
Internet of Things 25 (2024) 101139

2
(

R

P
s
V
a

B
b

A

K
R
P
S
P

1

a
f
p
(
t

p
a
c
t
s
c
a

t
s

h
R

Contents lists available at ScienceDirect

Internet of Things

journal homepage: www.elsevier.com/locate/iot

esearch article

ARSECS_RT: A real-time PARSECS-based communication protocol
tack for critical sensing applications
alentin Stangaciu a,∗, Cristina Stangaciu a, Daniel-Ioan Curiac b, Mihai V. Micea a

Department of Computer and Information Technology, Politehnica University Timisoara, 2, Vasile Parvan
lvd, Timisoara, 300006, Timis, Romania
Automation and Applied Informatics, Politehnica University Timisoara, 2, Vasile Parvan Blvd, Timisoara, 300006, Timis, Romania

R T I C L E I N F O

eywords:
eal-time communication
rotocol stack
PI bus
ARSECS protocol

A B S T R A C T

The real-time characteristics of modular systems have been a long sought-after goal in many
industries including automotive, aeronautics or mobile robotics. Yet scientists and practitioners
are still struggling to find widespread implementation solutions that may accommodate diverse
inter-modular real-time communication requirements. In an attempt to cover this research gap,
the current paper proposes a real-time version of the PARSECS protocol for low-end devices. Our
new protocol, coined as PARSECS_RT, was designed according to Open Systems Interconnection
Reference Model. It offers a full communication stack from the physical layer to the application
layer on top of the SPI interface in order to provide a stable, hard real-time communication
platform. PARSECS_RT was evaluated in real and simulated environments providing promising
results.

. Introduction

Real-Time systems are ubiquitous nowadays in several areas of everyday life, especially in critical domains like process
utomation, avionics or automotive. In the last decade, even if the attention of the researchers in the field has been primarily
ocusing on transferring the real-time principles to new technologies, including Internet of Things (IoT) and Edge Computing, the
roblems encountered on end devices still remain unsolved. However, relatively new concepts as Real-Time Function-as-a-Service
RT-FaaS) [1] or Tactile Internet [2] are advancing the field of IoT by proposing real-time functionalities at superior levels, while
aking the real-time functionality of the edge level for granted.

In this context, the complexity of the end devices, especially in the case of highly modular systems with multiple control and
rocessing units [3], has increased tremendously in recent years. This trend is driven by the fact that, on one hand, these devices
re constrained in terms of resources, performance, energy consumption and costs, and, on the other hand, being situated on the
yber–physical layer, they have more and more complex components for environment sensing, control and data processing. In
hese circumstances, assuring real-time characteristics for end devices becomes even more challenging. For example, in complex IoT
ystems, in order to comply with real-time requirements in a deterministic manner, one needs to provide real-time functionalities
onsidering a bottom-up approach, that starts with the lowest level of the network, namely the end devices placed on the edge level
nd going up through different levels of IoT network (e.g., fog, cloud).

Thus, in order for a node of the network to respect time constraints all the components of the node need to function in a
imely manner. A classical solution for providing real-time behavior at the node level is given by real-time operating systems
uch as FreeRTOS, RIOT [4] or HARETICK [5]. Nevertheless, the communication between its components also needs to respect

∗ Corresponding author.
E-mail address: valentin.stangaciu@cs.upt.ro (V. Stangaciu).
542-6605/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.iot.2024.101139
eceived 3 November 2023; Received in revised form 31 January 2024; Accepted 21 February 2024

https://www.elsevier.com/locate/iot
https://www.elsevier.com/locate/iot
mailto:valentin.stangaciu@cs.upt.ro
https://doi.org/10.1016/j.iot.2024.101139
https://doi.org/10.1016/j.iot.2024.101139
http://creativecommons.org/licenses/by/4.0/


Internet of Things 25 (2024) 101139V. Stangaciu et al.
Fig. 1. PARSECS general connection architecture.

real-time constraints. Such a requirement can only be achieved by using specially designed communication protocols over the
existing hardware buses. Such protocols need not only to provide a real-time communication stack but to also be lightweight adding
encapsulation protocol data as less as possible making them able to be executed on architectures with low processing resources.

While, there is a consistent number of real-time communication protocol stacks for inter-node communication designed
especially for wireless sensor networks [6–8] and IoT platforms [9–11], the things are significantly different regarding intra-node
communication. Some research endeavours in this direction worth mentioning are based on 1-Wire Protocol, providing MicroLAN
communication stack. Being almost a complete OSI stack, MicroLAN is ideal for sensor communication but not suitable between
processing units, thus it is designed for low-power and low bandwidth communications for dedicated sensors [12]. Other stack level
solutions such as CAN [13] for FlexRay [14] are not suitable for our scenario, as they are dedicated for the automotive industry
and have fewer hardware implementation in microcontrollers.

In contrast, being an efficient, fast and synchronous communication platform, the SPI bus can be a good base for intra-node
communication, from our perspective. As a consequence, our solution defines a real-time protocol stack in accordance with the OSI
Reference Model, having the SPI bus as a communication base. Considering that the SPI bus enforces hard real-time constraints by
design, our solution builds, upon it, a complete communication stack between processing units inside a system, while also providing
a simple application layer API to the end user.

In this paper, we target a solution for communication, only at the node level, between different components located physically
on the same node. The solution is based on the original design of PARSECS but adds multiple functionalities and optimizations. Our
main contributions presented in this paper are the following:

• An adaptation of the PARSECS initial protocol for low-end devices, by using the OSI Reference Model;
• The protocol was divided into two separated and independent sub-stacks with a complete layer separation;
• The data packet of the Physical Layer was adapted by adding a packet type field and a sequence number, while the CRC

polynomial was changed according to the RFC1662 specifications;
• A double buffering technique was added to the Data Link Layer in order to ensure no data loss;
• New layers were added: a transport layer in order to provide a reliable link between nodes in a TP0 CLNS profile, a presentation

layer to provide data representation using Basic Encoding Rules and an application layer to provide a clear and structured
API;

• An application test case is presented and analyzed from a real-time perspective.

The rest of the paper is organized as follows. Section 2 provides a brief description of the original PARSECS protocol. In Section 3,
our new protocol, coined as PARSECS_RT, is presented in detail, while Sections 4 and 5 are devoted to real-time analysis from both
theoretical and experimental points of view. Finally, conclusions are drawn in Section 6.

2. PARSECS protocol

In this section, we will discuss the first version of the protocol which was initially presented as PDCI (Predictable Data
Communication Interface for hard Real-Time Systems) [15], PARSECS (Predictable Architecture for Sensor Communication Systems).
It was designed to be a time-triggered hard real-time communication protocol over a full-duplex SPI bus [16]. The main goal is to
provide flexible TDMA (Time Division Multiple Access) medium access control (MAC) communication for Hard Real-Time (HRT)
systems over the SPI (Serial Peripheral Interface) bus based on a master–slave communication paradigm architecture as shown in
Fig. 1. This initial version mainly lacked the superior levels of the stack and it did not provide a superior API, data encapsulation
and segmentation.

PDCI is designed with a two layered architecture over of hardware SPI bus with an additional application layer providing the
upper lever APIs. The two layers operate in a hard real-time environment and rely on an HRT operating system in order to accomplish
2



Internet of Things 25 (2024) 101139V. Stangaciu et al.
Fig. 2. (a) PARSECS_RT stack layers; (b) OSI Reference Model layers.

the time constraints. The first layer provides a physical interface control and handles both transmitted and received data at a byte
level. The main role of this layer is to provide the necessary hardware abstraction layer to the upper layers of communication.
The data is passed to a second layer which assembles the raw bytes in message frames, guarded by SOF (Start of Frame) and EOF
(End of frame) control bytes thus obtaining a message-based data handling [15]. Such an approach, referred to later as PARSECS-M
[16], requires certain word escaping procedures in order to avoid misinterpreting data as false SOF and EOF control bytes. On the
other hand, the PARSECS-P approach [16] implements the second communication layer with packet-based frames insuring greater
stability and error detection.

PARSECS later added a third layer on top of the modified PDCI in order to provide synchronization and data acknowledgment.
Another final and upper layer, layer 4, is added only to provide the necessary APIs for the application. This latter layer does not
require any real-time support.

The currently available implementation of PARSECS provides only the basic operations for HRT communication over the SPI
bus, but it is not a full-stack solution and it does not offer compliance with the OSI reference model [17]. An improved solution
is introduced in this paper, a new version of the PARSECS protocol, denominated as PARSECS_RT which offers a full stack HRT
communication over the SPI bus.

3. PARSECS_RT protocol stack

In this paper, we propose an improved and more complex version of the PARSECS initial protocol, called PARSECS_RT, which is
dedicated for the edge level of the IoT. In contrast with its predecessor, the PARSECS_RT protocol stack has a layered organization
in full agreement with the rules of the OSI Reference Model, except for some unneeded layers which are not applicable in this type
of communication. The OSI layers represent one of the most important references in IoT architectures [18]. The correspondence
between these layers and the ones of the PARSECS_RT stack [17] is depicted in Fig. 2.

The network layer is currently not supported mainly because the layer’s main role, i.e. routing, is not necessary for the
architecture described above, thus SPI communication is based on the master–slave paradigm which does not require such a feature.
The data flow is either from the master to one of the slaves or from a slave to the master, thus, no routing is needed. The other
missing layer, layer 5 — Session, is also not needed in this architecture because of the obvious reason that on the SPI bus, all the
communicating partners are always connected and the SPI bus is not dynamic in terms of clients. Adding or removing clients may
involve physical changes in the electronic schematic of the module implementing the master of the communication. In the current
case, where this layer is not supported, one may consider that for each client there is a session activated indefinitely.

In Fig. 1 the PARSECS_RT stack is presented in terms of layers. The hardware layer is practically not part of the stack thus it
represents the actual hardware implementation of the bus. The PARSECS_RT stack is divided into two sub-stacks, both providing
predictable and hard real-time operation.

The PARSECS_RT Low Level Sub-stack implements the lower layers of the PARSECS_RT SPI communication stack and provides
a maximum of layer 2 capabilities according to the OSI Reference Model. It thus provides a predictable, hard real-time SPI
communication ensuring stable and reliable communication between two directly connected nodes via the SPI bus with error
detection and packet acknowledging. It contains the first two layers of PARSECS_RT: Layer 1 — Physical and Layer 2 — Data
link. This sub-stack was designed to be implemented either as a single atomic task, as two single atomic tasks (one for Layer 1 and
one for Layer 2), but also as three single atomic tasks (one task for Layer 1, one task for Layer 2 RX and another for Layer 2 TX).
3

In this paper, we consider the sub-stack implemented as a single atomic task.



