
Citation: Stângaciu, C.S.; Capota,

E.A.; Stângaciu, V.; Micea, M.V.;

Curiac, D.I. A Hardware-Aware

Application Execution Model in

Mixed-Criticality Internet of Things.

Mathematics 2022, 10, 1537.

https://doi.org/10.3390/

math10091537

Academic Editor: Marina Alexandra

Pedro Andrade

Received: 1 April 2022

Accepted: 29 April 2022

Published: 3 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Hardware-Aware Application Execution Model in
Mixed-Criticality Internet of Things
Cristina Sorina Stângaciu 1,* , Eugenia Ana Capota 1, Valentin Stângaciu 1, Mihai Victor Micea 1

and Daniel Ioan Curiac 2,*

1 Computer and Information Technology Department, Politehnica University, Vasile Parvan 2,
300223 Timisoara, Romania; eugenia.capota@cs.upt.ro (E.A.C.); valentin.stangaciu@cs.upt.ro (V.S.);
mihai.micea@cs.upt.ro (M.V.M.)

2 Automation and Applied Information Department, Politehnica University, Vasile Parvan 2,
300223 Timisoara, Romania

* Correspondence: cristina.stangaciu@cs.upt.ro (C.S.S.); daniel.curiac@aut.upt.ro (D.I.C.)

Abstract: The Real-Time Internet of Things is an emerging technology intended to enable real-time
information communication and processing over a global network of devices at the edge level.
Given the lessons learned from general real-time systems, where the mixed-criticality scheduling
concept has proven to be an effective approach for complex applications, this paper formalizes the
paradigm of the Mixed-Criticality Internet of Things. In this context, the evolution of real-time
scheduling models is presented, reviewing all the key points in their development, together with
some connections between different models. Starting from the classical mixed-criticality model,
a mathematical formalization of the Mixed-Criticality Internet of Things concept, together with a
specifically tailored methodology for scheduling mixed-criticality applications on IoT nodes at the
edge level, is presented. Therefore, a novel real-time hardware-aware task model for distributed
mixed-criticality systems is proposed. This study also offers a model for setting task parameters
based on an IoT node-related affinity score, evaluates the proposed mapping algorithm for task
scheduling, and presents some use cases.

Keywords: distributed computing; scheduling; scheduling algorithm

MSC: 68M20; 68M14

1. Introduction

In the era of telecommunication and interconnectivity, the Internet of Things (IoT)
is a promising new technology for connecting intelligent objects that surround us into
a large network, often distributed over large geographic regions [1,2]. Real-time and
non-real-time, critical, and non-critical systems coexist with increasingly complex and
sometimes conflicting demands from the network. Thus, new concepts for the provisioning,
management, and monitoring of these systems and their components must be developed.
The development of such concepts has led to an entirely new field, the Real-Time Internet of
Things (RT-IoT) [3], which promises better connectivity and efficient use of next-generation
embedded devices. As the field of real-time systems has developed in recent years, it
is natural to integrate new concepts from RT systems into RT-IoT. This concept, which
is currently gaining attention in classical RT systems, is the concept of Mixed-Criticality
Systems (MCSs), which define systems running real-time tasks of different criticality levels
sharing the same platform. As many critical real-time applications have already been
implemented using distributed heterogeneous architectures [4], the MCS concept can also
be applied to RT-IoT, leading to a new scheduling paradigm called MC-IoT (for a full list of
abbreviations, please see Appendix B).

Mathematics 2022, 10, 1537. https://doi.org/10.3390/math10091537 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10091537
https://doi.org/10.3390/math10091537
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6552-9226
https://orcid.org/0000-0002-8224-2032
https://orcid.org/0000-0001-6617-073X
https://doi.org/10.3390/math10091537
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10091537?type=check_update&version=2


Mathematics 2022, 10, 1537 2 of 21

The need for comprehensive solutions that integrate systems with strict timing con-
straints/requirements into IoT architectures is not new and has been extensively discussed
in [5]. This need is also reflected in the design and implementation of real-time/time-
triggered Ethernet protocols with mixed-criticality support [4]. However, only a few
examples of real-time systems in their classical form or mixed-criticality systems have
been integrated into IoT architectures. In [1], the placement of services and data in fog
devices is discussed with regard to the optimization of the system. The challenges of
both soft and hard real-time systems are addressed in [3] by introducing the term RT-IoT.
Papers such as [6] and [7] present examples of autonomous IoT devices and applications,
while [8] presents an example of a collaborative homogeneous IoT system, and [9], a system
development platform for reducing the complexity of developing IoT-enabled applications
with different criticalities. In [10], the deep learning approach is used to schedule real-time
edge services, while Jin et al. [11] proposed a mechanism for data aggregation in mobile
privacy-aware crowdsourcing systems. Furthermore, a real-time system that proposes the
approximate image sharing and energy-aware adaptation to obtain higher bandwidth and
energy efficiency, called BEES, was introduced in [12].

From our perspective, MC-IoT can effectively address the problem of resource man-
agement at the edge level of IoT platforms running a variety of applications with different
criticalities and different time requirements, such as sensor fusion for automated driving
applications [13], smart buildings [14], and healthcare mixed-criticality applications [15].
The scheduling problem in real-time distributed heterogeneous systems is not trivial and
has been insufficiently addressed, despite its potential [16]. A few papers addressing this
problem have been published [17–20].

The heterogeneous nature of the IoT architecture has a direct influence on applications
that run on these different hardware components.

• The application code execution time is strongly influenced by the target system running
the application.

• In the same manner, the power consumption owing to the execution of the same code
may be different for target j than for target k.

Therefore, new application models are required for the MC-IoT applications. These
models need to be considered in addition to the temporal and sometimes criticality aspects
as well as hardware particularities.

In RT systems in general and in RT-IoT in particular, temporal behavior is a significant
aspect, as important as the correctness and accuracy of the provided result [21]. Thus, the
application models for MC-IoT, as a particular case of RT-IoT, should consider the influence
of the hardware particularities.

In this study, we formalized the basic concepts of MC scheduling in the IoT domain
and defined an MC–IoT paradigm. We also provide a methodology for scheduling MC
applications in MC-IoT.

The main contributions of this research are:

• Definition and mathematical formalization of the Mixed-Criticality Internet of Things
scheduling concept;

• The scheduling problem in MC-IoT and RT-distributed systems was mathematically
formulated;

• A novel hardware-aware real-time task model for distributed mixed-criticality systems
such as MC-IoT was proposed;

• A methodology for mapping tasks on heterogeneous targets, considering both timing
and hardware particularities, was proposed and analyzed.

The evolution of real-time scheduling models is presented in Section 2, reviewing
all the key points in their development. We created a mathematical formalization of the
scheduling problem in Section 3. We adapted the classical MC task model to the MC-IoT
paradigm in Section 4. The methodology for scheduling tasks in MC-IoT is proposed
together with example algorithms for setting task parameters and distributing tasks on



Mathematics 2022, 10, 1537 3 of 21

different IoT nodes in Section 5. The proposed function for task distribution is evaluated
and compared with the classical mapping function in Section 6. The article ends with
conclusions and future perspectives in Section 7.

2. Related Work

Tasks are basic execution units of an application. Depending on their activation
patterns, they can be periodic or sporadic. Periodic tasks are activated at a constant
rate [22], whereas sporadic tasks have a minimum inter-arrival time [23,24]. In the mixed-
criticality paradigm, each task has an assigned criticality level and a set of properties [25,26]
(for a full list of symbols, please see Appendix B).

