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ABSTRACT: Objective expertise evaluation of individuals, as a prerequisite stage for team formation, has been a
long-term desideratum in large software development companies. With the rapid advancements in machine learning
methods, based on reliable existing data stored in project management tools’ datasets, automating this evaluation
process becomes a natural step forward. In this context, our approach focuses on quantifying software developer
expertise by using metadata from the task-tracking systems. For this, we mathematically formalize two categories
of expertise: technology-specific expertise, which denotes the skills required for a particular technology, and general
expertise, which encapsulates overall knowledge in the software industry. Afterward, we automatically classify the
zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations
from Transformers (BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.
Finally, our method evaluates the proficiency of each software specialist across already completed projects from both
technology-specific and general perspectives. The method was experimentally validated, yielding promising results.

KEYWORDS: Expertise formalization; transformer-based models; natural language processing; augmented data;
project management tool; skill classification

1 Introduction
In the context of today’s rapidly evolving technological landscape, the precise identification of software

experts has become a critical factor when assembling effective development teams, improving productivity,
and optimizing development timelines. However, it remains a core issue, especially in large companies where
individual skills and contributions are not always visible.

Well-structured teams contribute to creating a collaborative and innovative work environment [1]. The
traditional approach of finding experts through the human resources department is a time-consuming task
that requires substantial resources from organizations [2]. Automatic software approaches can improve the
detection of patterns and relationships that are often difficult to observe otherwise. This enables a more
objective evaluation of the skills and experiences of team members. In addition, it can be continuously
refined and adjusted as new data become available. This capacity for ongoing learning ensures that teams
are consistently optimized to meet future needs and goals. Notable research works in this field include
collaboration graphs from email lists [3], locating expertise within organizations through recommendation
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systems [4], and semi-automated methods for assessing expertise using Machine Learning (ML) techniques
to analyze the types of bugs developers have resolved [5].

In this paper, we propose a method for evaluating the software specialists’ expertise by leveraging
metadata from project management tools like Jira, Trello, Asana, and Azure DevOps. Our approach begins
by formulating two mathematical models to evaluate specific technology expertise and general expertise.
We then develop a technique that automatically identifies the relevant skills for each developer, using an ML
model trained on labels extracted from the StackOverflow dataset and transferring the knowledge to the
task-tracking tool dataset. This allowed us to profile developers across different technology stacks without the
need for manual analysis of their tasks. We also estimate the task complexity based on metadata recorded by
task-tracking tools, such as issue type, connections to other tasks, priority, number of comments, and story
points, which enabled us to accurately assess the prior work of each software specialist. Finally, we calculate
the expertise-related individual scores for each possible candidate for a team position.

Our contributions are as follows:

• We formalize two mathematical models to calculate specific technology-related expertise and general-
ized expertise of a software developer based on task metadata recorded by project management tools.

• We propose an automated method to identify the skills and programming languages associated with
already-completed tasks using BERT-like models. We confirm that models trained on software engineer-
ing data are more efficient in identifying technical details than models trained on general language.

• In the experimental section, we validate the proposed system.

The rest of the paper is organized as follows. In Section 2, we provide an overview of the related work in
the field. Section 3 describes the features that need to be extracted from project management tool databases
to effectively formalize the expertise, as well as our mathematical models to evaluate technology-related
and overall expertise. In Section 4, we present the proposed methodology in detail. Section 5 presents the
experimental validation and discusses the results. In Section 6, we outline the main research implications of
our work. Section 7 describes the threats to validity. Finally, we conclude with Section 8.

2 Related Work
Previous research on identifying and assessing individual expertise has been focused on two specific

areas. The first focus was placed on automatically identifying the skills and technologies related to a software
specialist, while the second was centered on evaluating the level of expertise from available data.

2.1 Automatic Assessment of Programming Skills
Software engineering teams rely on project management tools to organize their day-to-day tasks.

Generally, the tasks do not include metadata about the programming language or technology used. Although
it is possible to manually add labels or tags to indicate the technologies, they are often omitted.

In this particular context, predicting team roles from available data can increase our understanding
of workflows. In their pioneering study, Martens and Franke [6] demonstrated that machine learning
techniques could be used to extract individual roles from software repositories. They classified team positions
such as developer, architect, scrum master, product owner, and team manager based on data collected from
task-tracking systems. This research highlights the potential of using machine learning to analyze existing
software engineering data for role identification, which may improve team dynamics and resource allocation.

In our research, we are using StackOverflow and Jira datasets to understand and identify the technical
skills of developers, based on multiple metrics. The use of StackOverflow data has already been studied for
classification tasks. Alreshedy et al. [7] developed a Multinomial Naive Bayes classifier, named SCC, trained
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on StackOverflow posts to predict programming languages, which achieved an F1 accuracy score of 75%.
In their newer study [8], they utilized an improved version called SCC++, built on top of XGBoost and the
Random Forest algorithms, that achieved an accuracy of 88.9% across different programming languages.

A recent paper proposes the automatic classification of issues by their type, using large language models
(LLMs), particularly GPT-like models [9]. Another study proposes CaPBug, a framework for automatically
classifying bugs using machine learning techniques such as Multinomial Naive Bayes, Random Forest,
Decision Trees, and Logistic Regression [10]. Though this framework outlines the task type, we aim to
conduct a more in-depth analysis of the specific technology involved in the issue.

Another branch of research employs pre-trained models to improve the accuracy of source code
comprehension. Karmakar and Robbes [11] compared several pre-trained models (i.e., BERT, CodeBERT,
CodeBERTa, and GraphCodeBERT). Their findings indicate that GraphCodeBERT outperforms other
models in coding tasks, while BERT performed well in some other instances. This suggests that models
pre-trained solely on natural language can still capture some software engineering semantics. Moreover,
one relevant study demonstrated that CodeBERT, when specifically trained on source code, outperforms
natural language models like RoBERTa in detecting software errors [12]. The results show the importance
of task-specific pre-training in improving code understanding. Our approach builds upon these findings by
utilizing BERT-like models for tasks that involve both source code and natural language inputs, such as task
descriptions. By combining specialized terminology with code examples, we aim to improve the accuracy of
programming language classification.

