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a b s t r a c t

The path-planning algorithm represents a crucial issue for every autonomous mobile robot.
In normal circumstances a patrol robot will compute an optimal path to ensure its task
accomplishment, but in adversarial conditions the problem is getting more complicated.
Here, the robot’s trajectory needs to be altered into a misleading and unpredictable path
to cope with potential opponents. Chaotic systems provide the needed framework for
obtaining unpredictable motion in all of the three basic robot surveillance missions: area,
points of interests and boundary monitoring. Proficient approaches have been provided for
the first two surveillance tasks, but for boundary patrol missions no method has been
reported yet. This paper addresses the mentioned research gap by proposing an efficient
method, based on chaotic dynamic of the Hénon system, to ensure unpredictable boundary
patrol on any shape of chosen closed contour.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mobile autonomous robots are intelligent real-time systems that operate in structured or unstructured environments
without explicit human involvement. Their real-life applications are spread in a wide variety of domains where tedious
or hazardous tasks must be precisely accomplished, from elderly and disabled care [1], precise agriculture [2–4], disaster
intervention [5,6], to complex industrial activities [7].

The motion planning represents a fundamental issue for such robots, being tackled by numerous researchers over time.
Basically a path-planning algorithm has to provide an optimal trajectory, when diverse constraints are applied, for the robot
to accomplish its tasks. This is not a simple problem to solve due to the frequent and random changes in the environment.
Moreover, when autonomous robots evolve in adversarial conditions, a new attribute must be considered by the path-
planning mechanism for coping with possible opponents: unpredictability of the trajectory for any external observer.

Previous research addressed two basic types of robot surveillance missions: monitoring an area and monitoring points of
interest. When speaking about the third kind of surveillance missions – boundary surveillance, from our knowledge, no
approach for unpredictable trajectories has been reported so far. This paper fills this research gap by proposing a robot
path-planning methodology based on Hénon discrete chaotic system. We started with the analysis of a mobile coordinate
frame in which a Hénon chaotic system evolves. If this frame is translated with a finite velocity along a closed contour
marked in a stationary frame (the origin of the mobile frame performs a periodic motion along the closed contour), we ob-
served that a brand-new chaotic system was constructed. As a remarkable fact we find that the Lyapunov exponents are

http://dx.doi.org/10.1016/j.cnsns.2014.03.020
1007-5704/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +40 256 403 227; fax: +40 256 403 214.
E-mail addresses: daniel.curiac@aut.upt.ro (D.-I. Curiac), constantin.volosencu@aut.upt.ro (C. Volosencu).

Commun Nonlinear Sci Numer Simulat 19 (2014) 3617–3627

Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns



Author's personal copy

conserved during this transformation even though the new-type trajectories have other shapes. Practically speaking, the
arbitrarily-chosen boundary that must be monitored by the patrol robot is chaotified with the means of kinematic relative
motion and the use of Hénon system.

The rest of the paper is organized as follows. Section 2 presents the state of the art in the field of generating chaotic tra-
jectories for mobile robots. Section 3 provides the theoretical support for our methodology, demonstrating that the new ro-
bot trajectories are indeed chaotic. Section 4 thoroughly presents the novel step-by-step methodology, accompanied by
three illustrative examples described in Section 5. The last section outlines the conclusions and final remarks.

2. Related work

In adversarial conditions, the unpredictability of a robot trajectory represents a crucial issue. It can be addressed using
either random or chaotic sequences of waypoints. In both cases, the enemy entities cannot predict the future trajectory,
but due to its deterministic nature, the chaotic path represents a better alternative. The reason lies in the fact that ally enti-
ties, knowing the initial conditions and formulas of chaotic system, are able to predict the robot path and, as a result, to make
proper decisions.

Chaotic systems, due to their ‘‘sensitivity to initial conditions’’ feature [8], provide the much-needed framework in
achieving the unpredictability in all the three basic types of surveillance missions: monitoring an area; monitoring a set
of points of interest (set of precise objectives); or monitoring the boundary of a specified area.