Internet of Things 25 (2024) 101139V. Stangaciu et al.
Fig. 3. SPI Base Frame structure.

3.1. Layer 1 - Physical Layer

The first part of the sub-stack is represented by Layer 1 — Physical Layer which is in total accordance with the OSI stack.
Its main roles are to implement the hardware platform driver interface and provide basic, unstructured, raw data transfer on
the SPI bus. This layer’s implementation must be different from one hardware platform to another and also between master and
slave devices, thus actually providing the hardware abstraction layer. This layer has only one component which incorporates both
transmission and reception, thus in a full-duplex SPI communication such is the normal functioning behavior. Layer 1 specification
and implementation must be different in terms of master and slave nodes. On the slave nodes, the implementation of the Layer 1
is quite trivial thus it only needs to implement the basic send–receive procedures as the hardware SPI peripheral practically does
the rest. On the other hand, on the master node, the implementation of the Layer 1 is slightly different, thus it must poll each slave
that is connected to the bus to provide the clock signal to allow the slave to transmit data to the master node. Such a mechanism
is required mainly because of the structural design of the SPI bus.

The interface between Layer 1 and Layer 2 consists of two ring buffers, one for transmission and one for reception. The two buffers
are denominated as L1_ring_buffer_rx and L1_ring_buffer_tx. The size of the RX and TX ring buffers may be configured separately but in
most situations, the size is usually the same for both buffers. The RX ring buffer is written by layer 1 each time a new unstructured
raw byte is received over the SPI interface and is read by layer 2. The TX buffer is written by layer 2 and is read by layer 1 each
time the latter needs to transmit a raw byte over the SPI interface. For Layer 1, the flow is quite trivial thus there are relatively few
operations that need to be done.

In a typical SPI implementation, the software must initially read the data that possibly arrived on the bus and then initiate the
transmit procedure of the hardware with the data needed to be transmitted. In some situations, the software module does not have
any available new data to be transmitted on the bus. In this case, the software must fill the transmit register of the SPI hardware
peripheral with a default byte that is considered to be neutral (in most cases such a byte has the value of 0xFF or 0x00). The
PARSECS_RT stack allows the user to set the value of the default neutral byte, but all the nodes connected to the SPI bus must
have the same setting. The RX ring buffer is written by Layer 1 when new data arrives on the bus, thus Layer 1 only handles the
write pointer of this ring buffer. The TX ring buffer is then checked if any data is available from Layer 2 to be sent to the hardware
module to serialize it on the SPI bus. In this case, Layer 1 only handles the read pointer of the TX ring buffer. If any of these buffers
are found full when new data has to be inserted then a critical situation occurs which leads to a communication failure. Such a
situation may occur only if the stack parameters are not configured properly.

3.2. Layer 2 - Data Link Layer

The second part of the PARSECS_RT Low Level sub-stack is represented by Layer 2, the Data Link Layer. The main role of this
layer is to provide a stable, efficient and reliable node-to-node data transfer with flow control, packet acknowledging and error
detection features such as a standard data link layer protocol should offer. This layer is divided into two separate modules: one for
transmission (Layer 2 TX) and one for reception (Layer 2 RX).

The main interface between Layer 2 and the upper layers is represented by the SPI Base frame in Fig. 3 which is divided into
3 parts: the header, the data field, and the CRC (Cycle Redundancy Check) field. The Header of the SPI Base frame is 4 bytes long
and contains the following fields.

• Start Of Frame (SOF): 1 byte long of the strict value of 0x7E which identifies the beginning of an SPI Base Frame
• Length (LEN): 1 byte long which defines the actual length of the data field
• Sequence number (SEQ): 1 byte long which transports the sequence number of an SPI Base Frame
• Type (TYPE): 1 byte long which identifies the type of the SPI Base Frame

As described in Table 1, the SPI Base frame currently defines 3 types of frames, with the possibility for future extensions.
The data field contains the actual payload transported by an SPI Base Frame. The length of this field is defined by the LEN field

in the header of the packet, which practically states the value of n – the current number of bytes in the data field. As stated in
Fig. 3, the maximum length of this field is given by 𝑁𝑀𝐴𝑋 which may not exceed the value of 254.

𝑛 ≤ 𝑁𝑀𝐴𝑋 ≤ 254 (1)

The CRC field is 2 bytes long and it is used for error detection. The implementation is based on the code and specifications provided
by the Internet Request for Comments 1662 (RFC 1662) which describes the PPP in HDLC-like Framing [19]. The CRC value is
4



Internet of Things 25 (2024) 101139V. Stangaciu et al.
Table 1
SPI base frame – TYPE field description.

Frame type TYPE field value Description

DATA 0 × 8C Common data frame — implies having the length field greater than zero

ACK 0 × 7C Acknowledge frame — implies having the length field equal to zero (LEN = 0), no
data is necessary for an acknowledge frame

NACK 0 × 7B Not-Acknowledge frame — implies having the length field equal to zero (LEN = 0),
no data is necessary for a not-acknowledge frame

computed using all the bytes of the SPI Base frame in the header and data field except the SOF byte. The implementation provided
by RFC 1662 is based on the following polynomial for CRC16 computation:

𝑥16 + 𝑥12 + 𝑥5 + 1 (2)

The frame sequencing is implemented using the SEQ field of the header. Each communication partner keeps track of its total
number of sent SPI Base frames using a 1 byte counter which is always transported by the SEQ field when transmitting such a
frame. On the reception part, the SEQ field is used for packet acknowledging, thus, informing the transmitter that a frame having
a certain SEQ number has been acknowledged or not acknowledged. An SPI Base frame is not-acknowledged if the defined rules
above are not met: the CRC values calculated by the transmitter and the receiver are different, the maximum value of the LEN field
is exceeded, unsupported TYPE field value or the restrictions regarding the LEN field are not met.

The data encapsulation overhead of the SPI Base Frame (𝐸𝐿2) and the value of SPI Base Frame MTU (Maximum Transmission
Unit) may be deducted as follows:

𝐸𝐿2 = 𝑆𝐼𝑍𝐸(𝐻𝑒𝑎𝑑𝑒𝑟) + 𝑆𝐼𝑍𝐸(𝐶𝑅𝐶) = 4 + 2 = 6 bytes (3)

𝑀𝑇𝑈𝐿2 = 𝐸𝐿2 +𝑁𝑀𝐴𝑋 = 254 + 6 = 260 bytes (4)

The data flow between Layer 2 and the upper layers, (in our case, the PARSECS_RT High Level sub-stack) is ensured by a
set of buffers that are only accessed by the upper layers through dedicated special APIs. Because Layer 2 has separate flows for
transmission and reception, the data flows provide separate buffers. The receiving flow interface is implemented using a set of two
reception identical buffers, providing a transparent double buffer solution for the upper layers. This solution ensures no data loss
by having a secondary buffer on stand-by until the previously filled buffer is released (read) by the upper layers. Direct access of
the upper layers to either the reception buffers or the transmission buffer is prohibited. The only allowed method to access the data
is through provided specialized APIs. Such a solution also conceals the buffering mechanisms from the upper layers.

Besides the actual payload, this layer also provides additional information to the upper layers regarding packet sequencing such
as

• current sequence number of the data frame (last received data frame sequence number)
• last transmitted data frame sequence number
• last acknowledged data frame sequence number
• last not acknowledged data frame sequence number

The execution and processing flow of this layer is controlled by a series of flags which not only decide this layer’s internal
operations but also provide the needed multi-threading protection.

The Layer 2 RX component takes the raw unstructured bytes from Layer 1 and assembles the SPI Base Frame and manages the
data flow using a double buffering solution. The Layer 2 RX component’s execution begins by checking whether there is a reception
in progress in either of the two reception buffers (spi_packet_rx_1 and spi_packet_rx_2) by checking the appropriate flags (FG_FRIP_1
and FG_FRIPT_2). In an affirmative case, the assembling process of an SPI Base frame is resumed on the respective buffer. On the
other hand, if no reception was found to be in progress on either of the two buffers then an SPI Base Frame assembly is launched
on the first free buffer found by checking the responsible flags FG_LL_FUSE_1 and FG_LL_FUSE_2. The SPI Base Frame assembling
process may conclude with either the fact that a correct frame has been constructed or that no frame assembly has been finished
yet. Such a situation is checked by interrogating flags FG_NFE_1 and FG_NFE_2. If either one of these flags is found to be set, then
the corresponding buffer, containing a valid SPI Base Frame, will be processed accordingly.

The frame assembling process is a trivial task, implemented using a simple state machine that mainly checks the correctness of
the packets and discards the data in case of an error.

Upon the reception of an SPI Base Frame, layer 2 must signal the proper action to be taken based on the type of frame. In the case
of an ACK or NACK frame, this sub-state will only update the sequence numbers of the last acknowledged and not-acknowledged
frames. In case a DATA type frame has been received, this sub-state informs the higher levels by setting the FG_HL_NDF_1/2 flag to 1.
In all cases, this sub-state concludes its flow by resetting the flag FG_NFE_1/2 informing that the current frame has been processed.

The higher layers, in our case the PARSECS_RT High Level Substack, may interact with the RX flow of Layer 2 through a dedicated
API. The Layer 2 RX API begins by checking whether the spi_packet_rx_1 or spi_packet_rx_2 reception buffers have an SPI Base
5

Frame available to be read and released by the higher layers. This situation is identified by API by checking the flags responsible:



Internet of Things 25 (2024) 101139V. Stangaciu et al.

o
t
t

b
t
s
f
f
c
t
o

f
a
t
b

b
F
a
r
i
t
a
w
a

1
r
i
2

a
L
R
m

3

S
c
s
F
i
T

l
i
f

FG_HL_NDF_1 and FG_HL_NDF_2. In the case when one of these flags is set, the corresponding buffer containing the SPI Base Frame
is read and thus released by the caller. A particular situation is identified when both of these reception buffers contain a valid
frame. In such a case the API returns the SPI Base Frame from the buffer that has the lower value of the SEQ field. In any case, the
API caller must provide a valid memory zone where the new data will be written. After this operation, the corresponding buffer is
released and the lower layers will be notified that it is ready to store a newly received SPI Base Frame.

The transmission component of layer 2 is similar to the reception part. Similar to the Layer 2 RX API, the TX API is also considered
nly an interface between the Layer 2 TX component and the upper layers and not an actual component of the tasks implementing
he PARSECS_RT Low Level Substack. This API is thus called by the higher layers in order to initiate a transmission operation through
he PARSECS_RT Low Level Substack.