τi =
{

Ti, Di, Li,
{

Ci,j
∣∣j ∈ 1 . . . l

}}
(1)

where l represents the number of criticality levels, Ti—the period for periodic tasks or
the (minimum) arrival interval between two consecutive jobs of the same task i, Di is the
time by which any job execution needs to be completed relative to its release time, Li is
the criticality level (1 being the lowest level), and Ci,j is the computation time (vector of
values—one per criticality level j, for levels lower or equal to the criticality level Li (j ≤ Li)
expressing the worst-case execution time for each criticality level).

A task consists of a series of jobs, with each job inheriting the set of parameters of
the task (Ti, Di, Li) to which it adds its parameters [27]. Thus, the k-th job of task τi is
characterized as:

Ji,k = {ai,k, di,k, ci,k, Ti, Di, Li}
)

(2)

where ai,k represent the arrival time ai,k+1 − ai,k >= Ti; di,k represents the absolute deadline
(di,k+1 = ai,k + Di); ci,k represents the execution time, which is dependent on the criticality
mode of the system (for Lj, ci,k = Ci,j); and Ti, Di, Lj have the same meaning as in the
task model.

The classical model has been the source of other simplified models, such as those
introduced by Burns [28]. In [29], it was proven that Vestal’s model is a generalization of
Burns’ model. Another classical simplification of the model considers only two levels of
criticality (LO and HI) [30].

In time, other parameters were transformed from a simple scalar value to a vector
of values depending on the criticality level. Such is the case of the period in [31]. In the
same manner, the worst-case memory access was considered and added to the general
model as a vector of values in [32], and a vector of values describing the QoS was added
in [33]. In [34], a new model called Elastic Mixed-Criticality (E-MC) was introduced, which
introduces the idea of variable periods for low-criticality tasks.

In addition to general mixed-criticality models derived from hard real-time task
models, another task model for cyber-physical mixed-criticality systems was proposed
in [35]. This model can be considered as a translation of the model presented in [36] for
real-time tasks into an MCS task model by expressing the number of tolerable deadline
misses as a function of the criticality level instead of a constant value, as in the classical
real-time case.

On the one hand, we have the task-level models presented in the previous paragraph,
which are mostly used for sets of independent tasks and are insufficient for sets of tasks
with precedence constraints. However, we have models derived from graph-based real-
time task models [37], such as those proposed in [38]. The mode-switching Diagraph
Real-Time (MS-DRT) task model is such an example, which was proposed by Ekberg
and Yi in [39]. These types of models are more complex and describe, in addition to
temporal behavior, functional dependencies between tasks. Another graph-based model
that specifies the allowed interference between tasks, called interference constraint graph
(ICG), was proposed in [40]. The task parameters are the same as those in the Vestal model,
and the main difference lies in the fact that the graph models the relationship between
tasks, namely, task interference.



Mathematics 2022, 10, 1537 4 of 21

However, we have graph-based models for which we could not identify a central
influential model but encountered several variants, from which we mention Ekberg and Yi
(2016) and Huang et al. (2013).

Figure 1 summarizes the above paragraphs, presenting the main task models for
RTS (real-time systems) and MCS (mixed-criticality systems), their main differences, and
their evolution. For uniformity reasons, the parameter representing the criticality level
has been marked with L even if in some of the original articles other symbols were used.
Vestal’s model (2007) is the most influential model, which was developed from the sporadic
task model proposed by Mok in 1983 and was further customized into several simplified
models, among which we consider worth mentioning the Burns and Baruah model (2013).
In addition to general task models, there are models specifically for firm/soft real-time
tasks with criticality levels (Lee and Shin, 2017).

Figure 1. Task Models Evolution.

Although there are a relatively large number of task models, there are only a few
core models that give birth to different variations. Most of the variations are compatible
with one another, but they focus on different aspects, generalizing or simplifying certain
behaviors/parameters, thus differing in the assumptions regarding the task parameters
(see Appendix A).

3. Application Execution Model and Scheduling Problem Formulation

With the development of 6G networks, the IoT applications running at the edge level
are integrating more and more real-time and mixed-criticality functionalities [33].

Mixed-Criticality Systems represent a special class of real-time systems in which appli-
cation functions with different criticalities share the same resources in terms of computation
and/or communication [12]. The MCS concept offers important advantages when inte-
grated into different types of systems that directly interact with the environment [12]. IoT
is also a type of system that interacts directly with the user and/or environment. As IoT
systems are rapidly evolving towards real-time IoT systems, where tasks with different time
constraints and criticality levels coexist, it is only natural that the application scheduling



Mathematics 2022, 10, 1537 5 of 21

in such systems becomes increasingly complex, and the need to integrate the concept of
mixed-criticality becomes stringent.

Adapting the MCS concept to IoT architectures gives birth to a new scheduling
paradigm called MC-IoT, for which we propose the following definition.

Definition 1. Mixed Criticality-Internet of Things (MC-IoT) is a type of system that run real-time
tasks of different criticalities at the edge level of IoT architectures.

In MCSs, as in any real-time system, applications are split into basic units of execution
called tasks. The scheduling issue of these tasks on multiprocessors and distributed systems
have become prominent in RT-IoT systems such as 6G networks [33].

Tasks can be independent of one another or have a precedence dependence on different
tasks. Each task or set of dependent tasks is allocated to a specific node in a process called
global level scheduling, and each set of independent or dependent tasks is scheduled at the
device level in a process called local scheduling.

Thus, the scheduling problem at the edge level can be divided into two sub-problems:

(1) Task mapping (at an intermediate/Fog level): Each task must be allocated or mapped
to a processing element.

(2) Local task scheduling (at the device/Edge node level): all tasks allocated to a certain
processing element must be schedulable.

Until now, the task mapping problem was not approached by taking into consideration
the hardware heterogeneity. Thus, we further propose a hardware-aware solution to
this problem.

In this paper, we assume the following hypotheses:
The system is represented by an IoT layer architecture with heterogeneous edge nodes.

The architecture contains three main computation levels (Edge, Fog, Cloud) [41].
These applications were implemented as systems for periodic/sporadic independent

mixed-criticality tasks.
These tasks have stringent timing requirements (i.e., hard real-time tasks).
The worst-case execution time (WCET) was determined via static analysis for high

criticality levels and estimated through measurements for low criticality levels.
Each task was statically assigned to a processing element (PE) and could not migrate

during runtime.
Each processing element starts in the lowest criticality mode, L1, and remains in that

mode as long as all jobs are executed within their criticality level computation times Ci,1. If
any job is executed for more than Ci,1 without signaling completion, the system immediately
changes to L2 and so on [25].

For simplicity, we consider that, for each criticality mode Lj, tasks with a criticality
lower than Lj are dropped [25]. Still, the models and partitioned algorithms proposed in
this article are valid, even if we consider more complicated local task scheduling algorithms,
which do not drop lower criticality tasks but schedule them using processor slack time.

The system is heterogeneous, which means that the task execution time varies depend-
ing on the PEs.

4. The Proposed MC-IoT Task Model

As was presented in Section 2, the current MC task models do not take into considera-
tion the hardware heterogeneity of the system.

We begin with the classical MCS model proposed by Vestal in 2007 [25] and consider
the parameters from Equation (1). In addition to the temporal behavior already included in
this model, we propose an extension consisting of a new parameter, affinity score Ai, which
is defined as a vector of values, one per host, representing the affinity score of the task for
each host. The affinity score is an integer between zero and p, where p is the number of
processing elements. A higher value indicates higher affinity, and zero indicates no affinity.



