during interaction while agents jointly solve a problem. It
uses the following conventions. As it is not important in this example what each clause
actually means (i.e., the words that form it), just their kind, the clauses were depicted
as crossed boxes. However, to give more insight, some clauses were explicitly described
by indicating their word structure. White boxes are clauses missing from Equation (1).
Arrows between clauses, objectives, and implementations express associations, including
operators ◦ and↔. The figure is based on the results of the cognitive experiment described
in ref. [4]. Participants were randomly grouped into teams of four and asked to jointly
devise solutions to improve the healthcare system in the USA. Each participant could
provide an unlimited number of inputs, including responses to inputs offered by other
team members.
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Figure 4. Generating a new response by (a) agreeing and (b,c) disagreeing participants.
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In Figure 4a, members end-up agreeing on the proposed solutions to improve patient
access to drugs. Three team members (Participant 1, Participant 2, and Participant 3)
interact with each other. The interaction dynamics are as follows: First, Participant 1
suggests that “Medicine should be affordable to everyone with chronic disease”. According
to Equation (1), this input corresponds to the objective medicine ◦ everyone (in which clause
what is “medicine” and clause for who is “everyone”), while the implementation includes
only clause when, “chronic disease”. Hence, clause how is missing, which is indicated by the
white box in the figure. Participant 1 further details the objective by suggesting “generic
medicine brands” (clause what) and saying that “funds are saved” as a clause output of
the access to cheaper drugs. Another input by Participant 1 suggests that “affordable care
should be offered” (clause what) “to elderly people” (clause for who). While Participant 2
does not directly continue the inputs of Participant 1, but it relates to the clauses of “elderly
people” and “saved funds” by suggesting that “universal healthcare is a solution for the
current problem”. The figure shows these connections with dashed lines, as they are not
directly related to drug access. The participant offers two implementation alternatives
(e.g., right sides of Equation (1)), “government” (in which case only clause who occurs as
clause how is unspecified) and “Medicare covering nursing homes”. Participant 3 continues
the clause “nursing homes” suggesting that “they should be less crowded”. Figure 4a
suggests that the interaction for agreeing members includes mainly detailing the referred
clauses by adding more precise concepts, suggesting implementations for objectives, and
presenting expected outputs. Participants are likely to use clauses or concepts said by
others when creating new inputs.

Figures 4b,c show interactions in which the participants had opposing views. The
interaction dynamics are different from the previous case. In Figure 4b, the disagreeing
Participant 2 focuses on clause purpose (Equation (1)) and then elaborates on the related
clause output. Participant 2 in Figure 4c uses clause output to suggest another solution
(clause what). Hence, disagreeing participants focus less on elaborating objectives and
implementations and more on clauses purpose and output that limit a solution. There are
few responses that use clauses and concepts produced by others.

As explained at the beginning of Section 3 and shown in Figure 1, response generation
can use a fast, top-down flow or a slow, bottom-up flow. The fast, top-down flow utilizes the
input concepts that got high attention to inspect the knowledge representation in the agent’s
memory. The flow is controlled by the difference between the expected utility (the agent’s
previous response utility) and the actual utility (the input’s utility), social interactions, and
emotions [55,56]. The flow generates a response using the selected knowledge. The input
prompts the agent’s experience and goals. Furthermore, the agent compares the selected
information in the memory with the input to find unforeseen concepts or clauses in the
input. The most unforeseen concepts get the agent’s attention [56]. These concepts are
denoted as dominant concepts. Likely, they represent the cause of the unforeseen utility of
the input (i.e., a higher or lower utility). The slow, bottom-up flow links and elaborates the
selected knowledge (i.e., concepts, clauses, and verbs) to maximize the expected impact
with respect to the intended goal. A new response combines experience and input items. It
utilizes more abstract concepts, adds new symbols to describe a set of concepts grouped
during previous, fast response generation, and uses simple insight obtained about concepts
that caused a higher utility in preceding cases. Urgency selects among the top-down and
bottom-up flows as discussed in Section 4.

Emotions influence the specific strategies (pattern) used in response creation. Figure 5
depicts the proposed modeling. Depending on the nature of agents’ emotions, the classifier
output shows four situations: confidence, positive surprise, negative surprise, and oppose.
For a more detailed model, more situations can be considered at the classifier output to
represent the similarity of the emotions. An agent’s emotional response corresponds to
certain perceived social situations (like reaching a consensus, disapproval, or approval or
disapproval of the element of surprise) and triggers a specific kind of response pattern that
creates the agent’s output. Patterns are illustrated in Figure 5.
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• Confidence corresponds to reaching a consensus among agents, indicating that they
have similar perspectives (understandings) on a response, a response sequence, and
their utilities (Figure 5a). As a result, agents create new responses that are motivations
for the current what-for who-output-consequence clauses or create other outputs for the
what-for who clauses for which exists agreement. As shown in Figure 5b, creating addi-
tional motivations reinforces the strength of the consensus reached about a response,
its outcomes, and its consequences. Producing more outputs of similar utility adds
more outputs and consequences to the current what-for who response clause. Figure 5c
illustrates the situation. An existing output and consequence is further detailed by a
subsequent response.

• Positive surprise indicates the situation in which an input includes a concept or clause
that draws an agent’s surprise reflecting its approval of the corresponding concept
(Figure 5a). The utility expected by the agent is lower than the utility of the received
input. The agent uses the element of surprise to create other examples (responses), or
it can further detail the response including the element of surprise (Figure 5d). Also,
the element of surprise can be generalized and then used in a new response. This
is shown in Figure 5e in which the output of response (what-for who clauses) creates
what-for who clauses of the abstraction, or how clause is generalized into a more abstract
what-for who clause.