The Layer 2 TX API begins by checking some of the required flags before trying to initiate a transmission. A transmission is
eing initiated only if all of the following flags are not set: FG_LL_FTIP, FG_LL_FTT, FG_ACK and FG_NACK. The limitation here is
hat transmission cannot be initiated if the internal Layer 2 transmission buffer (spi_pack_tx_buffer) is not free, thus, a double buffer
olution is not implemented here. In the situation where all the above flags are not set, the transmission buffer is considered to be
ree and a new transmission request from the upper layers may be accepted. A transmission request involves copying the payload
rom the memory zone specified by the caller and afterward setting the FG_HL_FTTR flag to the true value. The transmission API
aller is then informed about the sequence number (SEQ) that will be assigned to the SPI Base Frame containing its payload. On
he other hand, if the transmission buffer is found not to be free and no new transmission requests may be accepted at the moment
f the call, the API informs the caller about the busy state.

The main process flow of the Layer 2 TX component has as its main role to serialize the correct SPI Base Frame based on the
lag configuration. Before making any new decisions, the first flags that are checked by the main flow of the Layer 2 TX component
re FG_LL_FTIP and FG_LL_FTT which signify that a transmission is already in progress or that a frame is already scheduled to be
ransmitted. In such a case, the process flow executes the actual part which serializes the SPI Base Frame currently in the transmission
uffer, into the Layer 1 transmission ring buffer (L1_ring_buffer_tx).

On the other hand, when no transmission is in progress or no other frame is scheduled for transmission, the decision is made
ased on 3 important flags: FG_ACK, FG_NACK and FG_FTTR. The FG_ACK and FG_NACK flags take precedence. The FG_ACK and
G_NACK flags are used by the RX component of Layer 2 to inform the TX component of Layer 2 that it needs to schedule an
cknowledge or not-acknowledge frame transmission. In any of these two situations the corresponding FG_ACK and FG_NACK are
eset immediately after a respective frame is scheduled for serialization by setting the FG_LL_FTT flag signifying a frame to transmit
s available. If neither of these two flags are found set, the FG_HL_FTTR flag is checked in order to verify if the Layer 2 TX API needs
o schedule a transmission of a data type SPI Base Frame. If such a case is identified, the FG_LL_FTT is set in order to signify that
frame to transmit is scheduled along with the reset of FG_HL_FTTR. The main Layer 2 TX component process flow is concluded
ith the execution of the sub state responsible for the serialization of the scheduled SPI Base Frame. The serialization sub-state of
n SPI Base Frame in the Layer 2 TX component is similar to the assembling process flow in the Layer 2 RX component.

The de-serialization process takes the SPI Base Frame from the transmission buffer and disassembles it byte by byte into the Layer
transmission ring buffer (L1_ring_buffer_tx). The serialization is only conditioned on the space available in the Layer 1 transmission

ing buffer. In the case when this buffer is full, the serialization is suspended and then resumed at the next execution of the task
mplementing the Layer 2 TX component. When the serialization is finished, the FG_LL_FTIP flag is reset thus signaling that Layer

transmission buffer has been released and it is ready to take another SPI Base Frame.
The PARSECS_RT High Level Sub-stack implements the higher layers of the PARSECS_RT SPI communication stack and, in

ccordance with the OSI Reference Model, provides the following layers: Layer 4 — Transport Layer, Layer 6 — Presentation
ayer and Layer 7 — Application Layer. This sub-stack was designed to be implemented as a single atomic task. Regarding the OSI
eference model compatibility and compliance, the PARSECS_RT High Level Sub-stack with the help of the lower levels provides
ost of the defined functionality.

.3. Layer 4 — Transport Layer

The Layer 4 — Transport Layer provides a reliable link between any slave node and the master node connected on the same
PI bus in a connectionless-mode network service profile (CLNS) with the features and mechanisms defined by the TP0 protocol
lass of the OSI Reference Model Layer 4 [17]. This means that this layer provides a connectionless mode communication with PDU
egmentation, de-segmentation and reassembly. The transport layer takes its input from the data field of a finite number of SPI Base
rames. Each data field in the SPI Base Frame contains a PARSECS WIT PDU. The transport layer takes such PDUs, assembles them
n the correct order, and produces an output represented by a PARSECS WIT FRAME which is interpreted by the presentation layer.
he structure of the PARSECS WIT PDU adds a small data encapsulation overhead as it can be observed in Fig. 4

The main role of this layer is to ensure PDU segmentation. A finite number of PARSECS WIT PDU frames are processed by this
ayer in order to be disassembled and assembled back in the correct order ensuring the formation of a PARSECS WIT FRAME which
s then processed by the presentation layer. The structure of the PARSECS WIT FRAME is presented in Fig. 5 where the size of the
rame is represented by 𝑓 and the maximum allowed size if 𝐹𝑀𝐴𝑋 . with the obvious restriction:
6

𝑓 ≤ 𝐹𝑀𝐴𝑋 (5)



Internet of Things 25 (2024) 101139V. Stangaciu et al.
Fig. 4. PARSECS WIT PDU structure.

Fig. 5. PARSECS WIT FRAME structure.

The PARSECS WIT PDU has 3 components: a PDU Header field which is 1 byte long, a PDU Segmentation Control field which
is 3 bytes long and a PDU Data field. The encapsulation overhead added by the PARSECS WIT PDU is the following:

𝐸𝐿4 = 𝑆𝐼𝑍𝐸(𝑃𝐷𝑈𝐻𝑒𝑎𝑑𝑒𝑟) + 𝑆𝐼𝑍𝐸(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝐹 𝑖𝑒𝑙𝑑)

= 4 bytes
(6)

Considering (6) along with (3) and Fig. 4 we may state that:

𝑀𝑀𝐴𝑋 = 𝑁𝑀𝐴𝑋 − 𝐸𝐿4 (7)

In this case, the maximum value of the PARSECS WIT PDU Data field is limited to 250 bytes as stated in the following statement,
where m represents the instant current value of the length of the PARSECS WIT PDU Data field for some such PDU:

𝑚 ≤ 𝑀𝑀𝐴𝑋 ≤ 250 (8)

However, there are not other limitations of the maximum value of the PARSECS WIT PDU Data length field beside (8), thus the
user may enforce a lower limit in case of hardware constraints.

The PDU segmentation control field is 3 bytes long and contains the information needed to ensure segmentation, de-segmentation
and correct data reassembly along, of course, with the SEQ field from the associated SPI Base Frame. The PDU Segmentation control
contains the following fields, each 1 byte long.

• TOTAL_SEG – Total PDU Segments – contains the total number of segments in which the data is split
• CUR_SEG – Current PDU Segment – contains the current segment number, from the total number of segments, that is being

transferred
• PDU_LEN – PDU Length – contains the length of the PDU Data field of the current PARSECS WIT PDU, in our case a value

which is equal to m

The total number of PDU segments, TOTAL_SEG, may be calculated as follows

𝑇𝑂𝑇𝐴𝐿_𝑆𝐸𝐺 = ⌈∗⌉
𝑓

𝑀𝑀𝐴𝑋
(9)

In such case, considering (9) naturally there are some restrictions to be defined:

𝑇𝑂𝑇𝐴𝐿_𝑆𝐸𝐺 ≥ 1 (10)

𝐶𝑈𝑅_𝑆𝐸𝐺 ≥ 1 (11)

𝐶𝑈𝑅_𝑆𝐸𝐺 ≤ 𝑇𝑂𝑇𝐴𝐿_𝑆𝐸𝐺 (12)

The PARSECS WIT PDU Header is only 1 byte long and contains a bit field denominated as WIT PDU TYPE FORMAT and is
meant to be interpreted as a status and error byte. The components of this bit field are presented in Table 2.

The PARSECS WIT PDU is mostly used for data transfer having a length greater than 0 (𝑚 > 0) and with the WIT PDU TYPE
FORMAT field having no error bits set (bits 2, 3 and 7). In such a case, considering that this PDU is transferred by a single SPI
Base Frame, the transfer is acknowledged by Layer 2 and no other Layer 4 PDU is transmitted for this purpose. However, in the
case when certain errors occur, Layer 4 will respond with a PARSECS WIT PDU transporting the error through the WIT PDU TYPE
7



Internet of Things 25 (2024) 101139V. Stangaciu et al.

n

d

e

Table 2
WIT PDU TYPE FORMAT description.
Bit Field name Description

0 MultiPacketPDU If set to 1 it signifies that the current PDU is part of a segmented transaction
1 LastPDUInMultiPacket If set to 1 it signifies that the current PDU is the last PDU of a segmented transaction
2 SequenceError The previous PDU’s SEQ value was not correct
3 SizeExceeded In a segmented transaction, the resulted assembled PDU exceeds the value of 𝐹𝑀𝐴𝑋
4–6 Reserved Bits are reserved for future protocol extension
7 Generic Error Signifies a generic error different from the error situations already defined above

FORMAT field. Such a PDU is easily recognized by the fact that it only transports the error through the header but no data through
the PDU Data field, thus having the PDU LEN (m) equal to 0.

The execution and processing flow of this layer is managed internally by using a data structure containing all the information
eeded by this layer. The main data structure that this layer of the protocol operates on is described in the following ASN.1 code

PARSECS_Protocol_Descr iptor : := SEQUENCE {

ReceivePDU PARSECS_WIT_PDU ,
TransmitPDU PARSECS_WIT_PDU ,
Recept ionState PARSECS_STATE_DATA ,
Transmiss ionState PARSECS_STATE_DATA ,
ErrorTransmitRequired BOOLEAN,
ErrorCode PARSECS_PROTOCOL_STATUS
}

Listing 1: PARSECS Protocol Descriptor main data structure

As it can be observed, this layer of the protocol keeps its internal reception and transmission state separate. Such states are
escribed below by a PARSECS_STATE_DATA structure. The protocol needs a ReceivePDU and a TransmitPDU both representing

PARSECS WIT PDU described above Fig. 4, thus this layer operates on separate execution flows for transmission and reception. The
structure above also contains an error code if necessary which is transmitted if the Boolean parameter ErrorTransmitRequired is set.