Mathematics 2022, 10, 1537 6 of 21

Moreover, we propose to express the computation time not only as a function of the
criticality level (Li) but also as a function of the processing hardware element running the
task (PEq). Thus, task model (1) becomes:

τi =
{

Ti, Di, Li,
{

Ci,j,q
∣∣j ∈ 1 . . . l, q ∈ 1 . . . p

}
,
{

Ai,q
∣∣q ∈ 1 . . . p

}}
(3)

where Ci is a matrix of size p × l (p represents the number of PEs, and l is the number of
criticality levels).

The task affinity score can be set statically by the task creator or computed using an
algorithm based on the resources required by the task and the task computation time for
different processing elements. If a task cannot be scheduled on a particular PE, the WCET
value can be set to infinity, which translates to an affinity score of zero.

In the following analysis, we consider a dual criticality system. However, these
algorithms can also be extended to platforms with multiple criticality levels. In criticality-
aware heuristics, it makes more sense to use utilization in the high criticality (Hi) mode on
a certain processing element q during the assignment of Hi-criticality tasks and utilization
in the low criticality (Lo) mode during the assignment of Lo-criticality tasks. Following
this principle, the affinity score is set for Hi-criticality tasks using their Hi-criticality WCET
and for Lo-criticality tasks using their Lo-criticality WCET.

5. A Methodology for Mapping Tasks on Different Processing Elements

Having the previously defined MC-IoT task model and scheduling problem formalized
in Section 4, we propose a hardware-aware methodology for mapping tasks into our
proposed MC-IoT architecture. The methodology comprises different methods for setting
the newly introduced task parameter, namely the affinity score, and defining a suitable
mapping function to respect both application and resource constraints.

5.1. Setting Affinity Score

While the task parameters inherited from the classical MCS model are assigned
considering only the temporal behavior [25], the affinity score is computed by consid-
ering the particularities of the processing elements. This can be achieved using the
following methodology.

5.1.1. Set Affinity Score Based on Computation Time

The affinity score can be set based on the computation time using the algorithm
presented in Algorithm 1.

Algorithm 1: SetAffinity_WCET

Input: Ci, 2,q
Output: Ai, q
1 for i ∈ {1, 2, . . . , n} do
2 for q ∈ {1, 2, . . . , p} do
3 Xi, 2,q ← Ci,2,q
4 end for
5 end for
6 for i ∈ {1, 2, . . . , n}do
7 a← 1
8 for q ∈ {1, 2, . . . , p} do
9 index ← max

(
Xi, 2,q

)
10 Ai,index ← a
11 a← a + 1
12 Xi,2,index ← 0
13 end for
14 end for



Mathematics 2022, 10, 1537 7 of 21

Step 1: Extract the task computation time for the highest criticality level (2 in the case of a dual
criticality system) on each PE (the second column in the generated computation time matrix Ci,j,q)
by copying it into an array of structures Xi,2,q. Each structure has a computation time value Xi,2,q,
and a PE index (q), where i represents the task number, which is fixed, and 2 represents the highest
criticality level. Index q varies from one to p.

Step 2: Extract the matrix line index of the maximum value for Xi,2,q from the array when q varies
from one to p.

Step 3: In the affinity array, set the affinity score Ai,q to 1 for the PE corresponding to the highest
Xi,2,q value, and then 2 for the PE corresponding to the highest Xi,2,q from the array after setting the
element with the highest value from the first iteration Xi,2,q to 0, 3 for the remaining highest value,
and so on, while q ≤ p.

5.1.2. Set Affinity Score Based on Criticality Level

To distribute tasks on different processing elements considering the criticality level of
the task, we can employ carefully selected algorithms, such as those described in [42].

An alternative method for mapping the tasks that consider the affinity score is pro-
posed as Algorithm 2.

Algorithm 2: SetAffinity_criticality (p > l)

Input: Li, Ci, 2,q
Output: Ai, q
1 for i ∈ {1, 2, . . . , n} do
2 for q ∈ {1, 2, . . . , p} do
3 Xi,2,q ← Ci, 2,q
4 end for
5 end for
6 for q ∈ {1, 2, . . . , p} do
7 PEq, j ← mod(q, l)
8 if mod(q, l) = 0 then
9 PEq, j ← l
10 end if
11 end for
12 for i ∈ {1, 2, . . . , n} do
13 a← 0
14 for q ∈ {1, 2, . . . , p} do
15 {maxVal, index} ← max(Xi, 2,q

∣∣∣PEq, j ∼= Li)

16 if maxVal ∼= 0 then
17 a← a + 1
18 Ai, index ← a
19 Xi,2,index ← 0
20 end if
21 end for
22 end for
23 for i ∈ {1, 2, . . . , n} do
24 a2← p− a
25 forq ∈ {1, 2, . . . , p} do
26 {maxVal, index} ← max(Xi, 2,q

∣∣∣PEq,j = Li)

27 if maxVal ∼= 0 then
28 a2← a2 + 1
29 Ai, index ← a2
30 Xi, 2,index ← 0
31 end if
32 end for
33 end for



Mathematics 2022, 10, 1537 8 of 21

Step 1: Build an array of structures PEq,j. Each structure has a criticality level Lj that represents
the expected criticality level of the tasks to be partitioned on PEq and PE index (q). Index q varies
from 1 to p, whereas Lj is given by computing Lj = PEq mod l, where l is the number of criticality
levels and mod represents the modulo operation. If Lj is zero, we consider Lj = l.

Step 2: Assign each task τi according to criticality level Li. We have two subsets: PEs with expected
criticality PEq,j equal to Li, and PEs with expected criticality PEq,j not equal to Li. The affinity
scores Ai,q had the highest values for the first subset of PEs. For each subset of PEs, an affinity score
was assigned according to the computation time, as shown in Algorithm 1.

If the number of criticality levels exceeded the number of PEs, the affinity score was
set according to Algorithm 3.

Algorithm 3: SetAffinity_criticality (l>p)

Input: Li, Ci,2,q
Output: Ai, q
1 for i ∈ {1, 2, . . . , n} do
2 for q ∈ {1, 2, . . . , p} do
3 Xi, 2,q ← Ci,2,q
4 end for
5 end for
6 for i ∈ {1, 2, . . . , n} do
7 q← mod(Li, p)
8 if q = 0 then
9 q← p
10 end if
11 Ai,q ← p
12 Xi,l,q ← 0
13 end for
14 for i ∈ {1, 2, . . . , n} do
15 a← 0
16 for q ∈ {1, 2, . . . , p− 1} do
17 index ← max

(
Xi, l,q

)
18 a← a + 1
19 Ai, index ← a
20 Xi, l,index ← 0
21 end for
22 end for

Step 1: For each task τi, obtain the PE on which it is expected to run by computing PEq = Lj mod p,
where p is the number of PEs, and mod represents the modulo operation. If PEq is 0, we consider
PEq = p. Next, we set the affinity score Ai,q for PEq as p.

Step 2: For each task τi, set the remaining affinity scores Ai,q according to the computation time
(Algorithm 1), where q ranges from 1 to p-1.

5.2. Task Mapping

As highlighted in the literature [33], the partitioned scheduling approach can achieve
better schedulability results than the global scheduling approach. Thus, we also propose a
partitioned approach.

Given a set of independent MC tasks and processing elements, the problem involves
determining the following function:

M : τ → P (4)

where τ is the set of tasks in the system, P is the set of processing elements, and M is
a morphism.