The area surveillance missions presume an efficient coverage of all sections of a specified perimeter. This particular topic
was addressed by some relevant research papers [9–15].

Nakamura and Sekiguchi [9] designed and implemented a chaotic motion controller for mobile robots able to sense the
workspace boundary when arriving in its proximity. Their idea was to interconnect the control variables with state variables
of the Arnold equations and by this to impart the chaotic behavior of incompressive fluid flow to the robot.

Martins-Filho and Macau proposed an ingenious path-planning mechanism where the sequence of intermediary goal
positions is obtained using the well-known Chirikov–Taylor standard map [10,11]. This area-preserving chaotic map, besides
its chaotic features originating from the dynamics of a kicked rotor, eliminates the need for boundary sensing.

Volos, Kyprianidis and Stouboulos [13,14] based their trajectory planning methodology on the use of the Logistic map.
Here, a chaotic random bit generator provides a time-ordered succession of future robot positions, with the experimental
results proving highly efficient and opportunistic area coverage. Another implementation based on the Logistic chaotic
map, but this time improved by arcsine and arccosine transformations, is presented in [15].

The second type of surveillance missions was tackled in two of our previous papers. The first one presented an original
method to monitor two points of interest based on a modified Lorenz system [16] and was followed by a generalized method
that uses two types of 3D chaotic systems (Lorenz and Chen) to develop unpredictable trajectories for surveilling an indef-
inite number of specified points [17].

This paper addresses another kind of patrol robot mission - boundary surveillance, with the proposed methodology being
based on the kinematic relative motion concept and the chaotic nature of the Hénon system.

3. Theoretical framework

In adversarial conditions an autonomous patrol robot must follow a path that cannot be easily predicted or understood by
opponents. For boundary patrol missions, the problem can be formulated as follows:

Problem formulation. Consider a given closed contour C in a two-dimensional Cartesian frame that has to be
monitored by a patrol robot. The objective is to design a trajectory, unpredictable for possible opponents, developed
in the proximity of C that assures efficient boundary surveillance.

In our vision, two ways can be pursued in solving this problem: (a) to find an already known chaotic system with the
same shape as the given bounding line and adapt it via diverse transformations (e.g. affine transformations); or (b) to con-
struct a new chaotic system tailored for this specific application. The first possibility is applicable for a limited number of
boundary shapes so, a general method to create customized chaos may be the proper solution.

In this endeavor we started with the analysis of the well-known Hénon chaotic system [18]. We will demonstrate that if
we slide an evolving Hénon system on a closed contour, a chaotic trajectory will be obtained. Practically speaking, with the
means of kinematic relative motion concept we can design unpredictable paths in the vicinity of any given closed contour.

3.1. Hénon chaotic system

Analyzing the Lorenz chaotic system [19], the French astronomer and mathematician Hénon [18], discovered a two-
dimensional discrete map exhibiting similar properties. His system is described by the following set of equations:
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xnþ1 ¼ yn þ 1� a � x2
n

ynþ1 ¼ b � xn

(
ð1Þ

where the standard values of parameters, a = 1.4 and b = 0.3, provide a chaotic behavior (Fig. 1).Four characteristics of the
Hénon chaotic map are worth mentioning in the context of our methodology:

1. The Lyapunov exponents [20], which characterize the average rate of separation of two nearby Hénon trajectories for x
and y axes, are k1 ¼ 0:408 and k2 ¼ �1:62. Since the maximum Lyapunov exponent ðk1Þ has a positive value, the chaotic
behavior is confirmed [21];

2. The bifurcation diagram, presented in Fig. 2, underlines the chaotic behavior of the system for a = 1.4 and b = 0.3.
3. The trapping region (i.e. a region for which all entering trajectories will thereafter never leave) of the Hénon attractor [18]

is represented by the quadrangle X ¼ ABCD; with the vertices having the following positions A = (�1.33;0.42),
B = (1.32;0.133), C = (1.245;�0.14) and D = (�1.06;�0.5);

4. The Hénon system exhibits computational simplicity when implemented on resource-constrained digital devices (only
four multiplications and two additions are needed to obtain the coordinates of the next point).