• Negative surprise describes the situation in which the concept or clause causing the
agent’s surprise is not valued by the agent (Figure 5a). The utility expected by the
agent is higher than the utility of the received input. As a result, the element causing
the surprise is utilized to motivate the separation of the new response from the input,
such as in Figure 5f. Another subsequent response can generalize the element of dis-
approval (as in Figure 5e), and then use the generalization to motivate the disapproval
through a why clause, such as in Figure 5f. The third option represents understanding
the boundaries of the element of surprise. This is achieved by comparing the imple-
mentation (how frame) with the expected consequence of the output, as shown in
Figure 5g.

• Disapproval corresponds to the situation in which agents have opposing understand-
ings of the current response. Hence, the expected utility and the utility of the received
input are opposite. As a result, the subsequent responses describe the following cases:
motivation of the disapproval based on outputs and consequences (top of Figure 5h),
explanation of the disapproval using motivation (why clause) (bottom of Figure 5h),
and negation of what-for who clauses or their generalization followed by creation of an
opposite alternative, e.g., new alternative what-for who clauses.

Example: Let’s assume that the input response states the following: “More money
should be spent to reduce false diagnosis”. Furthermore, let’s consider that after matching
the input and the agent’s experience during response understanding, the comparison
points to “more money” as the dominant concept that separates the input from the agent’s
experience. The dominant concept gets the attention of the agent. Based on the matched
experience, a certain emotion results as the dominant concept. This emotion is then
integrated with the other emotion due to social interactions and the agent’s present emotion.
For example, an agent might consider that money must be spent carefully, so it does not
accept the idea of increased costs. Hence, the emotion produced is anger. This emotion
guides the generation of a fast, top-down response to the dominant concept. Anger selects
the template to reject the response. The dominant concept gets combined with the template,
followed by the prediction of the expected outcome and consequence. The agent’s response
indicates that higher expenses are unwanted.
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Figure 5. Importance of emotions during response creation: (a) using emotions to select a response
generation pattern, (b,c) adding motivations and outputs to reinforce a response, (d) detailing
a response using an element of surprise, (e) generalizing an element of surprise, (f) generaliz-
ing an element of disapproval, (g) understanding the boundaries of an element of surprise, and
(h) disapproval motivation.

4. Implementation of the Model

Figure 6 illustrates the software implementation of the LRGA model in Figure 1a. Every
LRGA has a memory, implemented as a table, that stores the agent’s experience (which is
pre-loaded with a set of statements), the received inputs, and the responses created by the
agent. Each memory entry represents a statement with the structure shown in Figure 1b.
Each entry stores the related clauses, the nature of the clauses, the distinguishing word
that draws the agent’s attention, the attention strength associated with the clause, the
emotions associated with the entire clause and with the distinguishing word, the utility of
the clause, and if an agent disagrees with the statement in the entry (e.g., it has an opposite
belief). Each memory entry (and its associated statement) is connected to other entries
(and hence statements) in the agent’s memory based on similar clauses what, different
what but similar clauses output, similar consequence or implementations (synonyms), as
well as entries expressing related statements at other levels of abstraction. A statement is
considered more abstract than another statement if it is an objective for the latter.

First, an agent’s implementation computes the difference between the received input
and the agent’s experience. The algorithm first searches the agent’s memory to identify
the most similar memory entry to the input. Clause similarity is the sum of similarities
among the matched concepts of an entry and input, with an extra weight added to the
similarity of the distinguishing words (the words that capture attention). The difference
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is in the distinct clauses between the input and the most similar memory entry. During
finding similarities, the step also addresses the ambiguities of the input by implementing
the maximization in requirement (5). It implements input understanding. More details
about input understanding are offered in ref. [54]. The sources utilized to describe concept
similarities and verb relations are as follows: The Merriam-Webster definitions of verbs
were used to implement Equations (4) and (7). Also, WordNet descriptions [21] express the
similarities between concepts. Relations for nouns and verbs were based on WordNet, such
as descriptions of meronymy (part-whole relations), antonymy, attributes, similar meaning
(polysemy), synonyms, entailment, and so on.
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Figure 6. Software implementation of the LRGA model.

Second, the agent’s attention is set on certain concepts of difference and the activated
experience in reaction to the received input. The degree of dissimilarity of the involved
concepts as compared to the previously used concepts is used to determine the strength of
the drawn attention. The more unexpected a concept is, the higher the attention it draws. A
set of predefined, parameterized rules establishes the connection between the dissimilarity
value and the attention strength.

Third, an agent’s emotion update is found by integrating the emotions associated with
the activated experience, the emotion due to the social interaction cues, and the agent’s
current emotion. The emotions associated with the received inputs, i.e., after understanding
the inputs, are similar to those represented by appraisal theory [48,49]. Appraisal models
present emotions as a result of an agent’s expectations, which are the relationship between
its own goals, beliefs, and desires and the observed events, i.e., the received responses.
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Specifically, emotion integration performs three steps: The first step combines the emotions
of the most similar clause in the memory and its distinguishing word using a set of pre-
defined rules. Furthermore, the resulting emotional cue is integrated with the emotional
aspects associated to the social interactions with the other agents, depending on the nature
of social coordination and compatibility between agents [57]. The used rules reflect situa-
tions in which agents have a higher degree of compatibility between their experiences and
goals as well as agents with a high degree of divergence their experiences and goals. The
implementation considers the following interaction types and their associated emotions:
neutral, desire to lead, desire to not fall behind in the amount of provided responses,
desire to imitate (to fit with the rest), and desire to contradict. All but type neutral have
two versions, a moderate and a strong variant. The last step integrates the emotional cue
fromthe previous step with the agent’s current emotion to produce any changes in emotion
(i.e., an update in emotion). A predefined set of rules is used for this step too.