Mathematics 2022, 10, 1537 9 of 21

Considering the working hypotheses presented above, tasks cannot migrate during
runtime; therefore, each task was assigned to a single PE. M (τi) represents the PE at which
τi runs. Figure 2 illustrates the assignment of tasks to PEs, where p is the total number of
PEs, and n is the number of tasks in the system.

Figure 2. Assignment of Tasks to Processing Elements.

After each task is assigned to a processing element, the tasks allocated to PEq form a
task subset defined as Ψq [27]. If task set τ is successfully partitioned, then

τ = Ψ1 ∪Ψ2 ∪Ψ3 ∪ . . . ∪Ψp (5)

where Ψq can also be an empty subset {Ø}.
The goal is to find a suitable M function to comply with the next request given the

following priority order:

(1) Suitable subsets of tasks Ψq are created, such that each subset is schedulable by the
local scheduling algorithm running on its assigned PEq.

(2) Respect task affinity score.
(3) Optimize resource usage.

Owing to its increased complexity, the mapping function should be implemented at
the intermediate (Fog) level.

5.2.1. Local Task Scheduling

According to Vestal [25], a task set is schedulable if the deadline of each task τi is
greater than or equal to its worst-case response time.

Ri ≤ Di (6)

where WCET is the maximum duration between completion and activation of each job of
task τi [43].

Ri = Ci + Ii (7)

where Ii is the inference from higher priority tasks.
The value of Ri is dependent on the scheduling algorithm and can be iteratively

computed as the least fixed point of (8), where hp(i) is a subset of tasks with a priority



Mathematics 2022, 10, 1537 10 of 21

higher than or equal to that of task τi but not containing τi, Ci is the worst-case execution
time, and Ti is the task period [25]:

Ri = ∑
τjεhp(i)

⌈
Ri
Tj

⌉
Cj (8)

Scheduling in mixed-critic systems is feasible if the following two conditions are
satisfied [44].

Condition 1. If all jobs run no more than their Ci,j values for the current Lj criticality mode,
then all jobs with a criticality level Li higher than or equal to Lj must be completed before
their deadline.

Condition 2. If at least one job exceeds its Ci,j execution time value for the current Lj
criticality mode, then the current criticality mode changes to the next criticality value (Lj+1),
for which Condition 1 must also be true.

Thus, Condition 1 must be satisfied for all the criticality modes available in the system.
For a k criticality mode (Lk) on the PEq processing element, Equation (8) becomes:

Ri,k,q = ∑
τjεhp(i)

⌈
Ri.k.q

Tj

⌉
Cj,k,q (9)

Checking Condition 1, for the Lk criticality mode, reduces to the verification of Condi-
tion (6), particularly for the Lk criticality mode on the PEq processing element:

Ri,k,q ≤ Di (10)

is true for all the tasks in the task set.
Moreover, for all deadlines to be satisfied, the processing units must not be overloaded

with the tasks. Thus, a necessary but sufficient condition bound on the load metric for any
processing unit is given by [44]:

For each q = 1 . . . p:
ULjΨq ≤ 1, j = 1 . . . l (11)

For periodical/sporadic tasks, the total processor utilization in execution mode Lj is:

ULjΨq =
k≤l

∑
τiεhc(Lj), k=j

Ci,k,q

Ti
(12)

where hc(Lj) is a subset of tasks from Ψq with criticality higher than or equal to Lj and l
is the number of criticality levels. Lk = j . . . l represents the criticality levels higher than or
equal to Lj, and Ci,k,q represents the WCET of task i, which runs in criticality mode k on the
processing element PEq.

Moreover, many local task-scheduling algorithms have sufficient conditions. For
example, a sufficient condition for a local task scheduling algorithm called EDF-VD when
the system has two criticality levels has been proven to be [27].

max
(

UL1Ψq , UL2Ψq

)
≤ 3

4
(13)

5.2.2. Affinity Score Deviation Function

The task affinity score can be set statically by the task creator or computed using an
algorithm similar to that proposed in Section 5.1, based on the resources needed by the task
and the task computation time for different processing elements. The mapping function
should also consider the affinity score for each task, provided that the local feasibility



Mathematics 2022, 10, 1537 11 of 21

conditions are not violated. To evaluate this, we propose a function representing the total
affinity-score deviation Adτ for a particular mapping as follows:

Adτ =
n

∑
i=1

(
p−Ai,q

)
(14)

where q is the index of subset Ψ containing task i and p is the number of PEs (p is also equal
to the highest affinity score value).

Our goal is to minimize Adt with respect to the feasibility conditions imposed by the
local scheduler (Condition 1).

5.2.3. Proposed Mapping Function—Best Affinity First

Based on the methods used to set the affinity score introduced in the first paragraphs
of this section, we developed a mapping algorithm (see Algorithm 4) that considers the
affinity value when partitioning tasks to PEs, namely Best Affinity Fit (BAF). This algorithm
is evaluated later in the experimental section.

Algorithm 4: Best Affinity Fit (BAF)

Input: τi
Output: Ψq, ULjΨq

1 for i ∈ {1, 2, . . . , n} do
2 assign← 1

3 {maxVal, index} ← max
(

Ai,q

)
4 while ULjΨindex + Ci,j,index/Ti > 1 do
5 Ai,index ← 0

6 {maxVal, index} ← max
(

Ai, q

)
7 if maxVal = 0 then
8 assign← 0
9 end if
10 end while
11 if assign← 1 then
12 add(Ψindex, τi)
13 ULjΨindex ← ULjΨindex + Ci,j,q/Ti
14 end if
15 end for

For each task τi:

Step 1: First, we assume that the task can be assigned to PE. Therefore, we set the variable assigned
to 1. We find the PE with the highest affinity score for task i, which has enough space to accept task
τi (PE utilization must respect Equation (14)).

Step 2: If a certain PEindex does not have sufficient space for task i, the affinity score Ai,index to 0. If
there are no PEs that can host task i, then the set is assigned to 0.

Step 3: If we have found a PEindex which can accept task τi, then add task i to subset Ψindex and
update the PE utilization.

6. Examples and Comparative Evaluation

We conducted a series of simulation experiments to evaluate the effectiveness of
our mapping technique: the Best Affinity Fit. It has been compared against two other
relevant mapping methods, Best Fit Decreasing Utilization (BFDU) and Best Fit Decreasing
Criticality (BFDC), which are some of the most frequently used algorithms [45]. BAF
dispatches tasks to processors according to the Affinity value, while BFDU and BFDC tasks
are first ordered by decreasing utilization for BFDU or by decreasing criticality for BFDC
and then assigned to each processor. The processors are also ordered by their decreasing



Mathematics 2022, 10, 1537 12 of 21

utilization. Two affinity assignment strategies were also evaluated: one allocates values
according to the WCET, whereas the other depends on the criticality level.

6.1. Random Task Set Generation

All tasks were randomly generated in Matlab (R2018b) using the task set generation
algorithm introduced in [46], which is a slight modification of the workload generation
algorithm proposed by Guan et al. [47]. We consider a dual-criticality system {Lo, Hi}. Each
new task, τi, was generated as follows:

Task criticality level: Li = Hi with probability PHi; otherwise, Li = Lo.
Task period: Ti is a randomly generated value drawn from a uniform distribution [10, 100].
Task deadline: Di = Ti, because of the implicit deadline constraint.
The utilization of each task Ui,j,q is a matrix p×l, where p is the number of PEs in the

system and l represents the number of criticality levels. To generate the utilization values,
we considered five input parameters [46].