The Lyapunov exponents and the bifurcation diagram, corresponding to the Hénon system, will be used to prove that the
new robot’s paths provided by our methodology are chaotic, while the trapping region is used for tuning the vicinity of the
boundary where the robot will evolve. The illustration of the Hénon map and its trapping region is depicted in Fig. 1, while
the bifurcation diagram when b = 0.3 is presented in Fig. 2.

This simple two-dimensional chaotic system is the source of unpredictability in our methodology, the new trajectories
being obtained by means of the kinematic relative motion concept.
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Fig. 1. The Hénon map and its trapping region.

Fig. 2. Hénon bifurcation diagram for b = 0.3.
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3.2. Obtaining the chaotic trajectories by means of kinematic relative motion

First, let us describe the context. We consider a two-dimensional domain with its stationary coordinate system F0 (Fig. 3).
In this reference frame we establish an arbitrary closed contour C on which the origin O of a moving translation frame F (each
of the F axes remains parallel with corresponding axes of F0, any kind of rotation being forbidden) will slide with a constant
velocity performing a periodic motion.

The relative motion is described by the following vector equation:

r0
!
ðtÞ ¼~rðtÞ þ r0O

!
ðtÞ; ð2Þ

where r0
!
ðtÞ and~rðtÞ are the position vectors of a trajectory point in the stationary and mobile coordinate frames at time t and

r0
!

OðtÞ is the position vector of the origin O of the mobile frame with respect to the fixed frame (in our case indicates a posi-
tion along the closed contour).

As a matter of notation, in what follows we will denote with prime the variables in stationary coordinate frame and with-
out prime the variables in the mobile frame.

The combined motion can be described by the following set of equations:

x0nþ1 ¼ xnþ1 þ bx0nþ1

y0nþ1 ¼ ynþ1 þ by0nþ1

)
composite dynamics based on relative motion concept

xnþ1 ¼ yn þ 1� a � x2
n

ynþ1 ¼ b � xn

)
Henon chaotic system

ðbx0nþ1; by0nþ1Þ ¼ f ðbx0n; by0 nÞperiodic motion of the origin O

of the mobile frame on the closed contour C

8>>>>>>>>>><>>>>>>>>>>:
ð3Þ

The remainder of this section is dedicated to the proof of chaotic properties of the newly generated trajectory obtained by
sliding an evolving Hénon system on a closed contour. In other words, we will demonstrate that the system described by (3)
is chaotic. For this, we will appeal to a working chaotic system definition. During the time, a lot of definitions for chaos
[8,22,23] have been proposed but none of them has gained unanimous acceptance [24–26]. A working definition was formu-
lated by Strogatz [27] stating that chaos represents an aperiodic long-term behavior in a deterministic system that exhibits
sensitive dependence on initial conditions. A pragmatic approach to prove that a system is chaotic is to demonstrate that it
displays the following features [20]: the system is deterministic; its trajectories are bounded when starting from a point
within its attracting basin; and it exhibits at least one positive Lyapunov exponent. With these three features in mind, we
will start a brief proof of a lemma which represents the cornerstone of our methodology.

Lemma: When translating the coordinate frame F in which a Hénon system evolves, the Lyapunov exponents related to
the fixed coordinate frame F0 are conserved.

Proof: The demonstration is presented here only for the x0 coordinate, for y0 being similar. Let us consider an infinitesimal
difference dx0 ð0Þ ¼ Dx0 ð0Þ ¼ x01ð0Þ � x02ð0Þ between the starting points x01ð0Þ and x02ð0Þ of two adjacent trajectories, coordinates
being given in the stationary frame. The Lyapunov exponent [27] corresponding to the x0 coordinate for the system evolving
in the fixed frame is defined as:

kxfixedframe ¼ lim
t!1

lim
dx0!0

1
t
� ln x01ðtÞ � x02ðtÞ

x01ð0Þ � x02ð0Þ
ð4Þ

By decomposing the general vector equation of relative motion (2), let us evaluate the distance between the two trajec-
tories at the t moment in time:

Fig. 3. Obtaining the chaotic path via relative motion.
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Dx0 ðtÞ ¼ x01ðtÞ � x02ðtÞ ¼ ðx1ðtÞ þ r0OxðtÞÞ � ðx2ðtÞ þ r0OxðtÞÞ ¼ x1ðtÞ � x2ðtÞ ¼ DxðtÞ ð5Þ

where r0OxðtÞ represents the displacement for x0-coordinate at t moment in time of the moving coordinate system versus the
fixed one. Eq. (5) confirms that the distance between the two trajectories is the same with report to stationary or mobile
coordinate frame even if an additional movement on the closed contour was introduced.

By particularizing (5) for t = 0, we obtain:

dx0 ð0Þ ¼ Dx0 ð0Þ ¼ Dxð0Þ ¼ dxð0Þ ð6Þ

Using (5) and its particularized value for initial conditions (6), the Eq. (4) becomes:

kx fixed frame ¼ lim
t!1

lim
dx0!0

1
t
� ln x01ðtÞ � x02ðtÞ

x01ð0Þ � x02ð0Þ
¼ lim

t!1
lim
dx!0

1
t
� ln x1ðtÞ � x2ðtÞ

x1ð0Þ � x2ð0Þ
¼ kx mobile frame ð7Þ

This demonstrates that the Lyapunov exponents are conserved by the kinematic relative motion.
Remark: The above lemma is a necessary but not sufficient condition for trajectories obtained via relative motion to be

chaotic. For sufficiency, we also need to assure their boundedness. This key issue is solved when the mobile frame is trans-
lated on a closed contour.

Theorem. Let us consider a Hénon system S that evolves in a mobile coordinate frame F. If this reference frame is translated
with a finite velocity along a given two-dimensional closed contour C, a new chaotic system is obtained. Moreover, the
Lyapunov exponents are conserved via this transformation.

Proof: We will demonstrate the three mentioned conditions for a dynamical system to be chaotic.

� Determinism – Let us consider an initial state of the system that includes the absolute position of the origin O of the mobile

frame r0O
!
ð0Þ and the initial state of the Hénon system inside the mobile frame. Because S is deterministic and the equation

of periodic motion of origin O on the closed contour C is known and deterministic, we can precisely determine every
future states of the system. As can be seen, no randomness is implied, thus, the new system is deterministic.
� Boundedness – Let us consider that the initial point (x0,y0) of the Hénon system S belongs to its attracting basin [28].

Knowing that such trajectories are bounded [22], their coordinates x and y (correspond to x0 and y0) in the mobile frame
are also bounded: xS 2 ðxSmin; xSmaxÞ, yS 2 ðySmin; ySmaxÞ. Let us consider that the lower and upper limits of the coordinates x0

and y0 for the established closed contour C are x0C;min and x0C;max, respectively y0C;min and y0C;max. We can conclude that the x0

coordinate for the new system, denoted by x0S0 will evolve inside the interval x0S0 2 ðx
0
C;min � xSmin; x0C;max þ xSmaxÞwhile for the

y coordinate we will have y0S0 2 ðy
0
C;min � ySmin; y

0
C;max þ ySmaxÞ. As a result, the obtained system is bounded.

� Lyapunov exponents – Because S is a chaotic system (Hénon), at least one of its Lyapunov exponents is positive (i.e.
k1 ¼ 0:408). As shown by the above lemma, all of the Lyapunov exponents are conserved in the case of our combined
motion. This leads us to the conclusion that the new system (3) exhibits at least one positive Lyapunov exponent, equal
to the one exhibited by the Hénon system: k1 ¼ 0:408.

Because all the three conditions are met, the new system, obtained by translating the Hénon system along a closed con-
tour, is indeed chaotic.

Regarding this theorem, two important observations are worth mentioning:

(i) as can be seen, each newly introduced element around the original chaotic system (Hénon system) contributes to the
purpose of preserving the chaotic properties: the contour is closed to assure confined trajectories, the velocity of the
mobile frame is bounded for the same reason and the relative motion is used because it conserves the Lyapunov expo-
nents; and

(ii) there is no restriction related to the guiding closed contour, so we can use any type of closed line, including self-inter-
secting, contours with overlapping sections, or even a simple line segment (e.g. can be considered a closed contour in
the shape of a triangle with two coincident vertices).