An agent’s emotion profile in Figure 6 is realized as follows. Each agent can have
fifteen different emotions, including neutral, happy, angry, fear, trust, and so on. Agent
emotion profiles are set-up when agents are created and do not change during execution.
Agent emotion profiles capture two aspects:

• The change of emotion strength (valence) over time: Figure 7a shows the variation
of the strength of an emotional state over time. The parameters of the strength plot
(e.g., values s0, s1, s2, s3, t1, t2, t3 defining the slopes of the linearized plots) are
specific to each agent and set-up when the agent is created.

• Emotion transitions during interactions: The predefined rules for emotion integration
change emotions as shown in Figure 7b. Each emotional state has sub-states, e.g., state-
1, state-2, state-3, which correspond to the emotion strength in Figure 7a. Transitions
between sub-states are controlled by cues (c) and the passing of time (t). The nature
of the transitions and their controlling functions F(c, t) (describing conditions) are
specific to each agent.

t1

time

t2 t3

s0
s3

s1
s2

strength

F(c,t)

state−1state−1 state−2 state−3

F(c,t)F(c,t)F(c,t)

F(c,t) F(c,t) F(c,t)

state−1 state−3state−2

state−3state−2

(b)(a)

Figure 7. Emotion implementation: (a) emotional state strength variation over time and (b) rule
definition for emotion integration. Parameter c is a cue, parameter t is time, and F(c, t) is the
controlling function.

The fourth step determines the urgency, the way in which the agent treats received
input, and the kind of response it will generate as a result. Depending on the similarity
and familiarity (i.e., number) with previous responses, an agent creates a new response
through a fast, top-down path or a slow, bottom-up path. Initially, the top-down path
is pursued, but after a number of related responses, an agent switches to the bottom-up
path to produce a response that generalizes the previous. Furthermore, the difference
between the utility of the received input (which describes the utility assigned by the other
agents) and that of its own response (which describes the expected utility) decides the way
(i.e., the strategy) in which the agent creates its new response. The current implementation
distinguishes between five different situations: (i) same utility, (ii) higher actual utility than
expected, and (iii) lower actual utility than expected. In addition, for the same utility case,
there are two more situations that describe the habituation of the agent with the current
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type of responses (e.g., the sequence includes several similar responses): (iv) habituation
and surprise indicate that the response contains an unexpected concept but the utility
remains the same, and (v) habituation and alternative suggest that the agent explores clause
alternatives that keep the expected utility the same.

The fast, top-down response generation flow uses an agent’s most similar experience
to the received input to produce a new response. Fast response understanding identifies
the main concepts involved and assigns their meaning (semantics) based on their usual
usage without solving input ambiguities. Hence, clause meanings depend only on the
frequencies of the different types the clause had previously, and there is no connection to
the broader context in which the response was produced. A fast, new response is created
by stitching together the activated abstract pattern and the main concepts of the response,
which are those that drew the agent’s attention. Depending on the degree of urgency, the
fast response is the output, or response generation continues with the slow, bottom-up
process shown in the right part of Figure 6.

The fast strategies used to assemble a new response are selected depending on the
difference between the actual and expected utilities of the responses, as shown in Figure 6.
Strategy 1 builds a new response that extends the agent’s most similar experience to the
received response by adding details to the response, e.g., clauses that are missing. It
incrementally produces responses for the situation, if the actual and expected utilities
are the same, but the agent does not feel comfortable moving beyond its own experience
(hence, producing only a small number of similar responses). Strategy 1-2 and Strategy
1-3 correspond to situations of habituation, when the agent is sufficiently comfortable to
explore beyond its immediate experience, such as by extending a previous experience by
considering alternatives to the concepts or by incorporating unexpected concepts present
in the received responses. Strategy 2 is executed when the actual utility is higher than
expected. As a result, the agent creates a response that attempts to bridge its own experience
to the received response of higher utility. To achieve it, it combines the different clauses
of the response (which are considered to be the reason for the higher utility) with the
clauses of its own experience. Strategy 4-1 describes the case in which the actual utility
of the response is lower than that of the expected utility, e.g., due to its own experience.
As a result, the new response of the agent further emphasizes the differences between its
experience and response, as the differences are considered to be the causes of the difference.

The slow, bottom-up response generation flow proceeds as follows. The received
response is further understood by assigning meaning to the ambiguous concepts, as detailed
in ref. [54]. Furthermore, a new response is created based on the pursued goals and by
stitching clauses of the received input with clauses of the agent’s experience, depending on
the kind of difference between the actual utility of the response and the expected utility as
represented by the agent’s experience. If the two utilities are similar and no habituation
has occurred yet, the agent attempts to generalize its own experience using Strategy 5. It is
assumed that the previous fast steps produced enough details to support generalizations.
Similarly, if habituation has already occurred, the agent generalizes the concept for which
alternatives were produced during the preceding fast response steps. If the actual utility is
higher than the expected value, the agent uses Strategy 3 to bridge, at the abstract level,
the differences between a response and an experience. Abstract concepts are used by the
agent from the response and experience to create a new response. Strategy 3-2 is a variant
of Strategy 3, in which an abstraction of the unusual response clause is combined with
the abstract clauses of the experience. The strategy is used when an unexpected clause is
present in the response after habituation has occurred. Strategy 4-2 presents the case in
which the actual utility is less than expected. The agent response focuses on generalizing
the differences between the response and experience and on expanding a clause how for
the difference in order to support the validity of the different clauses being the reason
for the difference in utilities. The problem-solving process can continue to generate more
responses until it is considered satisfactory (as shown by the blue arrow in Figure 6).