Before the pre-trained models, classical natural language processing techniques predominated in
code-related tasks. From this perspective, a relevant study utilized statistical models, including n-grams,
skip-grams, and Multinomial Naive Bayes (MNB), to classify programming languages from code fragments
within GitHub data [13]. Similarly, Odeh et al. [14] used MNB classifiers for automatic programming
language detection, demonstrating their effectiveness in editors such as Visual Studio Code or Notepad+. The
authors of [15] used Support Vector Machines (SVMs) to classify source code into programming languages,
demonstrating that traditional machine learning techniques can successfully perform this kind of task.

Another relevant study uses Long Short-Term Memory (LSTM) networks to automatically classify
programming languages, receiving increased accuracy compared to the MNB method [16]. However, as
noted by the authors of [17], such methods still exhibit lower efficiency in the absence of a natural language
description accompanying the code. Our work addresses this limitation by integrating textual context in
the form of task descriptions and summaries alongside code fragments. By this, our approach enables more
accurate classification compared to the methods that rely only on code.

This paper provides an improved model for identifying programming skills used in tasks from our
previous study [18], increasing the F1 score and incorporating additional classification labels.

2.2 Data-Driven Expertise Level Assessment
Understanding the expertise of a developer depends on the type of task he has worked on. Wysocki

et al. [19] introduced a new concept for classifying project tasks to optimize management support systems
within the software engineering industry. Their work suggests the importance of task-related data and
presents a classification method for categorizing tasks. Another similar study highlights the importance
of metadata used to classify Jira tasks [20]. Here, the authors managed to automatically assign Jira issues
to developers. They utilized Latent Dirichlet Allocation (LDA) to perform topic modeling on the Apache
dataset. A mathematical method is proposed in [21], where the authors implement an expertise recommender
based on task descriptions from Jira. They use the term frequency-inverse document frequency (tf-idf)
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method to recommend experts. In our study, we also focus on classifying expertise based on task categories
utilizing the available metadata recorded by project management tools.

Two relevant studies highlight the benefits of systematically analyzing project repositories to obtain
insights into software development processes [22,23]. They emphasize that issue tracking platforms contain
rich metadata that can be mined to characterize developer activities and collaboration patterns. By utilizing
this information, project monitoring can be improved, and behavioral trends among developers can be
identified. Such insights provide a valuable foundation for our study to identify relevant attributes for
assessing expertise.

Beyond software tools, an interesting method for identifying experts within the multisensor data fusion
framework was proposed by Moreira and Wichert [24]. They define three sensors, each operating inde-
pendently and presenting different candidates. The results from all sensors are combined using Shannon’s
Entropy formula to produce a final list of experts.

In social networks, the authors of [25] propose a method for identifying social media application users
who can offer professional answers to questions posed by other users. They create dynamic profiles for each
user based on data obtained from social network applications, as well as other metrics such as user quality
and trust, using mathematical methods. McLean et al. [26] expand expertise identification to organizations
by using corporate data, more specifically documents, as evidence of expertise. They extract data from the
web to create a profile for each user. This data is then used to calculate a score for each individual. ExpFinder
is another expert recommender system that utilizes datasets from the academic field [27]. Here, the authors
use both an N-gram vector space model and μCO-HITS, comparing them with other expert finder models
and demonstrating the effectiveness of their approach.

Rather than concentrating solely on programming languages or bug categorization, we analyze a wider
range of inputs, including communications, comments, and task metadata, to create a comprehensive
algorithm for calculating the expertise-related scores of each developer.

3 Software Development Expertise Formalization
Individual expertise in the software development industry can be perceived from two different points

of view:

(i) expertise in a specific technology, which indicates the level of in-depth knowledge and skills related
to a specific area, such as Java programming, data science, database management, computer vision,
cybersecurity, mobile development, WordPress, etc. This type of expertise is essential for solving
specific technical tasks.

(ii) generalized expertise, which refers to a wide range of skills, knowledge, and experiences that are
applicable across various fields. It encompasses a broad knowledge base and abilities such as analytical
thinking, problem-solving, adaptability, creativity, flexibility, etc.

Both components are essential in building high-performing teams for new projects. Expertise in a spe-
cific area can enable the solving of complex problems, the application of best practices based on technicality,
and the optimization of processes. Having solid experience in specific technologies is beneficial for working
with the latest technologies and addressing industry requirements. On the other hand, generalized expertise
can contribute to adaptability across various themes and integrate diverse knowledge to develop innovative
solutions. It may allow professionals to work efficiently in interdisciplinary teams and understand the broader
context of a project.
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The two types of expertise can be evaluated from historical data stored in company databases. By
analyzing tasks from past projects, organizations can evaluate the expertise level of their employees to make
informed decisions when forming teams.

The first step in developing expertise models involves identifying the relevant fields within historical
data that should be considered. Table 1 presents the relevant features (i.e., fields) we identified in this respect
within four project management tools: Jira, Trello, Asana, and Azure DevOps. The first column presents the
features, while each subsequent column indicates whether these fields are available in the respective project
management tool. If the field name differs from the specified one, we provided the tool’s annotation for clarity.

Table 1: Features in different project management tools

Feature Jira Trello Asana Azure DevOps
ID ✓ ✓ ✓ ✓

Title Summary Name Name ✓

Description ✓ ✓ Notes ✓

Comments ✓ ✓ Stories ✓

Attachments ✓ ✓ ✓ ✓

Labels ✓ ✓ Tags Tags
Assignee ✓ Member ✓ ✓

Reporter ✓ x x ✓

Start date ✓ ✓ ✓ ✓

Due date ✓ ✓ ✓ ✓

Parent ✓ x ✓ ✓

Subtask ✓ Checklist ✓ Child
Type Issuetype x x Workitemtype

Priority ✓ x ✓ ✓

State ✓ ✓ Section ✓

Connections Issuelink x ✓ Relations
History Changelog Actions Stories ✓

Time spent ✓ x ✓ CompletedWork
Story points ✓ x ✓ ✓

Automation ✓ ✓ ✓ ✓

Note: Underlined features mark the components used in expertise formal-
ization.