4. Methodology

Based on the above demonstrated theorem, we designed a simple and efficient methodology for obtaining new chaotic
trajectories in the proximity of any arbitrarily chosen closed contour for boundary surveillance purposes. This methodology
comprises the following four steps:

4.1. Select a closed contour (C) in the two-dimensional space

The closed contour established in this step represents the guiding line for the new chaotic trajectory (the origin of the
mobile frame is moving in a periodic motion along it) and has to be chosen in the proximity of the boundary that has to
be monitored. It can be the boundary itself in the case that the robot can go outside the perimeter fence or a parallel line
of the boundary, placed inside the perimeter, if the robot cannot exceed the boundary contour.

D.-I. Curiac, C. Volosencu / Commun Nonlinear Sci Numer Simulat 19 (2014) 3617–3627 3621
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After selecting the C contour, a point-by-point motion along it can be formalized by:

bx0nþ1; by0 nþ1

� �
¼ f bx0n; by0n� �

ð8Þ

where f is a discrete periodic function and each pair of coordinates ðbx0 i; by0 iÞ specifies a point on the guiding line:

bPi ¼ bP bx0 i; by0 i� �
2 C: ð9Þ

4.2. Choose the vicinity in which the robot must evolve;

Based on the guiding line established in the first step, we have to determine the area that surrounds it in which the robot
must evolve. A practical way to select the vicinity in which the robot will develop its path is to establish a circular vicinity for
each arbitrary point bPi of the guiding line. This circle will have its center in the bPi location and a diameter denoted by d
(Fig. 4).

The diameter of this vicinity is chosen by considering an assortment of factors which includes: terrain configuration,
obstacles located in the proximity of the boundary, other activities taking place in the area that can interfere with the robot’s
task, range of the robot’s sensors that have to monitor the given boundary, average speed of the mobile robot, adopted con-
trol law for the robot when pursuing the point-by-point chaotic path, etc.

4.3. Adapt the Hénon chaotic system using affine transformations;

To ensure that Hénon system will evolve in the established surrounding area (chosen in step 2) of the guiding line, a tun-
ing procedure must be performed. This can be accomplished using simple affine transformations like scalings, translations or
rotations that are applied to the original Hénon system and are based on the Hénon system’s trapping region presented in
Fig. 1. As a consequence, the Hénon system (1) will be adapted using an appropriate change of variables.

For example, the following formulas that map the trapping region inside a circle of diameter d can be used:

~xn ¼ 0:3225 � d � xn þ 0:0875d
~yn ¼ yn

�
ð10Þ

where xi and yi are the variables of the Hénon system.

4.4. Construct the new chaotic trajectory via relative motion

Having the guiding line and the adapted Hénon system, we can obtain a point-by-point chaotic trajectory by applying the
relative motion concept depicted in paragraph 2.2. The system of equations describing the new chaotic path is similar to (3),
with only one difference - the classic Hénon system is replaced, if needed, by an adapted version which encloses the variable
change (10).

5. Case studies

In this section we illustrate our proposed methodology in a simple case of a circular guiding line and in two more complex
cases where the closed contour is either a concave polygonal shape or a smooth closed curve. Moreover, for the circular guid-
ing line, the chaotic properties of the newly designed trajectory will be verified by constructing the bifurcation diagram.

Fig. 4. Selecting the vicinity’s dimension by choosing the diameter d.
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In order to simulate the motion of a patrol robot along the chaotic path provided by our motion-planning approach, we
made use of the kinematic closed-loop control law of a wheeled robot presented in [29–31].

5.1. Patrol robot kinematics model

Let us consider a differential mobile robot with three wheels: two parallel and independently driven active wheels and
one passive caster wheel to ensure the robot’s stability. The motion for this type of robots is controlled by modulating the
active wheels’ velocities xleftðtÞ and xrightðtÞ, which is equivalent with considering the robot’s linear and angular velocities
denoted by vðtÞ and xðtÞ as control variables [30].