PARSECS_STATE_DATA : := SEQUENCE {

ResourceFree BOOLEAN,
I sMu l t iPacke tS ta t e BOOLEAN,
I sLastPDUInMult iPacket BOOLEAN,
TotalPDUPackets INTEGER ,
CurrentPDUPacket INTEGER ,
WITDataLength INTEGER ,
CurrentDataIndex INTEGER ,
LastSequenceNumber INTEGER ,
WITData OCTET_STRING
}

Listing 2: PARSECS_STATE_DATA Structure description

The reception and transmission flow state data structures are identical and described above in ASN.1 notation. The meaning of
ach structure member is the following:

• WITData An instance of a PARSECS WIT FRAME in Fig. 5 which represents the interface between the transport layer and the
presentation layer. This field is considered an input parameter from the presentation layer for the transmission flow and an
output parameter for the reception flow. On the reception flow, this parameter contains the PARSECS WIT FRAME after the
correct assembly of multiple PARSECS WIT PDUs of the segmentation/de-segmentation flow. On the transmission flow this
parameter contains the PARSECS WIT FRAME that is going to be disassembled by the segmentation and de-segmentation part
in order to be transmitted as multiple PARSECS WIT PDUs.

• WITDataLength An integer representing the amount of data, in bytes, that is contained in the WITData parameter. The
WITDataLength parameter is the same as the one described in (5)

• IsMultiPacketState An internal Boolean flag signifying that the RX/TX flow is currently engaged into a segmented reception/-
transmission

• IsLastPDUInMultiPacket In the situation when the RX/TX flow is in a segmented reception/transmission, this internal Boolean
parameter signifies that the current PARSECS WIT PDU is the last PDU in the current segmented reception/transmission

• TotalPDUPackets An integer signifying the total number of PDU’s involved in the current segmented reception/transmission.
In the case when segmentation is not being used this value is always equal to 1

• CurrentPDUPacket An integer signifying the current PDU packet number within the segmented transmission/reception. In
the case, when the segmentation has not been used, this value is always equal to 1

• CurrentDataIndex An integer that represents the index value of the current PARSECS WIT PDU within the PARSECS WIT
FRAME
8



Internet of Things 25 (2024) 101139V. Stangaciu et al.
• LastSequenceNumber An integer representing the last sequence number of the transmitted/received PARSECS WIT PDU taken
from the lower levels of the stack through the SPI Base Frame

• ResourceFree A Boolean value specifying that the current transmission/reception flow is free and can take a new operation.
This member practically states the availability of WITData

The reception flow of Layer 4 begins by checking whether the reception resource is free (WITData) by checking ResourceFree.
If the resource is not free the reception process is terminated. On the other hand, if the resource is free, the reception flow calls
the API of the lower levels, in this case, the reception API of Layer 2, in order to check if a new SPI Base Frame is available to be
processed. If such a frame is available its format is checked prior to being decoded and having the data extracted. If the SPI Base
Frame is found to be inconsistent then the whole reception process is aborted. The extracted data from the SPI Base Frame must be
in the correct format of a PARSECS WIT PDU. Before continuing with the rest of the flow, the PDU header from the PARSECS WIT
PDU is checked for any error flags. In the case when error flags are found to be set then the whole reception process is aborted and
all the internal flags are reset. This also implies that a segmented reception that was in progress would be reset.

The main reception flow is, in principle, divided into two sub-flows: a sub-flow when a segmented reception is not in progress
and a sub-flow when a segmented reception is currently in progress. This separation of the flow is decided by the internal
IsMultiPacketState Boolean flag. If the IsMultiPacketState flag is false when a new PARSECS WIT PDU is received then no segmented
reception is currently in progress. If the newly received PDU also has its MultiPacketPDU flag not set (value is false) then no
segmented reception will be initiated and the newly received PARSECS WIT PDU represents the only ‘‘segment’’ of data that will
be copied at the right position (at CurrentDataIndex 0) within the WITData internal reception buffer. After such a situation, the
resourceFree internal reception flag is set to true before the termination of the reception flow of this layer so the Presentation Layer,
may use the newly received PARSECS WIT FRAME. This whole step is initiated after a check of sequence numbers and parameters
as the following:

𝑇𝑂𝑇𝐴𝐿_𝑆𝐸𝐺 = 𝐶𝑈𝑅_𝑆𝐸𝐺 = 1 (13)

𝑀𝑢𝑙𝑡𝑖𝑃 𝑎𝑐𝑘𝑒𝑡𝑃𝐷𝑈 = 𝐹𝐴𝐿𝑆𝐸 (14)

𝐿𝑎𝑠𝑡𝑃𝐷𝑈𝐼𝑛𝑀𝑢𝑙𝑡𝑖𝑃 𝑎𝑐𝑘𝑒𝑡 = 𝐹𝐴𝐿𝑆𝐸 (15)

In the case the above conditions (13), (14) and (15) are not met, the whole reception process is aborted, the received data is
discarded, the IsMultiPacketState internal flag is being reset to false and an error PDU is scheduled for transmission.

If the IsMultiPacketState flag is false and the newly received PDU has its MultiPacketPDU flag set (value is true) then a segmented
reception will be initiated and the newly received PARSECS WIT PDU represents the first segment of data that will be copied at
the right position (at CurrentDataIndex 0) within the WITData internal reception buffer. The internal reception parameters will
then be updated as follows: the flag IsMultiPacketState is set to true and the internal reception parameters TotalPDUPackets and
CurrentPDUPacket are updated with the values from TOTAL_SEG and respectively CUR_SEG of the header of the newly received
PARSECS WIT PDU. Before taking the above actions a consistency check is also being done:

𝑇𝑂𝑇𝐴𝐿_𝑆𝐸𝐺 ≥ 1 (16)

𝐿𝑎𝑠𝑡𝑃𝐷𝑈𝐼𝑛𝑀𝑢𝑙𝑡𝑖𝑃 𝑎𝑐𝑘𝑒𝑡 = 𝐹𝐴𝐿𝑆𝐸 (17)

𝐶𝑈𝑅_𝑆𝐸𝐺 + 1 ≤ 𝑇𝑂𝑇𝐴𝐿_𝑆𝐸𝐺 (18)

In the case the above conditions (16), (17) and (18) are not met, the whole reception process is aborted, the received data is
discarded, the IsMultiPacketState internal flag is being reset to false and an error PDU is scheduled for transmission.

The other part of the flow is represented by the situation when the internal reception flag IsMultiPacketState has a true value when
a new PARSECS WIT PDU is received. Practically this part of the flow dictates what should be done when a segmented reception is
already in progress and a new PDU is received. In such a case, the flow initiates a needed consistency check before performing the
required operations:

𝐿𝑎𝑠𝑡𝑃𝐷𝑈𝐼𝑛𝑀𝑢𝑙𝑡𝑖𝑃 𝑎𝑐𝑘𝑒𝑡 = 𝑇𝑅𝑈𝐸

𝐶𝑈𝑅_𝑆𝐸𝐺 = 𝑇𝑂𝑇𝐴𝐿_𝑆𝐸𝐺
(19)

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 + 𝑚 ≤ 𝐹𝑀𝐴𝑋 (20)

𝑇 𝑜𝑡𝑎𝑙𝑃𝐷𝑈𝑃𝑎𝑐𝑘𝑒𝑡𝑠 = 𝑇𝑂𝑇𝐴𝐿_𝑆𝐸𝐺 (21)

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝐷𝑈𝑃𝑎𝑐𝑘𝑒𝑡𝑠 = 𝐶𝑈𝑅_𝑆𝐸𝐺 (22)

Condition (19) states that in the case that the received PARSECS WIT PDU represents the last segment, then the values of the
9

current segment (CUR_SEG) must be equal to the value of the total number of segments (TOTAL_SEG). Condition (20) states that



Internet of Things 25 (2024) 101139V. Stangaciu et al.

t
h
a
r

f
r
p

n
f
a
L

s
P

3

a
B
t
T
L
E
p

P
u
t

T

a
G

Table 3
BER general form.
TAG DATA

the current amount of segmented data already present in the WITData buffer added to the data size of the received PARSECS WIT
PDU 𝑚 does not exceed the size of WITData buffer 𝐹𝑀𝐴𝑋 . Furthermore, the following conditions (21) and (22) practically verify
hat the received parameters TOTAL_SEG and CUR_SEG are consistent with the already present values of the reception parameters
olding these values (TotalPDUPackets and CurrentPDUPackets). In the case where the above conditions (19), (20), (21) and (22)
re not met, the whole reception process is aborted, the received data is discarded, and the IsMultiPacketState internal flag is being
eset to false and an error PDU is scheduled for transmission.

After the consistency check has been done successfully, the segmented reception progress is continued. The extracted payload
rom the newly received PARSECS WIT PDU is being copied to the current position in the WITData buffer represented by the internal
eception parameter CurrentDataIndex. This value is then updated with the new position where the next segment reception is to be
laced.

This part of the flow is concluded by checking the status of the flag LastPDUInMultiPacket. If this flag is found to be false then
o additional steps are required thus the flow is resumed at the next reception of a PARSECS WIT PDU. On the other hand, if this
lag is found to be true then this last received PARSECS WIT PDU represents the last segment. In this situation, it is concluded that
PARSECS WIT FRAME has been assembled in the WITData buffer. The whole reception process is being reset and the Presentation
ayer may use the newly assembled PARSECS WIT FRAME.

The transmission flow of the Transport Layer is similar to the reception flow. The transmission flow operates using a data
tructure identical to the one used by the reception layer (PARSECS_Protocol_Descriptor) keeping the state in an instance of the
ARSECS_STATE_DATA structure.

.4. Layer 6 - Presentation Layer

The next layer of this sub-stack is represented by a Layer 6 – Presentation Layer which, as the OSI Reference model states, serves
s an intermediate level between the lower levels and the application. This layer provides data structure representation using mainly
asic Encoding Rules of Abstract Syntax Notation One (ASN.1) Standard [20]. This layer is executed when the user of the stack calls
he exported APIs of the stack. The main role of this layer is to provide specific and consistent encoding for the application data.
he version of the Basic Encoding Rules that the PARSECS_RT stack uses has the encoding data tags of the DLMS/COSEM (Device
anguage Message Specification/Companion Specification for Energy Metering) suite which is standardized by the International
lectrotechnical Commission [21,22]. The same version of the Basic Encoding rules has also been used in a similar application layer
rotocol for IoT [23]

The Presentation Layer communicates with the Transport Layer by operating on a specific type of frame designated as
ARSECS_WIT_FRAME and having the structure presented in Fig. 5. The PARSECS_WIT_FRAME is a data structure that is encoded
sing the PARSECS version of the Basic Encoding Rules. Before describing such types of frames, the following paragraphs presents
he actual encoding and data type provided by the Presentation Layer, all presented using ASN.1.