We then modeled the expertise of a developer based on a set of carefully designed mathematical
formulas that incorporate the various features we identified inside the issue-tracking tools. We specifically
targeted information extracted from Jira, but the obtained expertise model can be easily adapted to
other tools, including Trello, Asana, or Azure DevOps. These formulas consider key metrics such as task
connections, the total number of task reopens, the size of the changelog, the number of comments exchanged
between developers, the count of subtasks, the time spent on the issue, the task’s priority, and the technology
or programming language utilized in the task. By analyzing these parameters, we aimed to classify the
developers based on their expertise in a particular area as ‘novice’, ‘intermediate’, or ‘master’, and based on
their general expertise as ‘junior’, ‘mid’, or ‘senior’.
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3.1 Features Relevant to the Assessment of Expertise
We have identified nine features that may be used when formalizing the expertise of a developer.

These features are underlined in Table 1 and briefly presented in Section 3.1. To maintain consistency across
different scales, each value corresponding to these attributes will be normalized using a normalization
method. We selected specific normalization methods best suited for the characteristics of each feature, but
the approach is flexible and can support alternative normalization strategies.

3.1.1 Comments
The field Comments contains an array of JavaScript Object Notation (JSON) objects, each object storing

information related to a comment between the developers involved in the given task. A higher number of
comments may indicate increased task-related activity, and by this, a higher complexity. To express this
variable, we used Eq. (1):

φ1, i = normalize
i=1, . . . ,m

(cmni) (1)

where cmni represents the total number of comments within task i obtained by counting the number of the
objects included in the Comments array, m is the total number of tasks, while normalize is a normalization
function that outputs a value between 0 and 1. A suitable selection of this function is the min-max
normalization because the data follows a consistent scaling while preserving the relative differences.

3.1.2 Subtask & Parent
The Subtask field contains an array of JSON objects that encompasses information about the subtasks of

the current task (e.g., ID, name, project ID, description, type), while Parent is a JSON object with information
regarding the parent task. Analyzing the content of both the Subtask and Parent we devise the si complexity-
related parameter belonging to task i, as presented in Table 2.

Table 2: Subtask-related value definition

Condition si Complexity of the task
Subtask and Parent are empty 0 Easy

Parent is populated 1 Medium
Subtask is populated and Parent is empty 2 High

Afterward, the si value will be normalized using a predefined normalization function (2):

φ2, i = normalize
i=1, . . . ,m

(si) (2)

In this case, a proper selection is the min-max normalization function.

3.1.3 Type
The Type field contains a string that describes the category of the task that, in our view, can be associated

with a precise value of a complexity-related parameter, denoted by iti . For example, if the Type field is
populated with one of the subtask, task, story, bug, or epic strings, the iti parameter may take the values
presented in Table 3.
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Table 3: Task-related value definition

Type iti Complexity of the task
Subtask 0 Very easy

Task 1 Easy
Story 2 Medium
Bug 3 High
Epic 4 Very high

The iti value is normalized to the [0, 1] interval using Eq. (3):

φ3, i = normalize
i=1, . . . ,m

(iti) (3)

a suitable choice in this regard being the min-max normalization.

3.1.4 Priority
The Priority field describes the urgency of a task using predefinite strings. Most projects use the following

priority levels: none, low, medium, and high. These correspond to 0, 1, 2, and 3 priority-related values pi ,
respectively. Some projects have proposed other items to define priority, for example, the Apache project
uses the following categories: none, trivial, minor, major, critical, and blocker. In this case, the associated pi
values may be set to 0, 1, 2, 3, 4, and 5, respectively.

In order to rescale the pi values to the [0, 1] interval, we may use the Eq. (4):

φ4, i = normalize
i=1, . . . ,m

(pi) (4)

where a suitable selection for the normalization function is the hyperbolic tangent, because a nonlinear scale
might better reflect the escalating impact of the priority levels.

3.1.5 Connections
The Connections field is an array of JSON objects containing information about connected tasks or

issues, such as issue links (e.g., the task is blocked by a specified task), parent-child relationships with other
tasks, connections with external tools. The number of connections obtained by counting the number of JSON
objects indicates the level of dependency other tasks have on the completion of task i. This integer, denoted
by cni , may be normalized using Eq. (5):

φ5, i = normalize
i=1, . . . ,m

(cni) (5)

In this case, an appropriate choice for the normalization function is min-max normalization.

3.1.6 History
The History field is an array of objects that records all changes made during task completion. We define

a rni metric, which represents the number of reopens within task i and is calculated by counting the number
of History objects that include the status subfield with the value “Reopened”. The number of reopens is an
indicator of complexity, which means that a task i was not entirely solved from the first attempt. A value of
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0 indicates that the task was never reopened, while higher values show that the task i was reopened multiple
times. The rni parameter is normalized using Eq. (6):

φ6, i = normalize
i=1, . . . ,m

(rni) (6)

where a suitable choice for the normalization function is the hyperbolic tangent.
From another perspective, a large number of updates or transitions recorded in the History field of a

task indicates a higher complexity. In this context, we define a new complexity-related parameter, namely
chni , obtained by counting the number of changes that occur within the task (i.e., the number of objects in
History). The chni may be rescaled to [0, 1] interval using Eq. (7):

φ7, i = normalize
i=1, . . . ,m

(chni) (7)

where a proper selection is the sigmoid normalization function because it has a diminishing effect as
it increases.

3.1.7 Time Spent & Story Points
Some projects enable time-tracking by allowing the developers to use the Time spent field. This field

contains an integer that represents the total working time in seconds, which the developer logs while working
on a task. To enhance clarity regarding the range, we convert the time spent to hours and denote this time
parameter as ti . For example, an easy task may take between 0 and 4 h, while a more complex task could
require up to 40 h. The ti parameter is normalized using Eq. (8):

φ8, i = normalize
i=1, . . . ,m

(ti) (8)

where the normalized value can be obtained using a sigmoid function.
Other projects utilize a story point methodology by recording the associated information in the Story

point field. This field is an integer where a higher value assigned to a task may indicate a more complex task.
In this case, we denote the complexity-related parameter as spi , with its normalized value given by Eq. (9):

φ9, i = normalize
i=1, . . . ,m

(spi) (9)

A suitable selection of the normalization function is the min-max normalization.

3.2 Expertise Formalization
We intend to devise formulas regarding the two facets of the developer’s expertise:

• Technology-specific expertise–refers to in-depth knowledge, skills, and experience within a specified
field related to software development. Individuals recognized for such expertise are highly specialized
in effectively solving problems within their domain by leveraging a deep understanding of complexities
and nuances.