Mathematics 2023, 11, 2602 18 of 28

5. Experimental Results

Experiments studied the characteristics of agent interactions, e.g., the responses created
by two agents that exchange a sequence of responses. The main objective of the experiments
was to analyze the variety of responses, such as clauses that were propagated during
agent interactions and those that were filtered out, experience items that were reinforced,
knowledge detailing and abstraction, the nature of created alternatives, i.e., synonyms and
homonyms, the creation of bridging responses between knowledge items that were initially
unrelated, and the separation of the knowledge items of two agents. Experiments also
measured the frequency of using the different strategies (ways) of generating responses.

Experiments used a knowledge base that was set up using seventy-five responses
produced by the group experiments with human subjects discussed in ref. [4]. The study
examined the relationship between group diversity and group creativity using a problem
that required groups to improve the healthcare system in the USA. Each group included
five human participants who collaborated by exchanging ideas in an asynchronous fashion.
Seventy-five randomly selected responses from this study were used to set up the agent’s
memory in our work. Each response was a sentence with nouns, verbs, pronouns, adjectives,
and so on. Each agent’s memory included twenty randomly selected responses out of the
seventy-five responses. Some of the twenty responses were shared by multiple agents
to create shared experiences among agents. The similarity of concepts was characterized
using metrics from WordNet [21]. All experiments used two interacting learning agents.
Experiments were conducted using an Inspiron 15 5510 laptop with an Intel i7-113770H
processor at 3.3 GHz and 16 GB of RAM.

5.1. Characteristics of Agent Interactions

The execution time depends on the number of responses produced by the interacting
agents. It takes around 1.1 s to generate one response; therefore, execution time stays
low for the considered team sizes (up to four agents) and number of responses (up to
a few hundred responses). Finding the most similar clause in an agent’s memory to a
received input is computationally the most intensive routine. Its complexity is linear with
an agent’s experience memory size and quadratic with the number of clauses in a response.
Nevertheless, complexity remains low, as a response can have up to nine clauses in this
model. Hence, the implementation scales well with the number of agents and responses.

Table 1 summarizes the ratio of the different response types (e.g., same utilities,
same utilities with habituation, same utilities with alternatives, lower utilities, and higher
utilities) as well as their two versions, the fast version and the slow version. The table
presents the number of times the different cases occurred out of a total of 693 runs and the
corresponding percentage in parentheses. Note that these values depend on the software
parameters used in the experiments, such as the total number of interactions between the
two agents, the utility threshold for which two utility values are perceived to be similar,
the number of iterations before switching from the fast version to the slow version used in
creating responses, and the number of iterations before switching towards procedures that
encourage more response diversification, such as same utilities with habituation and same
utilities with alternatives.

Table 1. The ratios of the utilized response construction procedures.

Agent
Same Same

Same Utilities Util. with Util. with Lower Utilities Higher Utilities Fast Version Slow Version
Habit. Alter.

Agent 1 68 (9.81%) 47 (6.68%) 19 (2.74%) 124 (17.89%) 108 (15.58%) 205 (29.58%) 160 (23.08%)

Agent 2 54 (7.79%) 39 (5.62%) 20 (2.88%) 109 (15.72%) 105 (15.15%) 170 (24.53%) 158 (22.79%)

Total 17.6% 12.3% 5.62% 33.61% 30.73% 54.11% 45.87%
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Even though it was not our intention, the experimental results in the table show that
there were similar ratios encountered for cases with the same utilities (including routines
for same with habituation and same with alternatives), lower utilities, and higher utilities
of the received inputs, and most similar experiences of the agents. Fast versions of response
creation were slightly more frequent than slow versions. Routines for same with habituation
and same habituation with alternatives were used much less than the same utility response
generation procedure.

We next analyzed the nature of the responses that were created by using the response
construction procedures summarized in Table 1. Table 2 summarizes the results of the
analysis. The rows correspond to the five kinds of procedures (the rows of Table 1).
Columns present the following information: the first two columns describe the reduction
and extension of clause ambiguity, e.g., the same concept can serve multiple clauses in
an input. Column (a) indicates the learning of an input, i.e., a received input is copied
unchanged into an agent’s experience memory. Column (b) presents the reinforcement
of an existing experience item, such as when the produced response exactly matches an
existing experience item. Column (c) describes the cases in which the created response is
an instance of the input, and Column (d) describes the situations in which the response
is an instance of an existing experience item. Column (e) represents responses that are
synonyms of the received inputs, e.g., the two share the same what clause and some of the
other clauses but also have different non-what clauses. Column (f) indicates the number
of responses that were synonyms of an existing experience item. Column (g) presents
the number of responses that were homonyms of inputs, i.e., the two shared non-what
clauses but had different what clauses. Column (h) displays the number of homonyms
for existing experience items. Column (i) shows the percentage of responses for which
inputs were instances, and Column (j) shows the percentage of responses for which an
experience item was an instance. The last column describes the number of responses that
were unrelated to the input (i.e., did not have a common clause or concept) and hence
separated the response from the input. Finally, columns Abs-1–Abs-5 summarize the
nature of the created abstractions through the responses generated by slow versions of
the procedures. Column Abs-1 presents the percentage of cases in which a new symbol
was introduced as a result of slow flow. Column Abs-2 indicates the percentage of cases
in which the response was an abstraction of a previous abstraction. Column Abs-3 shows
the percentage of cases, in which the input was an instance of the response, and Column
Abs-4 shows the percentage in which an experience item was an instance of the response.
Column Abs-5 indicates the percentage of cases in which the response was an abstraction
of a clause of an experience item.