Our path-planning methodology provides a sequence of time-ordered waypoints that has to be followed by the mobile
robot. The motion between two successive waypoints depends on the type of robot, its capabilities and the adopted motion
control strategy. In the case of the differential mobile robot with three wheels considered here, the simplest mode to follow a
point-by-point path is to consider that on each trajectory segment the motion is split in two: a rotation until the robot is
positioned on the direction to the next waypoint and a linear motion directly to the waypoint. This approach has a major
disadvantage in the case of adversarial conditions: when rotating, the robot is not changing its Cartesian coordinates and
is more susceptible to attack. To overcome this drawback, we appeal to another motion control approach where the position
is continuously changing, even if the real trajectory is not superposed on the straight segment between two consecutive
waypoints.

The motion control problem configuration, when the mentioned robot is on the route to the following waypoint, can be
visualized in Fig. 5, where q is the position error (distance between present and target positions) and u is the orientation
error.

The motion between the current and the goal positions can be formalized by:

_q
_u

� �
¼
�cosu 0
1
q sinu 1

" #
v
x

� �
: ð11Þ

In this context, an efficient control law is the one provided by Lee et.al [29]:

v ¼ k1qcosu
x ¼ �k1sinucosu� k2u

�
; ð12Þ

which is proved to take the robot to the target point on a smooth path. Moreover, the controller’s tuning process is simple,
k1 being used to minimize the position error and k2 the orientation error.

5.2. Chaotic trajectory with a circular guiding line

We considered a circular guiding line without establishing constraints about the vicinity in which the robot will evolve
(there is no need for adapting the Hénon system via change of variables). Under these circumstances, the new chaotic system
is represented by the following set of equations:

Fig. 5. Robot control configuration.
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x0nþ1 ¼ xnþ1 þ bx0nþ1

y0nþ1 ¼ ynþ1 þ by0nþ1

)
composite motion based on relative motion concept

xnþ1 ¼ yn þ 1� a � x2
n

ynþ1 ¼ b � xn

)
Henon chaotic system

bx0nþ1 ¼ R0 � cosðh00 þ 2p � n
pÞ þ x0centerby0nþ1 ¼ R0 � sinðh00 þ 2p � n
pÞ þ y0center

9=;periodic motion on a circle of R0 radius

8>>>>>>>>>>><>>>>>>>>>>>:
ð13Þ

where x0center and y0center are the circle’s center coordinates, R’ is the radius of the circle, h00 is the initial central angle measured
counterclockwise from the positive horizontal-axis, p is the number of points considered on the circle circumference (at
equal central angles), x0i and y0i are the coordinates in the stationary frame, bx0 i and by0 i are the positions on the closed contour.
The chaotic path generated using (13), for x0origin ¼ y0origin ¼ 0, R0 = 5 and p = 40, is depicted in Fig. 6.

For a supplementary verification of the chaotic feature for the designed path (the demonstration was already given by the
theorem presented in paragraph 2.2), we drew the bifurcation diagram corresponding to the new chaotic system (13) for
b = 0.3 (Fig. 7). It starts with 21 branches (there are 21 possible values for bx0n on the circular guiding line if p = 40 and
h00 ¼ 0), and by comparing its shape with the Hénon’s bifurcation diagram (Fig. 2) we notice that the chaotic regime appears
for the same values of parameter a. For a = 1.4, the system is indeed chaotic.

5.3. Chaotic paths with arbitrarily chosen guiding lines

In this section, we depict two demonstrative examples involving more complex guiding lines: a concave polygonal shape
and a smooth closed contour obtained using a spline interpolation procedure.

In the first example, the guiding line for the chaotic path is represented by a concave polygon, with five vertices having
the following Cartesian coordinates: (�4,�4), (�2,4), (4,4), (2,2) and (4,0). The boundary proximity in which the robot must

−8 −6 −4 −2 0 2 4 6 8
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y n

Fig. 6. The circular guiding line and corresponding chaotic path of the differential patrol robot (k1 ¼ 1:5; k2 ¼ 4).