According to the standard, the main idea behind the Basic Encoding Rules (BER) may be summarized in the form presented in
able 3

The TAG field represents a byte specifying the type of data that follows in the encoding. The DATA field is dependent on the
ctual data type. The supported data types, along with the assigned TAG, are presented in ASN.1 notation, under the name of
enericData:

GenericData : := CHOICE {
BERNullData [0] IMPLICIT NULL ,
BERArray [1] IMPLICIT SEQUENCE OF Data ,
BERStructure [2] IMPLICIT SEQUENCE OF Data ,
BERBoolean [3] IMPLICIT BOOLEAN,
BERBitStr ing [4] IMPLICIT BIT STRING ,
BERDoubleLong [5] IMPLICIT Integer32 ,
BERDoubleLongUnsigned [6] IMPLICIT Unsigned32 ,
BEROctetString [9] IMPLICIT OCTET STRING ,
BERVis ib leS t r ing [10] IMPLICIT V i s i b l eS t r i ng ,
BERInteger [15] IMPLICIT Integer8 ,
BERLong [16] IMPLICIT Integer16 ,
BERUnsigned [17] IMPLICIT Unsigned8 ,
BERLongUnsigned [18] IMPLICIT Unsigned16 ,
BERlong64 [20] IMPLICIT Integer64 ,
BERLong64Unsigned [21] IMPLICIT Unsigned64 ,
BEREnum [22] IMPLICIT Unsigned8 ,
BERRawData [254] IMPLICIT OCTET STRING ,
BERDontCare [255] IMPLICIT NULLG
}

Listing 3: Definition of GenericData
10



Internet of Things 25 (2024) 101139V. Stangaciu et al.

f

t
i
a
P
a

3

r
a
o

i
n
t
p
n

a

v
p
a
w
r

Considering the above definitions, the PARSECS_WIT_FRAME briefly described in Fig. 5 may be defined in ASN.1 with the
ollowing content and structure:

PARSECS_WIT_FRAME : := SEQUENCE {
SourceAddress BERUnsigned ,
Des t inat ionAddress BERUnsigned ,
PARSECS_WIT_APP PARSECS_APP_API
}

Listing 4: Definition of PARSECS_WIT_FRAME

According to the above definition, the PARSECS_WIT_FRAME is practically implemented using a type of BERStructure containing
the 3 elements. The SourceAddress and the DestinationAddress fields are used to provide an addressing mechanism for the user at
he application level. Even though for an SPI bus the addressing is implicit through the slave selection lines, such a mechanism
s intended to be used at the application level. As a convention, the PARSECS_RT stack considers the master node to have the
ddress 0. In this case, the SourceAddress and DestinationAddress fields designate the source and the destination of the current
ARSECS_WIT_FRAME. The PARSECS_WIT_APP field is considered to be of type PARSECS_APP_API which is practically implemented
s a BERStructure data type containing application layer specific elements.

.5. Layer 7 — Application Layer

The final layer of the stack is represented by the Application Layer which provides a unified homogeneous API, based on the
equest–response paradigm, which may be used to transfer application specific data between communicating nodes and to also call
pplication specific remote methods similar to a remote procedure call mechanism. The Application Layer is designed to be used
n top of the Presentation Layer and not separate from the PARSECS_RT High Level Sub-stack.

The Application Layer is based on a request–response paradigm. Each node connected to the SPI bus may request or respond (to)
nformation to/from any other node regardless of its place as master or slave on the bus. Practically, on the application layer the
odes are considered equals. The request–response paradigm of the PARSECS_RT Application Layer operates either on parameters
hat may be read or written or on remote methods which, of course, may only be called. The latter implements a basic remote
rocedure call mechanism. The parameters are used to transmit information and the methods are used to call a specific action of a
ode. In this case, the parameters may be read (get) and written (set) while the methods are called.

All of the operations that are offered by the Application Layer are transported by the PARSECS_WIT_APP field implemented as
PARSECS_APP_API as described below:

PARSECS_APP_API : := SEQUENCE {
OperationType OPERATION_TYPE ,
Operat ionControl OPERATION_CONTROL,
TypeID BERUnsigned ,
OperationData GenericData
}

Listing 5: Definition of PARSECS_APP_API

The first component, OperationType, defines the type of the transaction and it is described below:

OPERATION_TYPE : := ENUMERATED {
GetRequest (1 ) ,
GetResponse (2 ) ,
SetRequest (3 ) ,
SetResponse (4 ) ,
Cal lRequest (5 ) ,
Cal lResponse (6 ) ,
}

Listing 6: Definition of OPERATION_TYPE

As it can be observed above, practically, the PARSECS Application Layer supports 3 transaction types defined by enumerated
alues (1), (3) and (5). The supported transactions offer support for requesting the value of a parameter (1), setting the value of a
arameter (3) and calling a remote action method (5). Each of these possible 3 transactions also implies a response for each request:
response when a parameter value is requested (2), a response when a parameter value change is requested (4) and a response
hen a remote method is being called (6). The parameter of which value is being requested (1) or which value change is being

equested (3) or the method which is being called (5) are all identified by an 8 bit unsigned integer implemented as a BERUnsigned
and denominated as TypeID in the structure of PARSECS_APP_API. This field provides a unique identification of a parameter or
method. The OperationControl is dependent on the type of message (as of being a request or response type message) and is described
below as an OPERATION_CONTROL construction:

OPERATION_CONTROL : := CHOICE {
NoData [0] BERNullData ,
Operat ionResul t [1] OPERATION_RESULT ,
}

Listing 7: Definition of OPERATION_CONTROL
11



Internet of Things 25 (2024) 101139V. Stangaciu et al.

O

f

In the case when the message transports a request operation type (a GetRequest – 1, a SetRequest – 3 or a CallRequest – 5), the
OperationControl field is implemented as a BERNullData. In this case, this field is practically not needed, but to maintain homogeneity,
this field is implemented as a data type that transports no data. On the other hand, in the case when the message transports a response
operation type (a GetResponse – 2, a SetResponse – 4, or a CallResponse – 6), the OperationControl field is implemented as a type of
OPERATION_RESULT containing the result of the requested operation

OPERATION_RESULT : := ENUMERATED {
Success (0 ) ,
HardwareFault (1 ) ,
TemporaryFailure (2 ) ,
ReadDenied (3 ) ,
WriteDenied (4 ) ,
ParameterMethodUndefined (5 ) ,
OperationTimeout (6 ) ,
ParameterSyntaxError (7 ) ,
OperationUnsupported (8 ) ,
AddressMismatch (9 ) ,
OtherReason (254) ,
UnknownValue (255) ,
}

Listing 8: Definition of OPERATION_RESULT

In the above Listing 8 the operation result is represented as an enumeration of some predefined operation result reasons, but
also leaving space for user and future extensions (IDs 10-253). This field is implemented using a data type of BEREnum.

The data field of the message described in 5 that transports the actual data of the application layer is represented by
perationData. The type of this field is represented by a GenericData type. The data that is transported by the OperationData field is

dependent on the application and it is used in concordance with the type of the PARSECS_APP_API message.
In case the transported application layer message is of type Get Request, the sender intends to request a parameter value from the

destination node. In such case, the encoded message is implemented as a BERStructure according to Listing 5. The OperationType
iled is encoded as a BEREnum type of value 1. The OperationControl field technically has no meaning in this case and is only

present here for reasons like predictability, compatibility, and homogeneity. The value of this field is implemented as a BERNullData
type which practically consists of a single byte of value 0. The TypeID filed will contain the ID of the requested parameter and is
encoded as a BERUnsigned type. The last field, OperationData, has no meaning in this context, it is kept here again for reasons like
predictability, compatibility and homogeneity similar to the OperatingControl. For this reason, the value of this field is implemented
as a BERNullData type. In very few words, a Get Request message is intended for getting the value of a parameter identified by the
field TypeID.

In the above context, the response given by the node receiving a Get Request message is implemented by a message of type Get
Response. The implementation is similar to the previous one, beginning with an OperationType filed encoded as a BEREnum type of
value 2. In this case, the OperationControl has a dedicated meaning and transports the result of the request message, whether it was
a success or an error. In the latter case, the reason for the error is transported in this field according to Listing 8. The TypeID field is
also transported here with the same value as the value from the request message providing a simple verification mechanism of data
correctness. The OperationData field contains the actual value of the requested parameter encoded as one of the available data types
provided by GenericData in Listing 3. The data in this field is available only if the operation was a success, thus the OperationControl
field has the value of Success implemented as a BEREnum of value 0. On the other hand, if the OperationControl transports an error
then the OperationData type transports a BERNullData.

The Set Request message type is used by one node to request the change of a parameter of another node. Most of the structure
and meaning of the fields are similar to the ones described for the Get Request message type with the obvious difference that the
OperationType is implemented as a BEREnum of value 2. Another notable difference here is that the OperationData is not implemented
as a BERNullData thus this field must contain the new value of the parameter that needs to be changed. In this context, the value
of OperationData has a form described by the type GenericData.

The obvious response of a Set Request message is a Set Response message practically notifying the requesting node of the result
of the parameter change operation. The structure and meaning of such a message are practically identical to the ones described for
the Get Response message.

The Call Request message type may be used by a node on the network to request the execution of a remote method or action of
some other node connected to the same network. The structure and meaning of the fields are similar to the ones described for the
GetRequest message with the obvious difference that the OperationType is implemented as a BEREnum of value 4. Another small but
notable difference is the fact that the TypeID fields here represent the identification number of the remote method that is requested
to be called. Furthermore, in contrast with the Get Request message, for the Call Request message, the OperationData field is not
necessarily needed to be implemented as a BERNullData. The reason is that for a Call Request message, this field transports the
remote method’s arguments implemented as one of the data types provided by GenericData. This field may be implemented as a
BERNullData only if the method does not require any arguments.

The natural response to a Call Request message is the Call Response message. The structure and meaning of the fields are almost
identical to the ones described for the Get Response message with the obvious difference that the OperationType is implemented as
a BEREnum of value 6. Some other small but notable differences are that the TypeID transports the ID of the method that has been
12



Internet of Things 25 (2024) 101139V. Stangaciu et al.

t
i
o

f

called and its call result is transported by the current Call Request message and also that the OperationData transports the return
value of the remote method implemented as one of the provided types by GenerticData.

The Call Request and Call Response messages practically implemented a very simple, efficient, and general remote procedure
call mechanism.