Table 2. The ratios of the different types of responses.

Red.
amb.
(%)

Ext.
amb.
(%)

(a)
(%)

(b)
(%)

(c)
(%)

(d)
(%)

(e)
(%)

(f)
(%)

(g)
(%)

(h)
(%)

(i)
(%)

(j)
(%)

Abs-1
(%)

Abs-2
(%)

Abs-3
(%)

Abs-4
(%)

Abs-5
(%)

Sep
(%)

same 4.8 0.0 11.6 28.5 12.3 14.0 5.9 0.5 4.3 1.0 8.0 14.0 N/A N/A N/A N/A N/A N/A

same
habit. 2.0 1.0 2.0 37.0 2.0 0 3.0 0.0 3.0 0.0 19.5 31.0 N/A N/A N/A N/A N/A N/A

same
alter. 0.0 7.1 0.0 35.0 0.0 21.4 14.2 7.1 7.1 28.5 0.0 214 N/A N/A N/A N/A N/A N/A

lower 7.2 2.5 3.6 7.2 11.3 5.1 3.0 3.6 3.6 7.73 12.3 13.9 5.29 1.96 1.96 5.8 7.8 N/A

higher 15.1 0.45 1.83 18.3 0.45 3.2 9.63 4.58 7.33 1.83 7.79 19.26 N/A N/A 2.43 2.43 N/A 8.25

Table 2 shows that most ambiguity reductions resulted in response generation for
higher and lower utilities. While ambiguity reduction does not depend on the actual
generation method, it is called for in the slow response generation flow. This suggests
that there was a higher percentage of slow flow for higher and lower utilities than for
the other three response generation situations. Furthermore, there was a slight increase
in ambiguity, mainly for generation for the same utilities with alternatives. Combining



Mathematics 2023, 11, 2602 20 of 28

clauses present in the input but not in an experience item can increase ambiguity if the
concept of the input clause is already present in the experience item. Learning an input is
relatively rare, with the exception of methods for the same utilities (11.6%). Reinforcing an
existing experience entry is likely to occur in all situations (18.3–37%), with the exception
of the lower utility case, as it attempts to create a response that is more similar to a higher
utility input. Generation for same and lower utility is more likely to create responses that
are instances of an input (12.3% and 11.3%, respectively), and generation for same (14.0%)
and same with alternatives produces instances of inputs (21.4%). More responses that
are synonyms of inputs are generated for the same utility with alternatives (14.2%) and
higher utility (9.63%). There are rare responses that are synonyms of experience items,
with a maximum of 7.1% for the same utility with alternatives and 4.58% for higher utility.
Similarly, most homonyms of inputs are for the same utility with alternatives (7.1%) and
higher (7.33%). Most homonyms for experience items can occur for the same utility with
alternatives (28.5%) or lower utility (7.73%). Response generation for lower utility created
a new symbol in 5.29% of the cases, in 5.8% an abstraction of the experience item, and in
7.8% an abstraction of a clause in an experience item.

The next two experiments studied the degree to which the different kinds of response
generation methods changed the knowledge space of the two agents involved in the
interaction. The metrics captured the change in the strength of connectivity between related
concepts and the degree to which unrelated concepts get connected through a sequence of
similar concepts.

Metrics were computed based on the length of the shortest path linking two concepts
in a graph, in which each concept is a node and an arc connects two concepts with similarity
beyond a minimum threshold. Similarity labels every arc and were set using WordNet
similarity values [21]. Dijkstra’s algorithm was used to find the shortest paths.

Table 3 presents the results for fast response generation flows, and Table 4 indicates
the results for slow versions. Rows Avg., max, and min ∆ total length show the average,
maximum, and minimum change of the total length of the paths that link any two connected
concepts after performing the corresponding response generation method. Rows Avg., max,
and min ∆ average length per node offer the average, maximum, and minimum values of
the ratio of the total path lengths and the number of pairs of connected nodes. Rows Avg.,
max, and min ∆ adjusted total length indicate the change due to a response generation step
to the average, maximum, and minimum adjusted total length, which is the total length of
all node pairs in a graph. A large penalty value was introduced for two unconnected nodes.
Rows Avg., max, and min ∆ average adjusted length per node present the change in the
ratio of the average, maximum, and minimum adjusted total length and the total number
of node pairs in the graph. Note that for the metrics using adjusted total length (last six
rows), an improvement is indicated by negative values, as decreases in the adjusted total
lengths show that previously unconnected nodes (which add a large penalty to the path
lengths) were linked by the new responses.

Table 3 indicates that for response generation, same utility and same utility with
alternatives offer the highest improvement in the connectivity of already connected nodes,
as shown by average and maximum values. However, the same utility with alternatives
produced a small overall impact, as it occurred only rarely. The smallest improvement was
for lower utility as it attempted to connect concepts that were not so well linked together.
A higher utility situation created a slightly better improvement, likely because it was not
attempting to tie together unconnected concepts. Instead, it separated them. Each response
generation case produced similar minimum improvements, and each case showed a large
range of changes between the minimum and maximum values.