• Generalized expertise–covers a wide range of skills and knowledge spanning multiple technologies,
rather than being confined to a single area. Professionals backed by such expertise excel at bridg-
ing ideas across fields, adapting to various contexts, and responding to problems with creative and
flexible thinking.
Both these expertise forms can be assessed based on the developer’s historical performance within tasks

previously recorded by project management tools.
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3.2.1 Task Complexity
In order to define the expertise, we introduce task complexity (TC) as a helping variable to capture the

overall complexity of a task i. This indicator is a linear combination of the variables extracted from the project
management tool databases and presented in Section 3.1, namely φk , i , with k = 1, . . . , 9:

TCi = w1 ⋅ φ1, i +w2 ⋅ φ2, i +w3 ⋅ φ3, i +w4 ⋅ φ4, i +w5 ⋅ φ5, i +w6 ⋅ φ6, i +w7 ⋅ φ7, i +w8 ⋅ φ8, i +w9 ⋅ φ9, i (10)

where wk are the weights used to control the balance between the components. If the sum of all the wk
weights is equal to 1, each wk may be interpreted as the percentage by which the associated variable is taken
into consideration.

3.2.2 Developer’s Technology-Specific Expertise
We aim to classify the developer’s level of expertise, denoted by TSEL (Technology-Specific Expertise

Level) in three categories (i.e., novice, intermediate, and master), by considering both the number and
complexity of tasks already completed and recorded in project management tool databases. Our proposed
methodology is implemented in two steps: (i) finding the number of tasks corresponding to each category
of task complexity that the developer had worked on; and (ii) assigning the developer’s level of expertise.

In the first step, we use a classic statistical approach to classify the tasks related to a given software
technology in three categories, namely: easy, moderate, and complex. This approach groups the tasks based
on how their complexity deviates from the mean [28], and starts by computing the mean μe and standard
deviation σe using the Eqs. (11) and (12):

μe =
1
m

m
∑
i=1

TCi ,e (11)

σe =
�
��� 1

m

m
∑
i=1
(TCi ,e − μe)2 (12)

where TCi ,e is the task-complexity variable calculated for the task i that uses the specified technology e,
while m represents the total number of tasks corresponding to technology e that were previously covered by
the project management tool.

Then, each task i related to the specified area e is categorized to be easy if TCi ,e < μe − σe ; moderate if
μe − σe < TCi ,e < μe + σe ; or complex if TCi ,e > μe + σe . By counting the number of tasks in each of these
three categories we will obtain the following variables: E—the number of easy tasks, M-the number of
moderate tasks, and C—the number of complex tasks the developer has worked on.

In the second step of the methodology we define the developer’s technology-specific expertise score γ
in Eq. (13):

γ = vE ⋅ E + vM ⋅M + vC ⋅ C
m

(13)

where vE , vM , and vC are chosen weights to reflect the importance of each type of tasks in the computed
expertise score. A suitable selection of these parameters may be: vE = 0.1, vM = 0.5, and vC = 1.
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Finally, a developer can be classified as novice, intermediate, or master in the technology denoted by e
using the thresholds γni and γim as described by Eq. (14):

TSEL =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

novice , 0 ≤ γ < γni

intermediate , γni ≤ γ < γim

master, γim ≤ γ ≤ 1
(14)

where the thresholds γni and γim may be reasonably selected to be 0.4 and 0.7, respectively.

3.2.3 Developer’s Generalized Expertise
Our objective is to classify the developer’s overall expertise level, denoted by GEL (Generalized Expertise

Level) in three categories (i.e., junior, mid, and senior), by considering two aspects, namely the average
technology-related expertise score and the maximum technology-related expertise score.

In the first step, we calculate the developer’s technology-specific expertise scores γk with k = 1, . . . , K
for each of the K technologies identified in the project management tool database using (13). We organize
these technology-specific expertise scores in an array Γ, where the γk values are stored in descending order.
The Γ array can be mathematically formalized as follows: Γ = {γ↓k}

K
k=1, where {γ↓i }K

k=1 is a permutation of
{γk}K

k=1 such that: γ↓1 ≥ γ↓2 ≥ ⋅ ⋅ ⋅ ≥ γ↓K . This array will allow us to compute two components used in devising
the developer’s generalized expertise score δ, namely the developer’s maximal technology-related expertise
score θ and the average developer’s technology-related expertise score ν using the Eqs. (15) and (16):

θ = max(Γ) = γ↓1 (15)

ν = 1
p

p

∑
j=1

γ↓j (16)

where p is the number of different technologies taken into consideration. It is noteworthy to mention that in
order to have a clear perspective on the developer’s expertise, the number of technologies p that need to be
taken into account when computing the average ν (we need to consider the first p technologies from the Γ
array) have to be selected such as 3 < p < 10, a suitable value being p = 5.

The developer’s generalized expertise score is determined using Eq. (17)

δ =
⎧⎪⎪⎨⎪⎪⎩

0, γ↓p = 0
α ⋅ θ + (1 − α) ⋅ ν, γ↓p ≠ 0

(17)

where α is a parameter that controls the balance between the two components, a suitable value being α = 0.6.
As it can be observed, in the case that γ↓p = 0 (i.e., the number of technologies where the developer has a
non-zero expertise score is less than p), we threshold the overall expertise score δ to 0, to signalize that the
respective developer has not a sufficiently diversified expertise.

Using the overall expertise score provided by (17), we classify a software specialist as junior, mid, or
senior using two thresholds, namely δ jm and δms , as described by Eq. (18):

GEL =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

junior, 0 ≤ δ < δ jm

mid , δ jm ≤ δ < δms

senior, δms ≤ δ ≤ 1
(18)

where the thresholds δ jm and δms may be reasonably selected to be 0.4 and 0.7, respectively.
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4 Proposed Methodology
The formation of competent software development teams or the replacement of existing members often

depends on the ability to identify and utilize individual expertise. Within the teams, expertise is typically
associated with different roles, such as junior, mid, and senior positions, each contributing at various stages
of the software development process. However, role definitions are not always clearly stated in the project
management tools, leading to challenges in team management and formation by the human resources team.