Ubound:
max(ULo(τ), UHi(τ)) = Ubound (15)

ULo(τ) =
q<p

∑
τi∈π,q=0

Ui, Lo,q (16)

UHi(τ) =
q<p

∑
τi∈Hi(π),q=0

Ui, Hi,q (17)

where π is the task set, and Hi(π) is a subset of π that contains only Hi criticality tasks.

• [Ul, UU] Utilizations are generated uniformly from this range, with:
0 ≤ UL ≤ UU ≤ 1
[Zl, ZU]: Ratio between the Hi-criticality utilization of a task and its Lo-criticality
utilization with
0 ≤ ZL ≤ ZU .

• WCET for criticality level Lo:
Ci,Lo,q = Ui,Lo,q·Ti.

• WCET for criticality level Hi:
Ci,Hi,q = Ui,Hi,q·Ti i f Li = Hi. Otherwise, Ci, Hi,q = Ci, Lo,q.

• The affinity values were assigned using one of the two methods described in the
previous section.

6.2. Best Affinity First Performance Evaluation Results

The parameters used to generate the task sets are provided in graph captions. For
each plot, one parameter was varied, whereas the others were fixed. The utilization of
each processor must satisfy the necessary condition bound on the load metric for any
m-processing unit system (9). Each data point is determined by randomly generating
100 task sets.

6.2.1. Proposed MC Task Model vs. Classical MC Task Model

The main differences between our proposed model and the classical MC task model are
as follows: a new parameter called affinity is introduced, and the computation time, in the
form of worst-case execution time, becomes a bi-dimensional array (with one dimension
being the criticality level and one the processing element). Table 1 briefly illustrates
the differences.



Mathematics 2022, 10, 1537 13 of 21

Table 1. Parameter Comparison Between the Proposed MC Task Model and the Classical MC
Task Model.

Parameters Proposed MC Task Model Classical MC Task Model

Period Ti Ti

Deadline Di Di

Criticality level Li Li

WCET
{

Ci,j,q

∣∣∣ j ∈ 1 . . . l, q ∈ 1 . . . p
} {

Ci,j

∣∣∣ j ∈ 1 . . . l
}

Affinity
{

Ai,q

∣∣∣q ∈ 1 . . . p
}

-

Next, we consider an example of an application model using both the proposed and
classical models. We also consider a sensor node modeled as a dual-criticality system
with three processing elements. The sensor node runs the aforementioned IoT sensing
application and consists of four tasks. The affinity score for each task is computed in Table 2
according to the two algorithms presented previously: Algorithms 1 and 2 (because the
number of PEs exceeds the number of criticality levels).

Table 2. Task Model Example 1.

Task Functionality

Proposed MC Task Model Classical MC Task Model

Ti Di Li Ci,j,q
Ai,q

Ti Di Li Ci,j,q Ti
Algorithm 1 Algorithm 2

M1 sensing 8 8 Lo
2 2
1 1
4 4

2 3 1 3 1 2 8 8 Lo 4 4

M2 sensing 17 17 Hi
4 7
6 8
3 5

2 1 3 1 3 2 17 17 Hi 6 8

M3 log 24 24 Lo
5 5
8 8
7 7

3 1 2 3 1 2 24 24 Lo 8 8

M4 communication 42 42 Hi
5 10
8 12

13 17
3 2 1 2 3 1 42 42 Hi 13 17

The tasks are mapped on processing elements using the following methods: on the
one hand, BAF (by computing the affinity score according to Algorithm 1), and BFDU
and BFDC using the classical MC task model, considering the worst-case execution time
vector (the line with the highest values from the Ci,j,q matrix). The task-mapping results are
presented in Table 3.

Table 3. Task Mapping Example 1.

BAF (using Algorithm 1)
{M3, M4} ∈ Ψ1
{M1} ∈ Ψ2
{M2} ∈ Ψ3

BFDU {M1, M2} ∈ Ψ1
{M3, M4} ∈ Ψ2

BAF (using Algorithm 2) {M1, M3} ∈ Ψ1
{M2, M4} ∈ Ψ2

BFDC {M2, M4} ∈ Ψ1
{M1, M3} ∈ Ψ2

For a system with four criticality levels, {Lo, M1, M2, Hi}, and three processing elements,
the affinity score is computed in Table 4 according to Algorithms 1 and 3 (because the
number of PEs is lower than the number of criticality levels).



Mathematics 2022, 10, 1537 14 of 21

Table 4. Task Model Example 2.

Task Functionality

Proposed MC Task Model Classical MC Task Model

Ti Di Li Ci,j,q
Ai,q

Ti Di Li Ci,j,q Ti Di Li
Algorithm 1 Algorithm 3

M1 sensing 15 15 Lo
2 2 2 2
1 1 1 1
5 5 5 5

2 3 1 3 2 1 15 15 Lo 5 5 5 5

M2 sensing 20 20 M1

4 5 5 5
3 6 6 6
6 9 9 9

3 2 1 2 3 1 20 20 M1 6 9 9 9

M3 sensing 30 30 Hi
5 7 9 12
8 10 13 15
4 8 11 14

3 1 2 2 1 3 30 30 Hi 8 10 13 15

M4 sensing 40 40 M2

8 14 17 17
9 10 13 13
11 14 16 16

1 3 2 3 2 1 40 40 M2 11 14 16 16

The tasks were mapped using the same partitioning heuristics as those listed in Table 3.
The mapping results are presented in Table 5.

Table 5. Task Mapping Example 2.

BAF (using Algorithm 1) {M2, M3} ∈ Ψ1
{M1, M4 } ∈ Ψ2

BFDU {M1, M2, M3} ∈ Ψ1
{M4 } ∈ Ψ2

BAF (using Algorithm 3)
{M1, M4} ∈ Ψ1
{M2} ∈ Ψ2
{M3} ∈ Ψ3

BFDC { M2, M3, M4} ∈ Ψ1
{M1} ∈ Ψ2

In conclusion, by considering a matrix of computation times instead of a vector, we
can model the computation time not only as a function of the criticality level but also by
considering the influence of the hardware particularities of the processing elements on
the task computation time. Moreover, the introduction of a new parameter called affinity
offers a certain degree of versatility to the task model because this parameter can be com-
puted according to any optimization function. Our proposed model offers better resource
management by achieving lower total utilization, as discussed in the following paragraphs.

6.2.2. BAF vs. BFDU

In the following paragraphs, we compare the results of different mapping functions
in terms of total utilization. To reduce the gap between the two MC task models for all
mapping functions, the computation time was considered as a matrix, as in our proposed
model. The only difference between the task models used for BAF and BFDU is that BAF
also uses the affinity parameter, whereas BFDU and BFDC do not. For the BAF, affinity
values were assigned according to the WCET in the Hi mode for Hi-criticality tasks and the
WCET in the Lo mode for Lo-criticality tasks.

In Figure 3a, the task set utilization bound (x-axis) ranges from 0.4 to 1.0 times the
number of processors in steps of 0.1; in step 3.b, the number of processors (x-axis) ranges
from 2 to 12 in steps of 2. In Figure 3c, the number of tasks (x-axis) ranges from 10 to 24 in
steps 2 and 3.d the percentage of Hi-criticality tasks (x-axis) was varied, ranging from 0.2 to
0.6 in steps of 0.1. The average total utilization is depicted on the y-axis.



Mathematics 2022, 10, 1537 15 of 21

Figure 3. Average total processor utilization by varying: (a). the utilization bound, (b). the number
of processors, (c). the number of tasks, (d). the percent of Hi-criticality tasks. UL = 0.05, UU = 0.75,
ZL = 1, ZU = 8.