Experimental results suggest that generation for the same utility mainly introduces
local connections between non-what clauses. Responses were also likely to have more
clauses, which favored the likelihood of improving connectivity. Generation for lower
utility created more global connections as they combined different what clauses, therefore
different concept sub-graphs that correspond to these. Experiments also showed that
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generation using the same utility created a certain difference between the results for the two
agents: there was a higher improvement for Agent 1 and a smaller improvement for Agent
2. In contrast, lower and higher utility situations produced similar results for the two agents.
These results suggest that lower and higher utility cases were more systematic in producing
improvements for both agents, while the same utility flows can hit on responses that offer
high improvement, but this is not guaranteed for the other agent too. Generation cases
that have higher experience with item reinforcement are likely to have less improvement,
as reinforcement does not change concept connectivity. A low-utility situation produces
responses that always connect input clauses to non-what clauses of the experience but can
offer fewer improvements if the input clause has a different what clause. However, these
connections can lead to a more effective linking of previously unconnected concepts, as
shown by metrics related to adjusted total length. Responses produced by higher utility
flows show a small separation from other concepts, which could lead to the partitioning of
an LARG’s knowledge space.

Table 3. Performance metrics for fast versions.

Metric

Same Same Utility Same Utility Lower Higher
Utility with Habituation with Alternatives Utility Utility

Agent1 Agent2 Agent1 Agent2 Agent1 Agent2 Agent1 Agent2 Agent1 Agent2

Avg. ∆ length per node 109.38 59.56 53.34 91.12 132 52.67 65.29 66.71 71.82 69.44

max ∆tot. length 287.94 110.29 74.0 200.0 264.8 81.0 193.05 136.17 118.0 130.15

min ∆tot. length 33.0 14.89 30.0 21.75 55.3 26.41 26.4 8.0 30.0 2.25

Avg. ∆ avg. length per node 0.041 0.011 0.016 0.045 0.053 0.016 0.025 0.025 0.014 0.022

max ∆ avg. length per node 0.184 0.021 0.063 0.012 0.133 0.006 0.108 0.057 0.023 0.088

min ∆ avg. length per node 0.01 0.01 0.01 0.223 0.016 0.008 0.0001 −0.003 0.01 0.001

Avg. ∆ adj. total length −0.17 0.046 0.0076 0.016 −0.24 0.025 −0.021 −0.008 −0.02 −0.031

max ∆ adj. total length −0.81 −0.09 −0.002 −0.13 −0.61 0.07 −0.35 −0.39 −0.004 −0.49

min ∆ adj. total length −0.24 0.13 0.0001 0.0001 −0.01 0.014 0.14 0.0001 0.14 0.17

Avg. ∆ avg. adj. length per node −0.014 0.0007 0.0236 0.016 −0.016 −0.009 −0.013 −0.024 −0.013 −0.015

max ∆ avg. adj. length per node −0.04 −0.005 −0.005 −0.093 −0.017 −0.013 −0.028 −0.002 −0.009 −0.013

min ∆ avg. adj. length per node −0.01 0.0019 0.013 0.0026 −0.014 −0.005 0.003 −0.0001 −0.0006 −0.002

Table 4 presents the same metric values for slow-response generation flows. At a
more abstract level, the lowest utility flows produce the best improvement for the already
connected nodes, while the same utility flows create the newest links for unconnected nodes.
The first observation is expected, as combining at higher levels any already connected
concepts can increase the total connectivity. The latter observation can be explained by
the fact that combining abstract concepts such as slow, same utility flows has a similar,
global effect on the knowledge structure as fast, lower-utility flows. Slower utility flows
can introduce new symbol that are less connected to existing concepts.
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Table 4. Performance metrics for slow versions.

Same Same Utility Same Utility Lower Higher

Metric Utility with Habituation with Alternatives Utility Utility

Agent1 Agent2 Agent1 Agent2 Agent1 Agent2 Agent1 Agent2 Agent1 Agent2

Avg. ∆ total length 131.25 129.46 145.35 90.41 96.18 118.45 234.17 154.82 191.58 125.58

max ∆ total length 267.0 204.0 308.0 257.0 161.0 187.0 352.0 294.0 265.0 320.15

min ∆ total length 14.0 24.0 5.0 25.0 29.0 37.0 18.0 48.0 34.0 14.0

Avg. ∆ avg. length per node 0.0049 0.0076 0.0033 0.003 0.0087 0.02 0.0056 0.006 0.0091 0.008

max ∆ avg. length per node 0.025 0.04 0.015 0.017 0.03 0.059 0.055 0.012 0.056 0.09

min ∆ avg. length per node −0.002 0.001 −0.007 −0.002 −0.004 0.009 −0.005 −0.001 −0.003 0.001

Avg. ∆ adj. total length 0.0043 0.0364 0.0141 0.042 0.021 0.16 −0.0011 0.01 −0.0029 −0.0082

max ∆ adj. total length −0.13 −0.26 −0.14 −0.59 −0.11 −0.24 −0.14 −0.13 −0.23 −0.15

min ∆ adj. total length 0.12 0.17 0.008 0.49 0.25 0.07 0.12 0.009 0.11 0.11

Avg. ∆ avg. adj. length per node −0.0034 −0.0011 −0.002 −0.004 −0.0075 −0.0071 0.0022 −0.0097 −0.0014 0.0015

max ∆ avg. adj. length per node −0.004 −0.008 −0.004 −0.0055 −0.019 −0.015 −0.087 −0.0018 −0.006 −0.0053

min ∆ avg. adj. length per node −0.0006 −0.003 0.0009 0.0007 −0.001 −0.003 −0.0005 −0.0003 −0.0007 −0.0001

5.2. Qualitative Comparison to Agents Using Commitment-Based Protocols

This subsection offers a qualitative comparison of the proposed model, LRGA, and
models using commitment-based protocols. These models were discussed in Section 2. As
their foundations are quite different, a numerical comparison is difficult. The qualitative
comparison uses the Gold Miners Scenario Problem (GMSP) [30], a traditional benchmark
case for studying commitment-based protocols. The problem is that gold nuggets are
placed on a two-dimensional grid with obstacles. A team of interacting agents collects gold
nuggets as they move along the grid and avoid obstacles. An agent can pick up a gold
nugget to carry it to a depot, drop a nugget, communicate about a nugget to another agent,
or just ignore a nugget and move on. The goal is for a team to maximize the amount of
gold brought to the depot. Table 5 summarizes the comparison.