A significant challenge in this respect is identifying the skills and technologies associated with a software
developer from recorded historical data. In order to achieve this, we have to classify the tasks a developer
has worked on taking into consideration two different perspectives: (a) the technologies that were employed
during task completion; and (b) the level of complexity the task has.

To determine the developer’s level of expertise in a given software technology or the overall expertise
in the field, we have developed a carefully crafted methodology containing three stages that are presented in
detail in the following Sections 4.1–4.3.

4.1 Stage 1: Identifying the Domains of Expertise from Project Management Tool Databases
Our methodology starts with identifying all software technologies that were employed during the

completion of the tasks recorded by the project management tool database. The procedure, described
in Fig. 1, utilizes Natural Language Processing (NLP) techniques (e.g., record filtering, field concatenation,
transformer-based keyword extraction, knowledge transfer) to associate a software technology with each
task, thereby providing a list of all previously used technologies.

Figure 1: Obtaining the set of technologies

The procedure starts with acquiring three fields corresponding to each task recorded in the database,
namely ID, Title, and Description. The records containing at least one empty field are filtered out and, for
the remaining records, the Title and Description string-type fields are concatenated. By using a carefully
trained GraphCodeBERT model, we associate a single most relevant technology to each task. Finally, a list
of previously employed technologies is output.
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Details regarding the selection of the model to be employed in extracting the software technology
from the task Title and Description (i.e., GraphCodeBERT) and its training process are provided in the
following paragraph.
Finding the Best Model to Identify the Technologies

We have trained several ML models to better understand the programming languages and technologies
relevant to each task a software developer has worked on in order to assess the expertise. The utilized models
are: BERT—a bidirectional encoder that has been trained on diverse data [29]; ALBERT—builds on the BERT
architecture to improve training speed while maintaining prediction performance [30]; RoBERTa—an opti-
mized version of the BERT model [31]; CodeBERT—a variant of BERT that has been specifically improved
for programming understanding [32]; GraphCodeBERT—further upgrades CodeBERT by utilizing data flow
graphs [33]; and, XLNet—uses a different architecture and was introduced to compare the performance of
BERT-like models against a different architectural approach in terms of prediction accuracy [34]. By doing
this, we not only focused on programming-specific models such as CodeBERT and GraphCodeBERT, but
we also explored the effectiveness of other general language models, including BERT-like models like BERT,
RoBERTa, and ALBERT, as well as different architectures such as XLNet.

One of the main challenges we had to solve was to determine the type of classification the model has to
face. There are two main classification methods: single-label and multi-label. The single-label classification
can be categorized into binary and multi-class classification. In our case, binary classification, which involves
selecting one result from two options, is not suitable because we have multiple possible outcomes. Therefore,
we have to choose to focus on either multi-class classification, where we choose a single label from a set of
tags, or on multi-label classification, where we can select multiple tags that fit the input [35]. By examining
the records provided by the project management tools, since these records generally lead to single labels and
the datasets are too imbalanced to be used for a multi-label classification, we concluded that a multi-class
classification is more appropriate in our case.

Another challenge that has arisen is the imbalance of the dataset. Relevant studies recommend using
the class weights method to address this problem [36,37]. Even with balanced datasets, there can still be
discrepancies between certain labels. In this situation, we used the class weights technique to improve the
precision of the classes that appear less frequently. Furthermore, we have incorporated a label smoothing
methodology. As suggested by one study, we applied label smoothing to our models to make the labels more
distinguishable [38].

To implement our study, we loaded the mentioned ML models using the Hugging Face Transformers
library [39] and selected the cross-entropy loss function due to its effectiveness in multiclass classification
tasks and the SoftMax activation function to convert the raw output into probabilities for each class. The
models were then applied to a Stack Overflow dataset, described in detail in the following paragraphs, that
was previously split as follows: 70% for training, 20% for validation, and 10% for testing. The data was then
applied to the method “AutoTokenizer”, which automatically selects the appropriate tokenizer for each model.
This process transforms the raw sequence from each text input into individual tokens. Since each of the
loaded ML models has a maximum token length of 512 tokens and we have observed that more than half of
the inputs exceed this token limit, we employed the sliding-window approach described in [40] to cope with
higher numbers of tokens.

Since there are no available labeled datasets of project management tools with tasks linked to specific
programming languages, we utilize a dataset of StackOverflow questions and answers, along with their
associated tags, to fine-tune the ML models. The StackOverflow dataset contains 50.000 rows of questions
obtained through the StackExchange API. For this, we used the endpoint https://api.stackexchange.com/2.

https://api.stackexchange.com/2.3/questions
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3/questions (accessed on 12 October 2025) with the following parameters: ‘page’, ‘pagesize’, ‘order’, ‘sort’, ‘site’,
and ‘filter’. A Python script was implemented to fetch 100 records per page in descending ‘desc’ order, sorted
by ‘creation’, from the site ‘stackoverflow’, applying the filter ‘withbody’. Each entry includes a unique question
ID, the title of the question, a description, tags that classify the question into specific topics, and the creation
time, indicating when the question was first published. An illustrative example is presented in Table 4.

Table 4: StackOverflow record example

Field Data type Example
Question ID Long 34553034

Title String Why are Java Optionals immutable?
Body String I’d like to understand why Java 8 Optionals were. . .
Tags String <java><optional>

Creation date Date 01/01/2016 02:03:20

To create a balanced dataset and optimize the learning process, from the original Stack Overflow
dataset, we retained a minimum of 150 and a maximum of 300 records for each tag (i.e., label). In the
end, we are left with a dataset consisting of 10,031 records across 44 different tags represented as word
cloud in Fig. 2: java, javascript, android, c, jquery, c#, ios, c++, scala, kotlin, mysql, python, php, r, node.js,
html, asp.net, typescript, django, css, postgresql, angular, spring, ruby, sql, reactjs, go, ruby-on-rails, react-
native, vue.js, oracle,.net, dart, amazon-web-services, azure, tensorflow, docker, wordpress, bash, firebase,
powershell, jenkins, matlab, and laravel.