All of the aspects presented in this section are limited to the situation where the communication is made by a master node
with a single slave node, but only to facilitate the description of the protocol and to provide concise explanations. However, the
PARSECS_RT stack was designed to support a large number of slave modules connected to the SPI bus. The only limitations here
are in terms of memory and execution performance of the master node along with the availability of slave selection lines.

4. Real-time analysis and time constraints

The PARSECS_RT Stack was designed not only to provide full stack communication on the SPI bus but to also provide predictable
hard real-time communication. The underlying level of the stack, the SPI bus is known for its hard real-time and predictable behavior
mainly because of its synchronous and time-triggered architecture. In order to provide the hard real-time and predictability features
it was designed for, the PARSECS_RT stack implementation requires the existence of a real-time operating system such as FreeRTOS,
Haretick [24], Litmus RT. . . etc. This section aims at presenting a formal real-time analysis of the PARSECS_RT stack.

Before defining the formal time analysis, we have established some considerations:

• The implementation of the PARSECS_RT Low Level sub-stack is designed as a single atomic task containing the execution of
all the layers of the sub-stack (L1 – TX/RX, L2 – TX, L2 – RX). The task is denominated as PARSECS Low Level Task

• One execution of the PARSECS Low Level Task is able to receive and transmit 1 byte (no hardware improvements such as
FIFO or DMA are considered)

• The implementation of the PARSECS_RT High Level sub-stack is designed as a single atomic task containing the execution of
all the layers of the sub-stack (L4, L6). The task is denominated as PARSECS High Level Task

• The Application Layer (L7) is considered as a call or task of the user’s application and is not a complete part of this analysis.
• The SPI clock is considered much higher than the actual task execution frequency, thus an instant transmission on the SPI line

compared to the frequency of the task execution.

Furthermore, the following terms are defined:

• 𝑇𝑃 _𝐿𝐿_𝑆 - execution period of the PARSECS Low Level Task for a slave node
• 𝐹𝑃 _𝐿𝐿_𝑆 - execution frequency of the PARSECS Low Level Task for a slave node

𝐹𝑃 _𝐿𝐿_𝑆 = 1
𝑇𝑃 _𝐿𝐿_𝑆

(23)

• 𝑇𝑃 _𝐿𝐿_𝑀 - execution period of the PARSECS Low Level Task for a master node
• 𝐹𝑃 _𝐿𝐿_𝑀 - execution frequency of the PARSECS Low Level Task for a master node

𝐹𝑃 _𝐿𝐿_𝑀 = 1
𝑇𝑃 _𝐿𝐿_𝑀

(24)

• 𝑇𝑃 _𝐻𝐿_𝑆 - execution period of the PARSECS High Level Task for a slave node
• 𝑇𝑃 _𝐻𝐿_𝑀 - execution period of the PARSECS High Level Task for a master node

As it has been stated before, at each execution of the Layer 1 component, the master node polls each connected slave node for
ransmission and reception thus providing the necessary clock signal on the SPI clock line for each connected slave. Such a statement
mplies that the whole timing of the communication is practically dictated by the execution period of the PARSECS Low Level Task
f the master node, respectively the 𝑇𝑃 _𝐿𝐿_𝑀 time parameter.

The first time parameter that is dictated by 𝑇𝑃 _𝐿𝐿_𝑀 is the execution period of the PARSECS Low Level Task for a slave node,
𝑇𝑃 _𝐿𝐿_𝑆 . In order to ensure no data loss the Nyquist theorem has to be applied thus obtaining the fact that the execution frequency
of the PARSECS Low Level Task for a slave node must be at least twice the execution frequency of the PARSECS Low Level Task
defined by the master node, thus obtaining:

𝐹𝑃 _𝐿𝐿_𝑆 ≥ 2 ⋅ 𝐹𝑃 _𝐿𝐿_𝑀 (25)

Applying (25) using (24) and (23), the execution period of the PARSECS Low Level Task of the slave node need to respect the
ollowing condition:

𝑇𝑃 _𝐿𝐿_𝑆 ≤
𝑇𝑃 _𝐿𝐿_𝑀

2
(26)

The easiest and most practical way would be to consider the lower limit for the 𝑇𝑃 _𝐿𝐿_𝑆 parameter:

𝑇 =
𝑇𝑃 _𝐿𝐿_𝑀 (27)
13

𝑃 _𝐿𝐿_𝑆 2



Internet of Things 25 (2024) 101139V. Stangaciu et al.

L

L
s
i
t
t
a

p
s
L

s
f

n

s

d

n
N
a
a
l
t
a

5

t
c
s

S
m
w
a

b
a

The above restrictions must be properly enforced by the underlying real-time operating system in order for the PARSECS_RT
ow Level Substack to provide fully predictable and real-time communication.

The timings of the PARSECS_RT High Level Substack are completely dependent on the time parameters of the PARSECS_RT Low
evel Substack. According to the description of the SPI Base Frame in Fig. 3 and as calculated in (3) we can state that the minimum
ize of such a frame is 6 bytes. Considering this information, in order to ensure that there is no loss of information, the task that
mplements the PARSECS_RT High Level Substack must have an execution period that is not longer than at most 6 executions of
he PARSECS_RT Low Level Substack. Practically an execution period of the PARSECS_RT High Level task must not contain more
han 6 executions of a PARSECS_RT Low Level task. Such an assessment is applied to both master and slave implementations, thus,
nyway, these are considered identical. These statements can be summarized as follows:

𝑇𝑃 _𝐻𝐿_𝑀 ≤ 6 ⋅ 𝑇𝑃 _𝐿𝐿_𝑀 (28)

𝑇𝑃 _𝐻𝐿_𝑆 ≤ 6 ⋅ 𝑇𝑃 _𝐿𝐿_𝑆 (29)

Even though in real-time communication, bandwidth is not of utmost importance in contrast with predictability, still such a
arameter is mandatory to be expressed. The raw transfer bandwidth is a trivial matter and depends on the performance of the
ystem that executes the implementation. In this case, the raw bandwidth can be deducted from the timings of the PARSECS_RT
ow Level Substack and may be expressed in bps as follows:

𝐵𝑟𝑎𝑤 [bps] = 8 ⋅ 1
𝑇𝑃 _𝐿𝐿_𝑀

(30)

The actual transfer rate for the PARSECS_RT Low Level Substack must also take into consideration the encapsulation overhead
as defined in (3)

𝐵𝐿𝐿 [bps] = 8 ⋅ 1
𝑇𝑃 _𝐿𝐿_𝑀

⋅
1

𝐸𝐿2
(31)

Considering that we have a hard real-time communication, the latency shall be perfectly predictable and calculable. In the
ituation where there is no packet segmentation, we may state that a maximum, one way single transfer latency is defined as
ollows:

𝐿𝑀𝐴𝑋 = 𝑀𝑇𝑈𝐿2 ⋅ 𝑇𝑃 _𝐿𝐿_𝑀 + 𝑇𝑃 _𝐻𝐿_𝑀 (32)

Of course, considering a full transaction, representing a request and a response, the latency of the whole transaction would
aturally be:

𝐿𝑀𝐴𝑋 = 2 ⋅ (𝑀𝑇𝑈𝐿2 ⋅ 𝑇𝑃 _𝐿𝐿_𝑀 + 𝑇𝑃 _𝐻𝐿_𝑀 ) (33)

In the situation where packet segmentation intervenes, the calculations in (32) and (33) would be multiplied by the number of
egments needed.s

In terms of packet loss, the PARSECS_RT stack does not handle this situation in this current version, mainly because data loss
oes not occur on the SPI bus.

All of the above calculation and explanations were made considering that the communication takes part between one master
ode and only one slave node. This consideration was taken only to facilitate the description in order to provide a clear view.
aturally, as state before in this paper, the PARSECS_RT stack was designed to handle more than one slave device. The addition of
slave device has minimum impact on the implementation of the stack especially regarding the real-time aspects. The only impact

ppears at the master side and influences the Worst Case Execution Time (WCET) of the tasks implementing the stack. This can
ead to a more complex task scheduling operating and it may even result in a failure to schedule the tasks in the situation when
he master node is extremely low on hardware resources. Also, it is important to mention that the addition of slave devices has
bsolutely no impact on the implementation of the stack on the slave side.

. Experimental results

We implemented PARSECS_RT on two different platforms both being part of a WIT (Wireless Intelligent Terminal), a node of
he CORE_TX project (Collaborative Robotic Environment - The Timisoara eXperiment) [3]. We will continue having the same
onsiderations as described in the previous section, thus having PARSECS_RT Low Level sub-stack and PARSECS_RT High Level
ub-stack respectively implemented as two independent and atomic tasks. The periods of the tasks are presented in Table 4.

The slave part of PARSECS_RT bus is implemented on the communication module of the WIT having its CPU based on ARM7TDMI-
architecture [25], i.e. a microcontroller from the NXP LPC2000 family [26]. The operating system running on the communication
odule is represented by our hybrid implementation [27] of the HARETICK (Hard Real-Time Compact Kernel) [28] kernel along
ith FreeRTOS [29], thus taking advantage of the jitterless scheduling provided by FENP (Fixed Execution Non-Preemptive) [30]
long with the flexibility provided by FreeRTOS.

On the communication board, there are 10 running tasks: 8 tasks running in the FreeRTOS context and two tasks being scheduled
y the Haretick context using the FENP algorithm. The two tasks running in the FENP context are the PARSECS Low Level Task
nd another task designated as XBEE. Considering (1) from [30]:
14

𝜇𝑖 = {𝑇𝑖, 𝐶𝑖} (34)



Internet of Things 25 (2024) 101139V. Stangaciu et al.
Fig. 6. Task 1 mapping on task 2 execution period.

Fig. 7. Task execution mapping using FENP.