Fig. 7. Bifurcation diagram for the new chaotic system if b = 0.3.
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Fig. 8. Concave polygonal contour.
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Fig. 9. Chaotic path in the proximity of a polygonal contour (five complete laps along the guiding line).
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Fig. 10. Smooth closed curve used as a guiding line.
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evolve is defined by the diameter d = 1.6 of a circular vicinity for an arbitrary point of the contour. As a consequence, we
adapted the Hénon system using (10). The guiding line and the resulted chaotic path followed by the mobile robot (for
k1 ¼ 1:5; k2 ¼ 4) are presented in Fig. 8 and Fig. 9.

For the second example we started with the following set of points: (1,1), (2,1), (5,2), (3,5), (1,5) and (2,3). The smooth
guiding line (Fig. 10) was constructed using the natural cubic spline interpolation method [32,33]. In choosing the surround-
ing area of the contour where the robot will evolve, we started with the following assumptions: the terrain is flat with no
obstacles; the contour is represented by a sequence of 220 intermediary points; the average velocity of the robot is consid-
ered around 0.3 m/s; and the desired time to complete a full lap is around 4 min. By simulating the trajectory length of a
complete lap for diverse vicinity diameters d, we obtained the diagram presented in Fig. 11. To meet the desired time to
accomplish a full lap, we selected d = 0.6. For this value, the length of a complete lap is 73.13 m, which can be accomplished
by our robot in 243.18 s.

By applying the change of variables (10) to obtain the adapted Hénon system, the robot’s chaotic path (for
k1 ¼ 1:5; k2 ¼ 2:5) will have the shape presented in Fig. 12, which confirms once again the efficiency of our methodology.

6. Conclusions

This paper addresses the problem of obtaining unpredictable paths for mobile robots accomplishing boundary patrol mis-
sions in adversarial conditions. We have demonstrated that new chaotic trajectories can be obtained using the relative mo-
tion concept in a simple and efficient manner. We started with the periodic motion on a closed contour of a reference frame
in which the Hénon chaotic system evolves. We proved that the compound trajectories obtained in the fixed frame are also
chaotic and, furthermore, preserve the chaotic properties of the Hénon system. Based on this result, we developed an original
method to create chaotic trajectories in the proximity of any arbitrary boundary shape.
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Fig. 11. Trajectory length for diverse diameters of the vicinity.
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Fig. 12. Chaotic robot path in the proximity of closed curve (two complete laps along the guiding line).

3626 D.-I. Curiac, C. Volosencu / Commun Nonlinear Sci Numer Simulat 19 (2014) 3617–3627



Author's personal copy

References

[1] Okamura AM, Mataric MJ, Christensen HI. Medical and health-care robotics. IEEE Rob Autom Mag 2010;17(3):26–37.
[2] van Henten EJ, Hemming J, Van Tuijl BAJ, Kornet JG, Meuleman J, Bontsema J, et al. An autonomous robot for harvesting cucumbers in greenhouses.

Auton Robot 2002;13(3):241–58.
[3] Slaughter DC, Giles DK, Downey D. Autonomous robotic weed control systems: a review. Comput Electron Agr 2008;61(1):63–78.
[4] Hameed A, Bochtis D, Sørensen CA. An optimized field coverage planning approach for navigation of agricultural robots in fields involving obstacle

areas. Int J Adv Rob Syst 2013;10(231):1–9.
[5] Franke J, Charoy F, El Khoury P. Framework for coordination of activities in dynamic situations. Enterp Inf Syst-UK 2013;7(1):33–60.
[6] Muscato G, Bonaccorso F, Cantelli L, Longo D, Melita CD. Volcanic environments: robots for exploration and measurement. IEEE Rob Autom Mag

2012;19(1):40–9.
[7] Bi ZM, Kang B, Sensing and responding to the changes of geometric surfaces in flexible manufacturing and assembly. Enterp Inf Syst-UK 2012:1–21,

ahead-of-print.
[8] Kellert SH. In the wake of chaos: unpredictable order in dynamical systems. University of Chicago Press; 1994.
[9] Nakamura Y, Sekiguchi A. The chaotic mobile robot. IEEE Trans Rob Autom 2001;17(6):898–904.