Figure 2: Classification labels

After fine-tuning the six ML models on the mentioned Stack Overflow dataset, we implemented a
transfer learning approach by applying them to Apache, Atlassian, and Moodle projects from the Jira dataset
(available at the following links: https://issues.apache.org/jira/, https://moodle.atlassian.net/jira/, https://jira.
atlassian.com/projects/, acceessed on 12 October 2025). Our goal was to predict the technologies utilized in
the tasks a developer has worked on and, for this reason, we manually labeled 2561 Jira records, an example
containing only the relevant fields being presented in Table 5.

The comparative results of using the six ML models are presented in Table 6. The training and testing
process was conducted using Python 3.11 and PyTorch Lightning library trainer, with a batch size of 64
and Adam optimizer, on a Lenovo Legion equipped with a 6-core i7 2.60 GHz processor, 32 GB of RAM,
and an NVIDIA GeForce GTX 1650 Ti GPU. Each model was fine-tuned over thirty epochs, applying early
stopping techniques.

https://api.stackexchange.com/2.3/questions
https://issues.apache.org/jira/
https://moodle.atlassian.net/jira/
https://jira.atlassian.com/projects/
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Table 5: Jira dataset

Parameter Data type Example
Task ID String 13209399

Assignee ID Int 4
Title String I get this error when I preview Options

Description String java.lang.NullPointerException at org.netbeans.modules . . .
Technology String java

Table 6: BERT, RoBERTa, ALBERT, XLNet, CodeBERT, and GraphCodeBERT results

Model Stack overflow dataset Jira dataset

BERT Accuracy: 0.885 Accuracy: 0.702
F1 score: 0.862 F1 score: 0.689

RoBERTa Accuracy: 0.946 Accuracy: 0.751
F1 score: 0.941 F1 score: 0.734

ALBERT Accuracy: 0.935 Accuracy: 0.730
F1 score: 0.929 F1 score: 0.704

XLNet Accuracy: 0.956 Accuracy: 0.793
F1 score: 0.948 F1 score: 0.793

CodeBERT Accuracy: 0.978 Accuracy: 0.838
F1 score: 0.972 F1 score: 0.836

GraphCodeBERT Accuracy: 0.987 Accuracy: 0.872
F1 score: 0.986 F1 score: 0.867

Note: The model in bold exhibits the best performance.

As shown in Table 6 and Fig. 3, all the models perform well on the training dataset. However, to
determine the best-performing models, we had to test them on the Jira dataset. The table highlights notable
differences in performance, with GraphCodeBERT achieving the highest accuracy, followed closely by
CodeBERT. XLNet performs slightly worse than these two, but its results are still acceptable. The models with
the lowest performance are BERT, ALBERT, and RoBERTa. On the other hand, they still achieve an accuracy
of more than 70%, indicating that these base language models can successfully learn the technical content of
software tasks.

4.2 Stage 2: Forming the De-Identified List of Developers
In order to obtain the list of developers that worked on already-completed tasks, a simple procedure,

described in Fig. 4, can be used.
After acquiring the task’s ID and Assignee fields for each recorder task, we filter out the records where

the Assignee is unpopulated (i.e., ‘unassigned’). Individuals who have a track record of completing tasks are
included in the list of developers, which must later undergo a de-identification process, where names are
replaced with unique identifiers to comply with privacy protection policies.
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Figure 3: Model F1 scores across datasets

Figure 4: Obtaining the de-identified list of developers

4.3 Stage 3: Computing the Developers’ Expertise
This stage is the kernel of our methodology, computing the technology-related and generalized forms

of expertise for each developer identified in the second stage. The procedure is presented in Fig. 5.
For each task, a set of nine fields (i.e., Comments, Parent, Subtask, Type, Priority, Connections, History,

Time spent, and Story points) is acquired. After filtering out the corrupted or inaccurate records, for each
developer identified in the second stage, a set of expertise scores for each of the technologies identified in
stage 1 and the generalized expertise score are computed using Eqs. (13) and (17). To this array of expertise
scores we associate an array of expertise levels using Eqs. (14) and (18).
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Figure 5: Developers’ expertise computation

5 Experimental Case Study
To illustrate the effectiveness of our approach for evaluating software developers’ skills, outlined

in Section 4, we utilized a Jira dataset. For this, we collected all the 12,912 record data from the Apache project,
specifically from the Apache Ignite subproject, which is a distributed database open-source project available
at the following link: https://issues.apache.org/jira/browse/IGNITE-25788?jql=project%20%3D%20IGNITE
(accessed on 12 October 2025). Additionally, we gathered 11,976 records from the Moodle project, focusing
on the MDL subproject, which is an open-source learning platform available at this link: https://moodle.
atlassian.net/jira/software/c/projects/MDL/issues (accessed on 12 October 2025).

In our practical example, we highlighted some features with higher weights because we believe they
are more important due to their construction and logic. We excluded the Jira record fields (specified
in Section 3.1) Time spent φ8, i and Story points φ9, i as the majority of tasks do not typically utilize these
parameters, this being formalized by considering w8 = w9 = 0. We consider that the task reopens φ6, i ,
extracted from the History field, is the most important feature, and therefore, we assign it a weight w6 of 0.25.
The primary reason is that an item marked complete but later reopened indicates unresolved work, additional
costs, and potential quality issues. This makes reopens more critical than other fields that do not directly
reflect rework or task incompleteness. The next important attributes in our view are Comments φ1, i and
Priority φ4, i , since the number of comments generally serves as an indicator of interaction and collaboration
among team members, while the task’s priority level shows the urgency and importance of a task within the
project. For both of them, we have assigned weights w1 and w4 of 0.2. We assigned the weights w2, w3, w5 of
0.1 to the complexity-related information extracted from Subtask & Parent φ2, i , Type φ3, i , and Connections

https://issues.apache.org/jira/browse/IGNITE-25788?jql=project%20%3D%20IGNITE
https://moodle.atlassian.net/jira/software/c/projects/MDL/issues
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φ5, i fields, these features providing the context about the complexity and interconnection of the tasks. Lastly,
the changelog-related parameter φ7, i , extracted from the History field, received the lowest weight w7 of 0.05.
While the changelogs number does provide insights into the task’s history, it does not always correlate with
the task’s importance (changes may indicate shifts between different statuses without necessarily implying
that the task has been resolved or is of high priority). All the other parameters and normalization functions
involved in our computations are those provided as default inside Section 3.