Like reaching consensus or disagreement, GMSP describes a team-based problem-
solving situation. The qualitative similarities and differences between the two are as follows.
The goal of GMSP is to collect as much gold as possible, which is conceptually similar
to finding many common ideas in the LRGA. Similarly, the distance over which a gold
nugget must be carried to the depot is similar to the dissimilarity of two ideas that must
be connected to each other by the agents’ responses. The GMSP actions and the response
generation situations are similar in that they include incremental changes to the current
situation, such as moving to a neighboring grid cell in GMSP and creating an incremental
response by adding or changing a clause (Strategy 1). However, while GMSP uses a static
neighborhood definition in which every grid has four well-defined neighbors, the clauses
that can be changed in a response are dynamically decided by each agent based on its
experience and urgency. Moreover, clauses can be ambiguous. In addition, LRGAs can
create responses using strategies that go beyond incremental changes, such as incorpo-
rating unexpected clauses into a response. This would be similar to a mining agent in
GMSP suddenly jumping into a region that lies between two grid regions that were already
explored by the agents. While in GMSP it would be disadvantageous if an agent explored
the same grid region as another agent, repetition in LRGA might indicate reinforcement of
a statement and hence increase its priority. Carrying a gold nugget is similar to producing
a response that relates to the current ideas, while dropping a gold nugget is arguably
similar to dropping the current idea pursued by an agent to follow an unrelated idea.
Communicating to others about a gold nugget is similar to communicating a response to
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all LRGAs. A difference is that the process towards reaching a consensus or disagreement
involves responses from all agents, which is similar to agents jointly carrying a gold nugget
to the depot. However, in GMSP, one agent can carry one nugget at a time. Moreover, all
agents in GMSP perceive the grid and gold positions in the same way, while in LRGA,
the actual meaning of a response is influenced to some degree by the agent’s experience,
e.g., the experience is used to solve any clause ambiguities. Therefore, in GMSP, increasing
the amount of communication increases the amount of shared knowledge, i.e., the com-
municated positions of gold, while in LRGA, increasing the amount of communication
can lead to disagreement. Finally, interactions through commitments impose a certain set
of actions depending on an agent’s role, while LRGAs do not have roles; instead, their
responses are generated using a set of strategies that are dynamically selected based on the
agent’s experience and urgency. Therefore, in addition to being grounded in theories in
psychology and sociology, the LRGA model considers a different semantics of the problem
and interaction space, which is the semantics of statements, as well as another approach to
producing the responses through which agents interact with each other.

Table 5. Summary of the qualitative comparison between LRGA and commitment-based protocol
agent model.

Commitment-Based LRGA
Protocol Agents

Studied problem Gold nuggets distributed on a 2D grid with obstacles Agents create and communicate responses on improving a
situation

Goal Bring as many gold nuggets as possible to the depot Reach consensus or disagreement about an idea

Theoretical grounding Formal logic Psychology and sociology for agent behavior, linguistics for
responses

Problem parameters Distance of nuggets from the depot Dissimilarity of ideas and agent experiences

Solution space Static neighborhoods based on four neighbors Dynamically generated responses

Agent actions Navigate grid, avoid obstacles, pick-up nuggets carry nugget,
drop nugget, communicate about positions

Understand response, add details to a response, consider
alternatives with same meaning, abstract, include rare concepts,

combine abstractions, communicate created responses

Communication Static, based on agent Dynamic based on agent
mechanism roles expectations and urgency

Solution Keep carrying a picked Continue current idea by
continuity nugget, move to neighbor incremental changes

Solution Drop nugget Adopt new unrelated
discontinuity [no jumps allowed] idea to create own response

Situation interpretation All agents perceive agent and nuggets positions in the same
way Ambiguities and different utilities can exist for the same inputs

Agent collaboration Communicate positions, cannot jointly carry a nugget Communicate ideas, agents can change the same idea

Repetition Always sub-optimal Can be beneficial

6. Discussion of LRGA Model

This section discusses the LRGA model as compared to similar MAS models presented
in Section 2. MAS models have been traditionally used for distributed problem solving,
like cooperative search in GMSP to maximize a total reward [44], numerical optimization,
e.g., bean design [35], or to study feature spreading in populations [36]. In contrast, the
LRGA model was devised for problems that require generating new ideas that are ac-
cepted by participants with partially-different assessment values due to different goals,
utilities, and experiences. Problem framing, common ground identification, and HCI for
self-improvement and teaching are such problems. The solution space of these problems
must be dynamically constructed through agent interaction without using a closed-form
description, like in GMSP [30,31] and in ref. [36], or cost functions, like in engineering
trade-off exploration [34,35]. Moreover, in the LRGA model, as presented in Section 3, the
exchanged ideas during problem solving are networks of symbolic fragments structured
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based on language characteristics and not numerical [36], mathematical, or logic expres-
sions as in most related MAS [14,32,41]. Ideas can be ambiguous due to the inherent nature
of language; hence, agents might differently interpret inputs depending on their specific
experience, attention, emotions, and assigned utilities (priorities). We think that the existing
MAS models cannot tackle these problem specifics well.