[10] Martins-Filho LS, Macau EEN. Patrol mobile robots and chaotic trajectories. Math Probl Eng 2007;2007. no. 61543.
[11] Martins-Filho LS, Macau EEN. Trajectory planning for surveillance missions of mobile robots. In: Autonomous robots and agents. Berlin

Heidelberg: Springer; 2007. p. 109–17.
[12] Islam M, Murase K. Chaotic dynamics of a behavior-based miniature mobile robot: effects of environment and control structure. Neural Networks

2005;18(2):123–44.
[13] Volos CK, Kyprianidis IM, Stouboulos IN. Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Rob Auton Syst

2013.
[14] Volos CK, Kyprianidis IM, Stouboulos IN. A chaotic path planning generator for autonomous mobile robots. Rob Auton Syst 2012;60(4):651–6.
[15] Li C, Wang F, Zhao L, Li Y, Song Y. An improved chaotic motion path planner for autonomous mobile robots based on a logistic map. Int J Adv Rob Syst

2013;10. no. 273.
[16] Curiac DI, Volosencu C. Developing 2D trajectories for monitoring an area with two points of interest. In: Proc. of the 10th WSEAS Int. conference on

automation and information, 2009. p. 366–369.
[17] Curiac DI, Volosencu C. Chaotic trajectory design for monitoring an arbitrary number of specified locations using points of interest. Math Probl Eng

2012;2012. no. 940276.
[18] Hénon M. A two-dimensional mapping with strange attractor. Commun Math Phys 1976;50:69–77.
[19] Lorenz EN. Deterministic nonperiodic flow. J Atmos Sci 1962;20:130–41.
[20] Dingwell JB. In: Akay M, editor. The Wiley encyclopedia of biomedical engineering. USA: Wiley; 2006.
[21] Wolf A. Quantifying chaos with Lyapunov exponents. In: Holden AV, editor. Chaos. New Jersey: Princeton University Press; 1986. p. 270–90.
[22] Devaney RL. An introduction to chaotic dynamical systems. Studies in nonlinearity. Boulder, Colorado, USA: Westview Press; 2003.
[23] Li TY, Yorke JA. Period three implies chaos. Am Math Mon 1975;82(10):985–92.
[24] Linz SJ, Sprott JC. Elementary chaotic flow. Phys Lett A 1999;259(3):240–5.
[25] Lal DK, Swarup KS. Modeling and simulation of chaotic phenomena in electrical power systems. Appl Soft Comput 2011;11(1):103–10.
[26] Li C, Chen G. Estimating the Lyapunov exponents of discrete systems. Chaos 2004;14(2):343–6.
[27] Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. USA: Addison-Wesley; 1994.
[28] Nusse HE, Yorke JA. Basins of attraction. Science 1996;271(5254):1376–80.
[29] Lee SO, Cho YJ, Hwang-Bo M, You BJ, Oh SR. A stable target-tracking control for unicycle mobile robots. In: Proc. of IEEE/RSJ international conference on

the intelligent robots and systems 2000 (IROS 2000), vol. 3. 2000. p. 1822–1827.
[30] Martins-Filho LS, Macau EEN, Rocha R, Machado RF, Hirano LA. Kinematic control of mobile robots to produce chaotic trajectories. ABCM Symp Ser

Mechatron 2005;2:258–64.
[31] Martins-Filho LS, Machado RF, Rocha R, Vale VS. Commanding mobile robots with chaos. ABCM Symp Ser Mechatron 2004;1:40–6.
[32] Schoenberg IJ. Cardinal interpolation and spline functions. J Approx Theory 1969;2(2):167–206.
[33] Lee ETY. Choosing nodes in parametric curve interpolation. Comput Aided Design 1989;21(6):363–70.

D.-I. Curiac, C. Volosencu / Commun Nonlinear Sci Numer Simulat 19 (2014) 3617–3627 3627