Following the first step of the methodology, described in Section 4.1, we obtained a list of 18 software
technologies (e.g., Java, Python, Javascript, SQL) that were employed in the completion of the recorded 12,912
tasks. Furthermore, we identified 10 software technologies (e.g., PHP, MySQL, Android, iOS) associated
with the 11,976 tasks in the Moodle project. Supplementary, the complete list of developers containing 257
anonymized professionals for the Apache project and 31 for the Moodle project was provided at the end of
the second stage of the methodology as presented in Section 4.2.

For each identified developer, a set of expertise scores γ corresponding to all technologies identified in
the first stage and the generalized expertise score δ are computed using Eqs. (13) and (17). Correspondingly,
to every γ and δ values an expertise level is associated using Eqs. (14) and (18). We exemplify some expertise
scores in Tables 7 and 8.

Table 7: Developers’ expertise scores in Apache Ignite project

Candidate
ID

γ1
(Java)

γ2
(C++)

γ3
(C#)

γ4
(Python)

γ5
(Node.js)

γ6
(Docker)

. . . γ18
(SQL)

δ

1 0.337 – – 0.705 – – . . . – 0.0
2 0.237 – – – – – . . . – 0.0
3 – – – – – – . . . 0.841 0.0
4 – 0.582 0.565 0.087 – – . . . 0.275 0.556

. . .
43 – – – 0.718 – 0.652 . . . – 0.627
. . .
67 0.346 0.977 0.525 – – – . . . 0.344 0.862
. . .
118 – – 0.618 – 0.601 – . . . 0.482 0.804
. . .
257 0.427 – – – – – . . . – 0.0

For example, in Table 7, the user with ID 5 has the following non-zero results: γ8 = 0.756 (Spring), γ1 =
0.446 (Java), and γ18 = 0.381 (SQL), all the other technology-related expertise scores being 0. Since he only
worked with 3 technologies, which is below the threshold p = 5, his generalized expertise score will be δ = 0
according to Eq. (17). On the other hand, the developer with ID 67 achieved a generalized score expertise
δ = 0.862, since his technology-related expertise scores have non-zero values for 7 technologies: γ2 = 0.977
(C++), γ7 = 0.832 (.net), γ10 = 0.776 (HTML), γ3 = 0.525 (C#), γ1 = 0.346 (Java), γ18 = 0.344 (SQL), and γ12 =
0.015 (Javascript). The result does not consider γ18 and γ12 because we only calculate it based on the first p = 5
technologies. The same logic applies to Table 8, where the user with ID 1 has achieved a score of 0.706, with
expertise scores across 5 technologies: γ1 = 0.835 (PHP), γ5 = 0.760 (CSS), γ3 = 0.563 (MySQL), γ2 = 0.493
(SQL), and γ2 = 0.471 (HTML).
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Table 8: Developers’ expertise scores in Moodle project

Candidate
ID

γ1
(PHP)

γ2
(SQL)

γ3
(MySQL)

γ4
(HTML)

γ5
(CSS)

γ6
(iOS)

. . . γ10
(Android)

δ

1 0.835 0.493 0.563 0.471 0.760 – . . . – 0.706
2 0.29 – – – – – . . . – 0.0
3 0.476 0.199 – – – – . . . – 0.0
4 0.144 – – – – – . . . – 0.0

. . .
14 0.525 0.555 – 0.670 – 0.422 . . . 0.391 0.607
. . .
31 0.641 0.145 – 0.648 – – . . . – 0.0

By investigating the results presented in Tables 6–8, the following observations are worth mentioning:
(1) We successfully classified a task’s technology based on task descriptions. The machine learning

model used in our study can accurately identify the programming languages associated with a given task’s title
and description. In Table 6, we observe that the GraphCodeBERT model achieved an F1 score of 0.986 on the
StackOverflow dataset and 0.867 on the Jira dataset. This demonstrates its high accuracy and its effectiveness
in transferring knowledge across IT-related datasets.

(2) Models trained specifically on software engineering data demonstrate superior performance
in classifying programming technologies. While BERT, ALBERT, RoBERTa, and XLNet can achieve a
prediction confidence between 70% and 80%, they are outperformed by models that were specifically
trained on software-related terminologies, such as CodeBERT and GraphCodeBERT. These models were
pre-trained on six programming languages: Python, Java, JavaScript, PHP, Ruby, and Go [32,33]. As
indicated by other studies, including [11], we have demonstrated that GraphCodeBert performs better on
code-related assignments.

(3) We can distinguish between several types of developers. By analyzing both general knowledge
and technology-specific expertise we can differentiate between various types of developers. A candidate
with good general expertise but limited technology-specific knowledge is likely a versatile developer who
can work across different projects but may need to specialize more in a particular technology. On the
other hand, a candidate with high expertise in a specific technology but weaker general knowledge might
struggle with wider software development projects. A balanced developer may excel in both areas, with
a deep understanding of their primary technology while also being capable of solving complex, cross-
domain problems efficiently. By applying this expertise evaluation methodology, developers are classified
in a measurable and objective manner. Developers with the IDs 43, 67, and 118 from Table 7 and ID 1
from Table 8 have high general expertise, making them suitable for multiple roles. The same candidates also
demonstrate a deep specialization in at least one particular technology, easily solving problems within the
domain. Across the datasets, we found 16 developers having the ‘senior’ level from the overall expertise point
of view according to (18), the rest having a ‘master’ or ’intermediate’ level in at least one domain according
to (14).

We can also observe that the number of developers involved in creating distributed databases, such as
Apache Ignite, is greater and spans multiple low-level technologies, including C++, Java, C#, and Docker. On
the other hand, the Moodle platform has fewer developers, with a smaller pool of senior professionals. These
developers focus on web programming languages like PHP and HTML, as well as mobile platforms such as
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iOS and Android. While the tasks in both areas may seem similar, the complexity of low-level applications
makes them more challenging to maintain and develop, requiring a higher level of expertise and knowledge.

(4) The developers that worked in the considered project fall mostly between ‘senior’ and ‘mid’
level on the general knowledge scale, and between ‘intermediate’ and ‘master’ on the specific domain
knowledge scale. This pattern might be because the analyzed project is open source, which usually attracts
developers with a higher level of expertise, as they volunteer their contributions. On the other hand, the
results could vary regarding seniority levels in a closed-source environment.