Table 4
Test case parameters.
Parameter Value Parameter Value

𝑇𝑃 _𝐿𝐿_𝑆 300 μs 𝑇𝑃 _𝐿𝐿_𝑀 600 μs

𝑇𝑃 _𝐻𝐿_𝑆 1ms 𝑇𝑃 _𝐻𝐿_𝑀 1ms

Slave CPU Freq 58.9824MHz SPI SCLK 1.56MHz

𝐵𝑟𝑎𝑤 [bps] 13.33 kbps 𝐵𝐿𝐿 [bps] 2.22 kbps

We define the FENP set of tasks according to the test parameters in Table 4 as
{

𝜇1 = {300 μs, 100 μs}
𝜇2 = {1500 μs, 20 μs}

(35)

where 𝜇1 represents the task parameters for the PARSECS Low Level Task and 𝜇2 is the parameter for the other FENP task in the
system (XBEE). The task parameters are 𝑇𝑖 is the task execution period, which in our case is equal to the task deadline, and 𝐶𝑖
represents the WCET (Worst Case Execution Time) of the task. In order to apply the FENP scheduling algorithm, the set of tasks
needs to be in accordance with the rules defined in (3) from [30]:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑆𝐹𝐸𝑁𝑃 ≡ {𝜇1, 𝜇2, 𝜇3}
𝜇𝑖 = (𝜙𝑖, 𝑇𝑖, 𝐶𝑖)
𝑇𝑖 ≤ 𝑇𝑖+1
𝑆𝑖,𝑘+1 = 𝑆𝑖,𝑘 + 𝑇𝑖 = 𝜙𝑖 + 𝑘𝑇𝑖,∀𝜇𝑖 ∈, 𝑆𝐹𝐸𝑁𝑃 , 𝑘 ∈ N

(36)

where 𝜇1 represents the PARSECS Low Level Task, 𝜇2 the XBEE task, 𝜇3 the HSCD (scheduler task) and 𝜙𝑖 the relative phase or the
start time as defined in (3) from [28] which will be determined as follows:

1. determine the common divider 𝐺𝐶𝐷(𝑇1, 𝑇2) = 300
2. determine the least common multiplier 𝐿𝐶𝑀(𝑇1, 𝑇2) = 1500
3. map the execution of the first task (𝜇1) over the period of the second task (𝜇2) - 𝜇1 is executing five times within the period

of 𝜇2 as shown in Fig. 6, generated using SimSo Simulator [31], where the scale is 1:10.
4. and determine the first free interval for a complete execution of 𝜇2 which in this case is [100; 120]
5. determine the execution parameters of the HSCD (task scheduler), considering the HSCD is task 𝜇3 and 𝐶3 = 120 μs

As shown in Fig. 6, 𝑇1 is a multiple of 𝑇2, thus the scheduling cycle is equal to 𝑇1. For (𝜇3) we repeat steps 1–5 against each of
the other two tasks (𝜇1, 𝜇2) resulting in an execution mapping as in Fig. 7, generated using SimSo Simulator [31]. It is important
to mention that the simulator was used here only to validate the actual schedule that was then applied to the hardware.

The master component of PARSECS_RT is implemented on the main module of the WIT referred to as the WIT’s motherboard.
From a hardware point of view, the motherboard is implemented mainly using the popular Raspberry PI3 [32]. The operating
15



Internet of Things 25 (2024) 101139V. Stangaciu et al.
Fig. 8. PARSECS task executions on hardware.

Fig. 9. PARSECS communication log capture.

system is provided by ArchLinux [33] for ARM having added the LitmusRT kernel patch [34] in order to provide HRT support. The
PARSECS application is executed along the other Linux System processes and it is divided into 6 different threads. Each thread is
scheduled using LitmusRT, having its dedicated reservation. The threads which are responsible for implementing the PARSECS_RT
communication tasks are scheduled with the parameters described in Table 4.

A capture of the executing tasks implementing the PARSECS_RT communication stack may be found in Fig. 8, capture performed
using Saleae Logic Analyzer, Logic 2.4.6 [35]. This figure illustrates the jitterless execution of the FENP tasks. A predictable and
jitterless communication is one of the key aspects in real-time systems in general and RT-IoT in particular.

In Fig. 9 we present a full stack message exchange between the master and the slave. This capture represents a capture of the
logging system of the slave module taken using Docklight Scripting [36] during intense communication. The first line of the log
represents the arrival of an SPI Base Frame from the MASTER with a sequence number of 219 and a size of 39 bytes. The second
line represents a status line with displays the current transmission and reception sequence numbers and the number of frames in
the queue that need to be acknowledged (or not). The third line represents a PARSECS WIT PDU (written as SPI_WIT ) that has been
decoded from the SPI Base Frame. Here we may easily identify the 4 bytes of encapsulation of the PARSECS WIT PDU, designated
as 𝐸𝐿4 in (6). Finally, in the 4th line, we may identify the further decoded data as a PARSECS WIT Frame designed here as SPI
USER. From this line, we may identify that, at the application level, a Call Request was emitted. The following 4 lines represent the
response transmitted by the slave module, in this case a Call Response with a Temporary Failure response. The following lines are
similar to the first lines with the observation that they are in reverse order, thus being transmitted.

After providing the mathematical proof that the real-time requirements are met, originated from model (36), we validated our
work in a real life environment. We employed the same platform described at the beginning of this section (i.e., an ARM7TDMI-
S based architecture for the slave device and a Raspberry PI running the LitmusRT extension for the Linux kernel) for extensive
experiments during a time interval of three weeks, which provided the expected results.

6. Discussion and future directions

6.1. Comparative analysis

PARSECS_RT is designed to be a modular full stack protocol especially for low-end devices (but not necessarily limited to) for
the SPI bus which provides a support for hard real-time communications. The closest available similar solution is the 1-Wire bus
which was mainly designed to support and incorporate specific devices from Maxim Dallas such as temperature sensors, iButton
devices, small memories, power supplies. Even though it offers a full stack hard-real time communication, it is restricted to very
limited functionalities thus being intended to support only specific dedicated devices. Another worth mentioning solution is the
CAN bus, designed mainly for automotive communication, which offers only limited real-time support [37,38] (mainly only for a
strict prioritized communication). Our solution aims at solving some of these drawbacks and providing a flexible solution initially
for SPI communication but with a high degree of adaptability for other communication interfaces and buses. A brief comparison
may be found in Table 5 that supports this assessment.
16



Internet of Things 25 (2024) 101139V. Stangaciu et al.

f
d
c
c

a
p
i

6

p
t
o

m

s
t

6

(
f
f

a
g

a
t
t

7

c
p
P

C

e
W

Table 5
PARSECS_RT comparison.

Stack layers Real-time support Device types Modular

1-Wire 1,2,3,4 (limited) HRT Only specific devices No
CAN 1,2,4,7 limited real-time Any - with CAN bus interface No
I2C 1,2 HRT Any - with I2C bus interface No
PARSECS_RT 1,2,4,6,7 HRT Any - with SPI bus interface No

6.2. PARSECS_RT generalizability aspects

The PARSECS_RT protocol stack is divided into two independent sub-stacks. The PARSECS_RT Low level Sub-stack covers the
irst two layers of the OSI Model while the PARSECS_RT High Level Sub-stack handles the other upper layers of the stack. Its main
esign destination is intended for low-end devices. However, giving its modular design, it can be adapted to accomplish real-time
ommunication over other buses than SPI such as I2C [39], LIN [40] or even RS-485 [41]. Our solution’s applicability may be
onsidered for a much wider set of applications by using different underlying buses.

The design of PARSECS_RT is not specifically aimed for a specific hardware platform or operating system, thus we have considered
platform independent approach. As we stated in the previous sections of this paper, we used our solution on two different hardware
latforms with various operating systems thus proving its effectiveness for a general communication solution where such an option
s not currently available.

.3. Limitations

As we discussed in the previous section, our solution is currently only available for SPI as an underlying bus but the design
ermits a customization for different other physical communication mediums. In this regard, an important limitation of the stack is
hat it does not directly address the data loss concerns. The main reason for this derives from particular stack architecture design
n top of the SPI bus, which inherently considers that message loss cannot be raised if the bus is correctly used.

Another missing piece of our solution is a network layer to provide routing capabilities. Such an aspect could provide a much
ore flexible communication by enabling slave devices to communicate between each other.

While considering extensions of PARSECS_RT to other underlying dynamic buses, the necessity for adding the currently missing
ession layer would naturally arise. Currently such a layer is not available only due to the rigid construction of the SPI bus where
he nodes are always connected thus the sessions may be considered infinite.

.4. Future work

We intend to adapt and evaluate the PARSECS_RT stack using different underlying buses such as the previously mentioned
i.e., CAN, I2C, LIN, etc.). We also plan to improve the proposed protocol by adding retransmission mechanisms in order to recover
rom message loss. This should not be an overwhelming task considering the fact that the stack already processes sequence numbers
or the data transfer.

As another future extension, we plan to add a network layer to the stack in order to provide data routing between slaves. In this
pproach, we intend to enable the possibility of one slave device to send data directly to another slave device, such an operation
enerally requiring the intervention of the master node to route the information.

Furthermore, we intend to provide a way to negotiate the message/packet size limits. Currently, communication parameters such
s 𝐹𝑀𝐴𝑋 , 𝑀𝑀𝐴𝑋 or 𝑁𝑀𝐴𝑋 need to be the same on all nodes thus implying that the whole communication needs to be adapted to
he weakest node. In our perspective, this can be done at the master node level by negotiating the communication parameters with
he connected slave nodes. This way, the master may use different values for each slave node and not global values as it uses now.

. Conclusions

In this paper, we propose PARSECS_RT, a real-time predictable and jitterless communication protocol for wired intra-node
ommunication, particularly suited for time-constrained IoT networks. The correspondence between the OSI reference levels and our
roposed implementation of PARSECS_RT is thoroughly described and a real-time and task set feasibility analysis is also provided.
rotocol analysis and extensive experimental tests in real life scenarios proved its effectiveness and viability.

RediT authorship contribution statement

Valentin Stangaciu: Conceptualization, Investigation, Methodology, Software, Writing – original draft, Writing – review &
diting. Cristina Stangaciu: Conceptualization, Formal analysis, Investigation, Validation, Visualization, Writing – original draft,
riting – review & editing. Daniel-Ioan Curiac: Project administration, Supervision, Validation, Visualization. Mihai V. Micea:

Conceptualization, Formal analysis, Project administration, Supervision, Validation, Visualization.
17



Internet of Things 25 (2024) 101139V. Stangaciu et al.

t

D

R

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

No data was used for the research described in the article.

eferences

[1] M. Szalay, P. Matray, L. Toka, Real-time faas: Towards a latency bounded serverless cloud, IEEE Trans. Cloud Comput. (2022).
[2] N. Promwongsa, A. Ebrahimzadeh, D. Naboulsi, S. Kianpisheh, F. Belqasmi, R. Glitho, N. Crespi, O. Alfandi, A comprehensive survey of the tactile internet:

State-of-the-art and research directions, IEEE Commun. Surv. Tutor. 23 (1) (2020) 472–523.
[3] R.-D. Cioarga, M.V. Micea, B. Ciubotaru, D. Chiuciudean, D. Stanescu, CORE-TX: Collective robotic environment-The timisoara experiment, in: Proceedings

of the Third Romanian-Hungarian Joint Symposium on Applied Computational Intelligence, SACI, 2006.
[4] P. Gaur, M.P. Tahiliani, Operating systems for IoT devices: A critical survey, in: 2015 IEEE Region 10 Symposium, IEEE, 2015, pp. 33–36.
[5] M.V. Micea, HARETICK: A real-time compact kernel for critical applications on embedded platforms, in: Proc. 7th Intl. Conf. Development and Applic.