From the simulation results presented in Figure 3, we obtain the following results: by
varying the number of processors, BAF shows better results with an average value of 1.64,
meaning almost 60%, and by varying the number of tasks, there is a reduction in the total
utilization when using BAF compared to BFDU with 1.29, meaning about 40%.

6.2.3. BAF vs. BFDC

In this case, affinity values were assigned according to the criticality level of each task.
Four experiments were conducted (Figure 4) similar to the first set. Each data point is
determined by randomly generating 100 task sets. The average affinity deviations for the
task sets used for Figure 4a are depicted in Figure 5 based on Equation (14).

In Figure 4, by varying the number of processors, BAF has better results with an
average value of 1.2, meaning about 43%, and by varying the number of tasks, there is a
reduction in the total utilization when using BAF compared to BFDC with 0.51, meaning
about 15%.

In conclusion, the average total utilization functions for BFDU and BFDC have a
similar growth tendency compared to BAF, which is reaching better results with almost a
constant factor (between 0.5-1 for BFDU and between 0.2-0.7 for BFDC). The case where the
BAF function growth is significantly better is when the number of processors/ processing
units is increased.



Mathematics 2022, 10, 1537 16 of 21

Figure 4. Average total processor utilization by varying: (a). the utilization bound, (b). the number
of processors, (c). the number of tasks, (d). the percentage of Hi-criticality tasks. UL = 0.05, UU = 0.75,
ZL = 1, ZU = 8.

Figure 5. Average affinity deviation by varying the utilization bound. UL = 0.05, UU = 0.75, ZL = 1,
ZU = 8.



Mathematics 2022, 10, 1537 17 of 21

7. Conclusions and Future Perspectives

With the continuous improvement in IoT technology and increasingly complex ap-
plications, some of them with strict timing constraints are envisioned to be developed.
Under these circumstances, the implementation of new and effective RT-IoT architectures
may offer much-required technological support. From our perspective, combining the
underlying mechanisms of mixed-criticality systems with the Internet of Things offers a
huge opportunity for the research and development of complex distributed applications.

In this study, we mathematically formalized the MC-IoT concept. We also propose an
effective methodology for scheduling mixed-criticality applications on IoT nodes. A novel
hardware-aware extension of the classical MCS task model was proposed to support this
methodology, along with a new task mapping function: Best Affinity First.

The performance evaluations prove that BAF has significantly better results than the
existing BFDU and BFDC task-mapping techniques in terms of total task utilization. The
difference in performance increases with the number of processing elements. These results
are underlying the suitability of the proposed partitioning algorithm to the IoT scenario
where more numerous processing elements are used compared to the classic MCSs.

Moreover, a hardware-aware scheduling approach increases the potential for the
development of the distributed heterogeneous systems running real-time mixed-criticality
applications such as 6G networks and their applications.

The proposed model can be further extended in order to include other aspects besides
the hardware affinity. Depending on the other resources in the system that need to be more
efficiently used, other functions for setting the affinity score can also be developed.

Author Contributions: Conceptualization, C.S.S., E.A.C., M.V.M. and D.I.C.; methodology, C.S.S.,
E.A.C. and V.S.; software, E.A.C.; validation, C.S.S., E.A.C. and V.S.; formal analysis, C.S.S., E.A.C.,
M.V.M. and D.I.C.; investigation, C.S.S. and E.A.C.; resources, M.V.M. and D.I.C.; writing—original
draft preparation, C.S.S. and E.A.C.; writing—review and editing, M.V.M. and D.I.C.; visualization,
C.S.S., E.A.C., M.V.M., V.S. and D.I.C.; supervision, M.V.M. and D.I.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Model
Class

Task Model Authors Year
Number of
Parameters

Main Task Parameters
Criticality

Levels

RTS Periodic Liu & Layland 1973 2
C—computation time,

T—period
-

RTS DAG Baruah 1998 2
e—execution requirement,

d—deadline
-

RTS Sporadic Mok 1983 3
c—computation time,
p—period, d-deadline

-

RTS Periodic
Hamdaoui &
Ramanathan

1995 4

c—computation time,
d—deadline, m—tolerable
deadline misses from total

k deadlines

-

RTS DAG Stigge et al. 2011 3
e—execution requirement,

d—deadline, r—release time
-



Mathematics 2022, 10, 1537 18 of 21

Model
Class

Task Model Authors Year
Number of
Parameters

Main Task Parameters
Criticality

Levels

MCS Generic Vestal 2007 4

C—computation time
(function of L), T—period,
D—deadline, L—criticality

level

4

MCS
Periodic/
Sporadic

Lee & Shin 2017 5

C—computation time
(function of L), T—period,
D—deadline, L—criticality

level, m—tolerable
deadline misses

n

MCS DAG Huang et al. 2013 4

C—computation time
(function of L), T—period,
D—deadline, L—criticality

level

n

MCS DAG Ekberg & Yi 2016 3
e—execution requirement,
d—deadline, m—mode of
the corresponding job type

4

MCS
Periodic/
Sporadic

Su and Zhu 2013 6

C—computation time
(function of L), T—period,
D—deadline, L—criticality
level, p_max—maximum

period, P_er—early
release points

2

MCS
Periodic/
Sporadic

Burns 2015 4

C—computation time
(function of L), T—period,
D—deadline, L—criticality

level

2

MCS
Periodic/
Sporadic

Burns & Baruah 2013 4

C—computation time
(function of L), T—period,
D—deadline, L—criticality

level

2

MCS
Periodic/
Sporadic

Li and He 2017 6

L—criticality level,
E—execution time (function

of L), M—memory access
time (function of L),

C—computation time
(function of L), T—period,

D—deadline

2

MCS
Periodic/
Sporadic

Baruah &
Chattopadhyay

2013 4

C—computation time
(function of L), T—period

(function of L), D—deadline,
L—criticality level

2

MCS Distributed Wang et al. 2021 5

C—computation time
(function of L), T—period,
D—deadline, L—criticality

level, V—value of task
(function of L)

2

For uniformity reasons, the criticality level is represented by L, even if in the original
articles there might be other symbols used for it.



Mathematics 2022, 10, 1537 19 of 21

Appendix B

Abbreviation Description

RT-IoT Real-Time Internet of Things

MC-IoT Mixed Criticality Internet of Things

MCS Mixed Criticality System

E-MC Elastic Mixed Criticality

MS-DTR Mode-Switching Diagraph Real-Time

ICG Interference Constraint Graph

WCET Worst Case Execution Time

PE Processing Element

BAF Best Affinity Fit

BFDU Best Fit Decreasing Utilization

BFDC Best Fit Decreasing Criticality

Symbol Description

τi Task i

Ti Period of task i

Di Deadline of task i

Li Criticality of task i

Ci,j
Computation time in terms of WCET of task i for

criticality level j

Ji.k Job k of task i

ai,k Arrival time of job k of task i

ci.k Computation time of job k of task i

Ci,j,q
Computation time in terms of WCET of task i for

criticality level j on processing element q

Ai,q Affinity of task i for processing element q

M Mapping function

Ψq Subset of tasks running on processing element q

Ri Response time of task i

Ii Inference or higher priority tasks for task i

Ri,k,q Response time of job k, of task i on processing element q

ULjΨq

Processor utilization of the Ψq subset of tasks of level Lj
on processing element q