(5) To the best of our knowledge, this is the first formalization of expertise from project manage-
ment tools databases within the software engineering domain. While our work draws inspiration from
prior research in expertise identification and task metadata [20,22,23], we aimed to advance these approaches
by offering a more quantitative and scalable solution. For example, ExpFinder is a modern tool designed
to identify experts in scientific fields based on their publications, while tools like CaPBug categorize and
prioritize bugs using the metadata associated with tasks. Although both tools utilize informative metadata,
they differ from our approach, as we evaluate developers’ expertise based on metadata that reflects their actual
interactions with the tasks. Also, instead of focusing solely on semantic similarity or expert rankings, we
propose a methodology that combines programming technology identification, task complexity modeling,
and mathematical formalization of expertise, enabling a more structured evaluation of software expertise.

6 Research Implications
The research implications provide the scientific relevance of this work and demonstrate how our

methodology advances the formalization of developers expertise.

6.1 Implications for Researchers
Our study contributes to the research on data-driven expertise formalization by demonstrating how

project management tools’ metadata can be efficiently utilized.
From a research point of view, this work provides a foundation for future studies on metadata expertise

modeling, the inclusion of additional features relevant to expertise assessment, validation across different
domains, or the implementation of real-world services such as Application Programming Interfaces (APIs),
dashboard interfaces, and Human Resource (HR) tools. As a direct consequence, the results of this study
should be further developed by considering the following future research directions:

• A sensitivity analysis demonstrating the impact of different weight distributions.
• Implementing a multi-label approach to facilitate the assessment of multiple technologies.
• Exploring newer transformer models, such as Bloom, Mamba, or DeepSeek.
• Characterizing seniority levels in more detail.
• Analyzing closed-source projects to identify evolution and differences compared to the proposed open-

source method.
• Exploring extensions or tools that connect to project management systems to find additional metadata.
• Developing automatic team formation based on the metadata related to developer expertise.

By expanding the study in these ways, future work can provide deeper insights and help ensure that the
proposed methodology remains relevant while supporting developer expertise formalization.
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6.2 Implications for Practitioners
While the current version is just a proof of concept, the results suggest several promising possibilities for

practical applications. In enterprise settings, this approach could improve team formation, task allocation,
or development planning.

In team formation, the proposed methodology can balance the mix of senior, mid, and junior developers
while improving productivity. Rather than depending on intuitions, team formation becomes a data-
driven process that helps prevent skill shortages and avoids an overconcentration of expertise within a
few individuals.

From a task allocation perspective, our method enables project managers to assign work to developers
whose expertise scores reflect either their readiness or potential for growth. This strategy boosts efficiency by
reserving complex assignments for experienced engineers, but also enables junior developers to solve more
challenging tasks with proper supervision. The approach benefits both project success and individual career
growth by ensuring employees receive tasks suited to their skill level.

Beyond evaluation and training, this methodology can also support development planning. By tracking
expertise trends, managers can plan how teams adopt new technologies, forecast future hiring needs, and
identify supplemental training. This method may also reveal which employees are developing competencies
aligned with organizational goals, helping to close gaps between current workforce capabilities and future
project needs. The resulting expertise scores can serve as advisory results to make HR department practices
more transparent and evidence-based, benefiting both the organization and its employees.

7 Threats to Validity
To ensure transparency and rigor, we discuss the main threats to the validity of our study: internal,

external, construct, and conclusion validity.
Internal validity threats may arise from incomplete, inconsistent, or malicious entries in project

management tools. Our methodology assumes that developers or project managers consistently complete the
fields, as missing or incomplete data can decrease the accuracy of the results. Properly maintaining project
data is crucial for reusing historical information to generate reliable expertise assessments.

External validity may be affected by differences between open source and closed source projects, such
as task allocation, task conventions, or contribution practices. Another challenge could be the evolution
of project management tools, which might result in future task metadata differing from that used in
our experiment. Additionally, as frameworks and technologies advance in the software industry, models
trained on current technologies might struggle with new programming languages, terminology, or context.
Therefore, while our expertise formalization works in the examined setting, its applicability to other projects,
tools, or time periods remains uncertain.

Construct validity might refer to compromised data, such as incomplete or ambiguous task descriptions,
leading the machine learning model to misidentify the technologies related to the tasks. Moreover, when task
complexity is inferred from potentially inaccurate or misleading metadata, there is a risk that the measured
complexity does not actually align with the true difficulty experienced in practice. If these intermediate
constructs are unreliable, the resulting expertise scores may not align with real world proficiency.

Conclusion validity could arise from the incorrect categorization of junior, mid, and senior expertise
levels because such a mapping doesn’t guarantee that those categories really correspond to actual professional
seniority. For example, a developer can receive multiple complex tasks because of team allocation rules, rather
than higher expertise, while another may appear as less expert simply due to the participation in activities
that are not captured in project management tools.
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8 Conclusions
In this paper, we introduced a new approach to quantify the expertise of software developers using

task metadata from project management tools. We carefully selected a set of features from Jira databases
to define mathematical models for both technology-specific and general expertise. By implementing a
transfer learning procedure that utilizes a StackOverflow dataset to fine-tune BERT-like models and classify
information from a Jira dataset, we achieved an accuracy of 87% and an F1 score of 0.867 in identifying
the software technologies from the title and description of the tasks using the GraphCodeBERT model.
We validated this method using a case study, where 288 software professionals worked across 24,888 tasks.
Furthermore, we assessed the developers by calculating a domain-specific expertise score for each technology
they were working with, and also their overall expertise. These insights can help project managers and HR
departments better allocate resources, quickly identify experts, spot potential skill gaps, conduct a more
objective evaluation of the employees, and form teams.

In the future, we want to improve our models to identify multiple technologies relevant to each task and
to use advanced models such as Bloom, Mamba, or DeepSeek. Additionally, we plan to quantify the seniority
levels of senior developers. Currently, developers are considered senior if they achieve a master’s level in
at least one technology. In the future, we want to explore what differentiates senior developers from other
seniors and how they can be a better fit for specific roles by applying bonuses based on the number of tasks,
technologies used, or time worked within each project. Furthermore, we intend to adapt this identification
module to enable the automatic formation of teams based on different provided inputs.
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