Syst., DAS, 2004, pp. 16–23.
[6] B.-S. Kim, H. Park, K.H. Kim, D. Godfrey, K.-I. Kim, A survey on real-time communications in wireless sensor networks, Wirel. Commun. Mobile Comput.

2017 (2017).
[7] G. Franchino, G. Buttazzo, A power-aware MAC layer protocol for real-time communication in wireless embedded systems, J. Netw. Comput. Appl. 82

(2017) 21–34, http://dx.doi.org/10.1016/j.jnca.2017.01.006.
[8] P. Bartolomeu, M. Alam, J. Ferreira, J. Fonseca, Survey on low power real-time wireless MAC protocols, J. Netw. Comput. Appl. 75 (2016) 293–316,

http://dx.doi.org/10.1016/j.jnca.2016.09.004.
[9] C. Bayılmış, M.A. Ebleme, Ü. Çavuşoğlu, K. Küçük, A. Sevin, A survey on communication protocols and performance evaluations for Internet of Things,

Digit. Commun. Netw. (2022).
[10] L. Beltramelli, A. Mahmood, P. Österberg, M. Gidlund, P. Ferrari, E. Sisinni, Energy efficiency of slotted LoRaWAN communication with out-of-band

synchronization, IEEE Trans. Instrum. Meas. 70 (2021) 1–11, http://dx.doi.org/10.1109/TIM.2021.3051238.
[11] M.K. Pedhadiya, R.K. Jha, H.G. Bhatt, Device to device communication: A survey, J. Netw. Comput. Appl. 129 (2019) 71–89, http://dx.doi.org/10.1016/

j.jnca.2018.10.012.
[12] D. Awtrey, D. Semiconductor, Transmitting data and power over a one-wire bus, Sensors- J. Appl. Sens. Technol. 14 (2) (1997) 48–51.
[13] C.-W. Lin, A. Sangiovanni-Vincentelli, Cyber-security for the controller area network (CAN) communication protocol, in: 2012 International Conference on

Cyber Security, IEEE, 2012, pp. 1–7.
[14] T. Pop, P. Pop, P. Eles, Z. Peng, A. Andrei, Timing analysis of the FlexRay communication protocol, Real-time Syst. 39 (2008) 205–235.
[15] M.V. Micea, G.N. Carstoiu, L. Ungurean, D. Chiciudean, V. Cretu, V. Groza, Predictable data communication interface for hard real-time systems, in: 2008

International Workshop on Robotic and Sensors Environments, 2008, pp. 98–101, http://dx.doi.org/10.1109/ROSE.2008.4669188.
[16] M.V. Micea, G.N. Carstoiu, L. Ungurean, D. Chiciudean, V.-I. Cretu, V. Groza, PARSECS: A predictable data communication system for smart sensors and

hard real-time applications, IEEE Trans. Instrum. Meas. 59 (11) (2010) 2968–2981, http://dx.doi.org/10.1109/TIM.2010.2046363.
[17] H. Zimmermann, OSI reference model - The ISO model of architecture for open systems interconnection, IEEE Trans. Commun. 28 (4) (1980) 425–432,

http://dx.doi.org/10.1109/TCOM.1980.1094702.
[18] A.H.M. Aman, E. Yadegaridehkordi, Z.S. Attarbashi, R. Hassan, Y.-J. Park, A survey on trend and classification of internet of things reviews, Ieee Access

8 (2020) 111763–111782.
[19] W. Simpson, PPP in HDLC-like Framing, Tech. Rep., 1994.
[20] International Telecommunication Union, Information technology – ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding

Rules (CER) and Distinguished Encoding Rules (DER), 2002.
[21] International Electrotechnical Commission, Electricity metering data exchange - The DLMS/COSEM suite - Part 1-0: Smart metering standardisation

framework, 2014.
[22] International Electrotechnical Commission, Electricity metering data exchange - The DLMS/COSEM suite - Part 5-3: DLMS/COSEM application layer, 2016.
[23] V. Stangaciu, M. Stanciu, L. Lupu, M.V. Micea, V. Cretu, Application layer protocol for IoT using wireless sensor networks communication protocols,

in: 2017 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, ICUMT, 2017, pp. 430–435, http:
//dx.doi.org/10.1109/ICUMT.2017.8255160.

[24] C.S. Stangaciu, M.V. Micea, V.I. Cretu, Hard real-time execution environment extension for FreeRTOS, in: 2014 IEEE International Symposium on Robotic
and Sensors Environments (ROSE) Proceedings, 2014, pp. 124–129, http://dx.doi.org/10.1109/ROSE.2014.6953035.

[25] T. Martin, The Insider’s Guide to the Philips ARM7-Based Microcontrollers, Hitex, UK, Ltd, Coventry, 2005.
[26] NXP Semiconductors, User Manual, Tech. Rep., Koninklijke Philips Electronics N.V, 2004.
[27] C. Stangaciu, M. Micea, V. Cretu, An analysis of a hard real-time execution environment extension for FreeRTOS, Adv. Electr. Comput. Eng. 15 (3) (2015)

79–87.
[28] M.V. Micea, V. Cretu, V. Groza, Predictable signal generation with the hard real-time operating kernel HARETICK, in: 2005 IEEE Instrumentationand

Measurement Technology Conference Proceedings, Vol. 3, IEEE, 2005, pp. 2097–2102.
[29] R. Barry, FreeRTOS Reference Manual: API Functions and Configuration Options, Real Time Engineers Limited, 2009.
[30] M.V. Micea, C.S. Stangaciu, V. Stangaciu, V.I. Cretu, Improving the efficiency of highly predictable wireless sensor platforms with hybrid scheduling, in:

2012 IEEE International Symposium on Robotic and Sensors Environments Proceedings, IEEE, 2012, pp. 73–78.
[31] SimSo - Simulation of multiprocessor scheduling with overheads, 2023, https://projects.laas.fr/simso/, Accessed: 2023-03-03.
[32] Raspberry PI, Datasheet raspberry PI 3 model B technical specification, [Online], http://www.farnell.com/datasheets/2027912.pdf.
[33] J. Dieguez Castro, Arch linux, in: Introducing Linux Distros, A Press, Berkeley, CA, 2016, pp. 235–252.
[34] R. Spliet, M. Vanga, B.B. Brandenburg, S. Dziadek, Fast on average, predictable in the worst case: Exploring real-time futexes in LITMUSRT, in: 2014 IEEE

Real-Time Systems Symposium, 2014, pp. 96–105, http://dx.doi.org/10.1109/RTSS.2014.33.
[35] Saleae logic analyzers, 2023, https://www.saleae.com, Accessed: 2023-03-03.
[36] Docklight scripting, 2023, https://docklight.de/, Accessed: 2023-03-03.
[37] L.M. Pinho, F. Vasques, Reliable real-time communication in CAN networks, IEEE Trans. Comput. 52 (12) (2003) 1594–1607.
18

http://refhub.elsevier.com/S2542-6605(24)00081-7/sb1
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb2
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb2
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb2
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb3
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb3
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb3
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb4
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb5
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb5
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb5
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb6
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb6
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb6
http://dx.doi.org/10.1016/j.jnca.2017.01.006
http://dx.doi.org/10.1016/j.jnca.2016.09.004
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb9
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb9
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb9
http://dx.doi.org/10.1109/TIM.2021.3051238
http://dx.doi.org/10.1016/j.jnca.2018.10.012
http://dx.doi.org/10.1016/j.jnca.2018.10.012
http://dx.doi.org/10.1016/j.jnca.2018.10.012
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb12
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb13
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb13
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb13
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb14
http://dx.doi.org/10.1109/ROSE.2008.4669188
http://dx.doi.org/10.1109/TIM.2010.2046363
http://dx.doi.org/10.1109/TCOM.1980.1094702
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb18
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb18
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb18
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb19
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb20
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb20
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb20
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb21
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb21
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb21
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb22
http://dx.doi.org/10.1109/ICUMT.2017.8255160
http://dx.doi.org/10.1109/ICUMT.2017.8255160
http://dx.doi.org/10.1109/ICUMT.2017.8255160
http://dx.doi.org/10.1109/ROSE.2014.6953035
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb25
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb26
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb27
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb27
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb27
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb28
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb28
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb28
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb29
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb30
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb30
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb30
https://projects.laas.fr/simso/
http://www.farnell.com/datasheets/2027912.pdf
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb33
http://dx.doi.org/10.1109/RTSS.2014.33
https://www.saleae.com
https://docklight.de/
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb37


Internet of Things 25 (2024) 101139V. Stangaciu et al.
[38] Tindell, Hansson, Wellings, Analysing real-time communications: controller area network (CAN), in: 1994 Proceedings Real-Time Systems Symposium,
IEEE, 1994, pp. 259–263.

[39] J. Valdez, J. Becker, Understanding the I2C Bus, Texas instruments, 2015.
[40] M. Ruff, Evolution of local interconnect network (LIN) solutions, in: 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.

03CH37484), Vol. 5, IEEE, 2003, pp. 3382–3389.
[41] Z. Shang, Z. L.I., Q. Wei, S. Hao, Livestock and poultry posture monitoring based on cloud platform and distributed collection system, Internet Things

(2024) 101039, http://dx.doi.org/10.1016/j.iot.2023.101039, URL https://www.sciencedirect.com/science/article/pii/S2542660523003621.
19

http://refhub.elsevier.com/S2542-6605(24)00081-7/sb38
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb38
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb38
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb39
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb40
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb40
http://refhub.elsevier.com/S2542-6605(24)00081-7/sb40
http://dx.doi.org/10.1016/j.iot.2023.101039
https://www.sciencedirect.com/science/article/pii/S2542660523003621

	PARSECS_RT: A real-time PARSECS-based communication protocol stack for critical sensing applications
	Introduction
	PARSECS protocol
	PARSECS_RT protocol stack
	Layer 1 - Physical Layer
	Layer 2 - Data Link Layer
	Layer 4 — Transport Layer
	Layer 6 - Presentation Layer
	Layer 7 — Application Layer

	Real-time analysis and time constraints
	Experimental results
	Discussion and Future Directions
	Comparative analysis
	PARSECS_RT generalizability aspects
	Limitations
	Future work

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