Ui, Lo,q
Processor utilization of task i for criticality level Lo on

processor q

Ui, Hi,q
Processor utilization of task i for criticality level Hi on

processor q

Ui,j,q
Processor utilization of task i for criticality level j on

processor q

Adτ Total affinity score deviation

Ubound Processor utilization bound



Mathematics 2022, 10, 1537 20 of 21

References
1. Velasquez, K.; Abreu, D.P.; Assis, M.R.M.; Senna, C.; Aranha, D.F.; Bittencourt, L.F.; Laranjeiro, N.; Curado, M.; Vieira, M.;

Monteiro, E.; et al. Fog orchestration for the Internet of Everything: State-of-the-art and research challenges. J. Internet Serv. Appl.
2018, 9, 14. [CrossRef]

2. Viel, F.; Silva, L.A.; Leithardt, V.R.Q.; Santana, J.F.D.P.; Teive, R.C.G.; Zeferino, C.A. An Efficient Interface for the Integration of
IoT Devices with Smart Grids. Sensors 2020, 20, 2849. [CrossRef] [PubMed]

3. Chen, C.Y.; Hasan, M.; Mohan, S. Securing real-time internet-of-things. Sensors 2018, 18, 4356. [CrossRef] [PubMed]
4. Tămaş–Selicean, D.; Pop, P.; Steiner, W. Design optimization of TTEthernet-based distributed real-time systems. Real-Time Syst.

2015, 51, 1–35. [CrossRef]
5. Calvaresi, D.; Marinoni, M.; Sturm, A.; Schumacher, M.; Buttazzo, G. The challenge of real-time multi-agent systems for enabling

IoT and CPS. In Proceedings of the International Conference on Web Intelligence, Leipzig, Germany, 23–26 August 2017; ACM:
New York, NY, USA; pp. 356–364.

6. Carpenter, T.; Hatcliff, J.; Vasserman, E.Y. A reference separation architecture for mixed-criticality medical and IoT devices. In
Proceedings of the 1st ACM Workshop on the Internet of Safe Things, Delft, The Netherlands, 5 November 2017; ACM: New York,
NY, USA; pp. 14–19.

7. Moratelli, C.; Johann, S.; Neves, M.; Hessel, F. Embedded virtualization for the design of secure IoT applications. In Proceedings
of the 27th International Symposium on Rapid System Prototyping: Shortening the Path from Specification to Prototype,
6–7 October 2016; ACM: New York, NY, USA; pp. 2–6.

8. Yang, Y.; Wang, K.; Zhang, G.; Chen, X.; Luo, X.; Zhou, M.T. MEETS: Maximal energy-efficient task scheduling in homogeneous
fog networks. IEEE Internet Things J. 2018, 5, 4076–4087. [CrossRef]

9. Kamienski, C.; Jentsch, M.; Eisenhauer, M.; Kiljander, J.; Ferrera, E.; Rosengren, P.; Thestrup, J.; Souto, E.; Andrade, W.S.; Sadok, D.
Application development for the Internet of Things: A context-aware mixed-criticality systems development platform. Comput.
Commun. 2017, 104, 1–16. [CrossRef]

10. Yao, S.; Hao, Y.; Zhao, Y.; Shao, H.; Liu, D.; Liu, S.; Wang, T.; Li, J.; Abdelzaher, T. Scheduling real-time deep learning services as
imprecise computations. In Proceedings of the 2020 IEEE 26th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), Gangnueng, Korea, 19–21 August 2020; pp. 1–10.

11. Jin, H.; Su, L.; Xiao, H.; Nahrstedt, K. Incentive mechanism for privacy-aware data aggregation in mobile crowd sensing systems.
IEEE/ACM Trans. Netw. 2018, 26, 2019–2032. [CrossRef]

12. Zuo, P.; Hua, Y.; Liu, X.; Feng, D.; Xia, W.; Cao, S.; Wu, J.; Sun, Y.; Guo, Y. BEES: Bandwidth-and energy-efficient image sharing for
real-time situation awareness. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 1510–1520.

13. Steinbaeck, J.; Tengg, A.; Holweg, G.; Druml, N. A 3D time-of-flight mixed-criticality system for environment perception. In
Proceedings of the 2017 Euromicro Conference on Digital System Design (DSD), Vienna, Austria, 30 August–1 September 2017;
pp. 368–374.

14. Dimopoulos, A.C.; Bravos, G.; Dimitrakopoulos, G.; Nikolaidou, M.; Nikolopoulos, V.; Anagnostopoulos, D. A multi-core
context-aware management architecture for mixed-criticality smart building applications. In Proceedings of the 2016 11th System
of Systems Engineering Conference (SoSE), Kongsberg, Norway, 12–16 June 2016; pp. 1–6.

15. Bravos, G.; Dimitrakopoulos, G.; Anagnostopoulos, D.; Nikolaidou, M.; Kotronis, C.; Politi, E.; Amira, A.; Bensaali, F. Embedded
Intelligence in IoT-Based Mixed-Criticality Connected Healthcare Applications: Requirements, Research Achievements and
Challenges. Preprints 2018, 2018100216. [CrossRef]

16. Capota, E.A.; Stangaciu, C.S.; Micea, M.V.; Curiac, D.I. Towards Mixed Criticality Task Scheduling in Cyber Physical Systems:
Challenges and Perspectives. J. Syst. Softw. 2019, 156, 204–216. [CrossRef]

17. Gaur, P.; Tahiliani, M.P. Operating systems for IoT devices: A critical survey. In Proceedings of the 2015 IEEE Region
10 Symposium, Ahmedabad, India, 13–15 May 2015; pp. 33–36.

18. Kim, J.E.; Abdelzaher, T.; Sha, L.; Bar-Noy, A.; Hobbs, R.; Dron, W. On maximizing quality of information for the internet of
things: A real-time scheduling perspective. In Proceedings of the 2016 IEEE 22nd International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), Daegu, Korea, 17–19 August 2016; pp. 202–211.

19. Zhang, T.; Gong, T.; Gu, C.; Ji, H.; Han, S.; Deng, Q.; Hu, X.S. Distributed dynamic packet scheduling for handling disturbances in
real-time wireless networks. In Proceedings of the 2017 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), Pittsburgh, PA, USA, 18–21 April 2017; pp. 261–272.

20. Sukumaran Nair, A.; Colaco, L.M.; Raveendran, B.; Punnekkat, S. TaskMUSTER: A comprehensive analysis of task parameters for
mixed criticality automotive systems. Sādhanā 2022, 47, 1–23. [CrossRef]

21. Buttazzo, G.C. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications; Springer Science & Business
Media: Berlin/Heidelberg, Germany, 2011; Volume 24.

22. Capota, E.A.; Stangaciu, C.S.; Micea, M.V.; Curiac, D.I. Towards Fully Jitterless Applications: Periodic Scheduling in Multiproces-
sor MCSs Using a Table-Driven Approach. Appl. Sci. 2020, 10, 6702. [CrossRef]

23. Jeffay, K.; Stanat, D.F.; Martel, C.U. On non-preemptive scheduling of periodic and sporadic tasks. In Proceedings of the Twelfth
Real-Time Systems Symposium, San Antonio, TX, USA, 4–6 December 1991; pp. 129–139.

http://doi.org/10.1186/s13174-018-0086-3
http://doi.org/10.3390/s20102849
http://www.ncbi.nlm.nih.gov/pubmed/32429513
http://doi.org/10.3390/s18124356
http://www.ncbi.nlm.nih.gov/pubmed/30544673
http://doi.org/10.1007/s11241-014-9214-8
http://doi.org/10.1109/JIOT.2018.2846644
http://doi.org/10.1016/j.comcom.2016.09.014
http://doi.org/10.1109/TNET.2018.2840098
http://doi.org/10.20944/preprints201810.0216.v1
http://doi.org/10.1016/j.jss.2019.06.099
http://doi.org/10.1007/s12046-021-01778-y
http://doi.org/10.3390/app10196702


Mathematics 2022, 10, 1537 21 of 21

24. Mok, A.K.L. Fundamental Design Problems of Distributed Systems for the Hard-Real-Time Environment. Diploma Thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1983.