Similar to KABOOM [34], the first MAS to consider the cognitive style of agents, the
LRGA model is grounded in theories in psychology and sociology. However, it focuses
on other main factors in team activity, like synchronization and convergence [1,22,23,27].
Hence, including knowledge representation and agent memory in the proposed model was
important. Many MAS consider only simple memory descriptions, like weighted averages
of previously visited solutions in KABOOM [34]. Instead, each LRGA agent has a local
memory that stores the previous experience and newly learned ideas generated by the agent
or received from other agents. A Bayesian framework was devised for idea understanding
in the LRGA model to identify the more likely meanings of inputs, while traditional
MAS models do not emphasize input ambiguity as it is less common for mathematical
or logic expressions. Our experiments show that ambiguity can be reduced during agent
interaction by responses with higher or lower utilities, which favor reaching a common
understanding, while alternatives with similar utilities increase ambiguity. We argue that
idea disambiguation requires more powerful knowledge and memory representations than
those based on aggregated measures, like weighted averages.

New ideas are generated in the LRGA model using either a fast, top-down flow or
a slower, bottom-up flow guided by parameters grounded in psychology, like affective
valuation, to determine the nature of emotions based on the differences between expected
outcomes and received inputs [16,24,49], responses to asymmetrical utilities [58], dominant
concepts that capture the agent’s attention [38], minimizing the required effort [58], or
maximizing the accessed knowledge. Idea creation through the slower, bottom-up flow is
similar to the five design strategies discussed in ref. [50,51,59], and is also supported by
the model presented in ref. [17]. Our experiments show that reaching consensus among
agents is achieved by strategies specific to different scenarios, such as strategies that tackle
response utility and response structure and length in a certain way. These strategies allow
a more flexible switching between incremental changes, like through the fast flow, and
more significant changes, such as through the slow flow, than other MAS, like KABOOM,
where the switching between incremental and significant changes mainly depends on the
time since the start of problem solving, i.e., significant changes are early and incremental
changes are later in the process. However, studies show that reaching better solutions,
including departures from previous solutions and breakthroughs, does not happen early
but later during solving [2,7]. Furthermore, our strategy selection is different from the
model in ref. [36], where randomly selected features propagate more likely for the more
similar agents without considering the utility of the features.

7. Conclusions

This paper proposes a novel agent-based model, called Learning and Response Gener-
ating Agents (LRGAs), to study the conditions under which team problem solving ends
either in consensus or disagreement between agents. Agents interact with each other
through structured messages that include nouns, verbs, adjectives, and adverbs. An LRGA
learns by updating its own memory based on the received inputs and the responses that
it creates. Each agent understands an input by matching it to the most similar statements
in its own memory to clarify possible ambiguities in the input. Furthermore, an LRGA
creates new responses by combining concepts through strategies selected based on the
differences in utility between the input and the matched memory item and emotional
and social cues. The available strategies can explore variants of a response by adding
more details or considering alternatives of similar meaning, establishing abstractions for
a set of similar responses, picking up less frequent concepts, and reasoning with more
abstract responses by combining their structures. The difference between the utility of
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an expected outcome and that of a received input selects between a fast, top-down and a
slow, bottom-up version of each strategy. The LRGA model was devised to study problems
that require creating new ideas accepted by all team members, like problem framing and
common ground finding, and to support devising new Human-Computer Interfaces for
self-improvement and teaching.

Experiments showed that the generated responses pertain to ten possible situations
depending on the selected strategies for the fast or slow flows: input learning, reinforcing
an existing experience item, creating new instances of inputs or experience items, creating
synonyms of inputs or experience items, creating homonyms of inputs or experience items,
and creating abstractions of inputs or experience items. Clause ambiguity is reduced by
inputs of different utilities than the utilities previously associated by an agent to the similar
memory item, as the differences encourage the agent either to adopt or separate from the
input, thereby lowering ambiguity. Inputs of similar utility tend to increase ambiguity.
Fast same utility and fast same utility with alternatives, as well as slow higher utility
strategies, offer the best connectivity improvement for already linked concepts because
they are more likely to relate the nouns that do not describe an objective. Fast lower utility
and slow same utility methods improve the connectivity of unlinked concepts because
they tend to connect the nouns expressing an objective. Longer responses also increase
the likelihood of increasing the connectivity of concepts. All these cases help consensus
reaching. Disagreement increases through the fast higher utility strategy as the created
responses are based on the differences between input and memory, thus enlarging the
information gap between agents.

The main limitations of the LRGA model relate to the fact that language statements
are used for new idea generation, communication, and understanding by the agents. This
raises significant challenges in semantic understanding, not only for language constructs
like analogies and metaphors but also for more abstract or ambiguous situations that can
be understood only based on the current context and experience. Agents currently have
only a small memory to store experience and context; hence, they can handle only simple
disambiguation. Another limitation relates to tackling abstractions and negations. The
model defines abstractions as placeholders for a set of similar concepts, but there is no
mechanism to support attribute aggregation. Negation focuses only on the opposite utility
of an idea or concept but does not consider how the causes of negation can be the starting
point for creating a new solution. More strategies to generate responses are likely needed.

Future work will continue the study of other interaction mechanisms in the LRGA
model and define metrics to describe the dynamics of team behavior over time. We
also intend to extend the method for response understanding by incorporating more
insight from linguistics, such as that presented in ref. [17]. We think that improving the
language part of the agents is the starting point in any effort to computationally model
with reasonable accuracy the behavior of human teams participating in problem solving.
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