25. Vestal, S. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance. In Proceedings of
the 28th IEEE International Real-Time Systems Symposium (RTSS 2007), Tucson, AZ, USA, 3–6 December 2007; pp. 239–243.

26. Baruah, S.; Li, H.; Stougie, L. Towards the design of certifiable mixed-criticality systems. In Proceedings of the 2010 16th IEEE
Real-Time and Embedded Technology and Applications Symposium, Stockholm, Sweden, 12–15 April 2010; pp. 13–22.

27. Zeng, L.; Xu, C.; Li, R. Partition and Scheduling of the Mixed-Criticality Tasks Based on Probability. IEEE Access 2019, 7,
87837–87848. [CrossRef]

28. Burns, A. An augmented model for mixed criticality. In Mixed Criticality on Multicore/Manycore Platforms (Dagstuhl Seminar 15121);
Baruah, S.K., Cucu-Grosjean, L., Davis, R.I., Maiza, C., Eds.; Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Dagstuhl,
Germany, 2015; Volume 5.

29. Baruah, S.; Guo, Z. Mixed-criticality job models: A comparison. In Proceedings of the Workshop on Mixed-Criticality Systems
(WMC’15), San Antonio, TX, USA, 1 December 2015.

30. Burns, A.; Baruah, S. Towards a more practical model for mixed criticality systems. In Proceedings of the Workshop on
Mixed-Criticality Systems (Colocated with RTSS), Berlin, Germany, 1–4 December 2020.

31. Baruah, S.; Chattopadhyay, B. Response-time analysis of mixed criticality systems with pessimistic frequency specification. In
Proceedings of the 2013 IEEE 19th International Conference on Embedded and Real-Time Computing Systems and Applications,
Taipei, Taiwan, 19–21 August 2013; pp. 237–246.

32. Li, Z.; He, S. Fixed-priority scheduling for two-phase mixed-criticality systems. ACM Trans. Embed. Comput. Syst. 2017, 17, 1–20.
[CrossRef]

33. Wang, W.; Mao, C.; Zhao, S.; Cao, Y.; Yi, Y.; Chen, S.; Liu, Q. A smart semipartitioned real-time scheduling strategy for
mixed-criticality systems in 6G-based edge computing. Wirel. Commun. Mob. Comput. 2021, 2021, 1–11. [CrossRef]

34. Su, H.; Zhu, D. An elastic mixed-criticality task model and its scheduling algorithm. In Proceedings of the Conference on Design,
Automation and Test in Europe, Grenoble, France, 18–22 March 2013; pp. 147–152.

35. Lee, J.; Shin, K.G. Development and use of a new task model for cyber-physical systems: A real-time scheduling perspective. J.
Syst. Softw. 2017, 126, 45–56. [CrossRef]

36. Hamdaoui, M.; Ramanathan, P. A dynamic priority assignment technique for streams with (m, k)-firm deadlines. IEEE Trans.
Comput. 1995, 44, 1443–1451. [CrossRef]

37. Baruah, S.K. A general model for recurring real-time tasks. In Proceedings of the 19th IEEE Real-Time Systems Symposium (Cat.
No. 98CB36279), Madrid, Spain, 4 December 1998; pp. 114–122.

38. Stigge, M.; Ekberg, P.; Guan, N.; Yi, W. The digraph real-time task model. In Proceedings of the 2011 17th IEEE Real-Time and
Embedded Technology and Applications Symposium, Chicago, IL, USA, 11–14 April 2011; pp. 71–80.

39. Ekberg, P.; Yi, W. Schedulability analysis of a graph-based task model for mixed-criticality systems. Real-Time Syst. 2016, 52, 1–37.
[CrossRef]

40. Huang, P.; Kumar, P.; Stoimenov, N.; Thiele, L. Interference Constraint Graph—A new specification for mixed-criticality systems.
In Proceedings of the 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), Cagliari, Italy,
10–13 September 2013; pp. 1–8.

41. Alimi, I.A.; Patel, R.K.; Zaouga, A.; Muga, N.J.; Xin, Q.; Pinto, A.N.; Monteiro, P.P. Trends in Cloud Computing Paradigms: Funda-
mental Issues, Recent Advances, and Research Directions toward 6G Fog Networks. In Moving Broadband Mobile Communications
Forward: Intelligent Technologies for 5G and Beyond; IntechOpen: London, UK, 2021; p. 3.

42. Kelly, O.R.; Aydin, H.; Zhao, B. On partitioned scheduling of fixed-priority mixed-criticality task sets. In Proceedings of the
2011 IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications, Changsha, China,
16–18 November 2011; pp. 1051–1059.

43. Santy, F.; George, L.; Thierry, P.; Goossens, J. Relaxing mixed-criticality scheduling strictness for task sets scheduled with fp. In
Proceedings of the 2012 24th Euromicro Conference on Real-Time Systems, Pisa, Italy, 11–13 July 2012; pp. 155–165.

44. Socci, D. Scheduling of Certifiable Mixed-Criticality Systems. Diploma Thesis, L’ Ecole Doctorale Mathematiques, Sciences et
Technologies de l’Information, Informatique Universite de Grenoble Alpes, Grenoble, France, 2016.

45. Lupu, I.; Courbin, P.; George, L.; Goossens, J. Multi-criteria evaluation of partitioning schemes for real-time systems. In
Proceedings of the 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010), Bilbao, Spain,
13–16 September 2010; pp. 1–8.

46. Li, H.; Baruah, S. Outstanding paper award: Global mixed-criticality scheduling on multiprocessors. In Proceedings of the 2012
24th Euromicro Conference on Real-Time Systems, Pisa, Italy, 11–13 July 2012; pp. 166–175.

47. Guan, N.; Ekberg, P.; Stigge, M.; Yi, W. Improving the Scheduling of Certifiable Mixed-Criticality Sporadic Task Systems; Technical
Report 2013-008; Uppsala University: Uppsala, Sweden, 2013; pp. 1–12.

http://doi.org/10.1109/ACCESS.2019.2926299
http://doi.org/10.1145/3105921
http://doi.org/10.1155/2021/6663199
http://doi.org/10.1016/j.jss.2017.01.004
http://doi.org/10.1109/12.477249
http://doi.org/10.1007/s11241-015-9225-0

	Introduction 
	Related Work 
	Application Execution Model and Scheduling Problem Formulation 
	The Proposed MC-IoT Task Model 
	A Methodology for Mapping Tasks on Different Processing Elements 
	Setting Affinity Score 
	Set Affinity Score Based on Computation Time 
	Set Affinity Score Based on Criticality Level 

	Task Mapping 
	Local Task Scheduling 
	Affinity Score Deviation Function 
	Proposed Mapping Function—Best Affinity First 


	Examples and Comparative Evaluation 
	Random Task Set Generation 
	Best Affinity First Performance Evaluation Results 
	Proposed MC Task Model vs. Classical MC Task Model 
	BAF vs. BFDU 
	BAF vs. BFDC 


	Conclusions and Future Perspectives 
	Appendix A
	Appendix B
	References

