
applied
sciences

Article

Towards Fully Jitterless Applications: Periodic
Scheduling in Multiprocessor MCSs Using a
Table-Driven Approach

Eugenia Ana Capota 1, Cristina Sorina Stangaciu 1 , Mihai Victor Micea 1 and
Daniel-Ioan Curiac 2,*

1 Computer and Information Technology Department, Politehnica University Timisoara, V. Parvan 2,
300223 Timisoara, Romania; eugenia.capota@cs.upt.ro (E.A.C.); cristina.stangaciu@cs.upt.ro (C.S.S.);
mihai.micea@cs.upt.ro (M.V.M.)

2 Automation and Applied Informatics Department, Politehnica University Timisoara, V. Parvan 2,
300223 Timisoara, Romania

* Correspondence: daniel.curiac@aut.upt.ro

Received: 12 August 2020; Accepted: 23 September 2020; Published: 25 September 2020
����������
�������

Abstract: In mixed criticality systems (MCSs), the time-triggered scheduling approach focuses on
a special case of safety-critical embedded applications which run in a time-triggered environment.
Sometimes, for these types of MCSs, perfectly periodical (i.e., jitterless) scheduling for certain critical
tasks is needed. In this paper, we propose FENP_MC (Fixed Execution Non-Preemptive Mixed
Criticality), a real-time, table-driven, non-preemptive scheduling method specifically adapted to
mixed criticality systems which guarantees jitterless execution in a mixed criticality time-triggered
environment. We also provide a multiprocessor version, namely, P_FENP_MC (Partitioned Fixed
Execution Non-Preemptive Mixed Criticality), using a partitioning heuristic. Feasibility tests are
proposed for both uniprocessor and homogenous multiprocessor systems. An analysis of the
algorithm performance is presented in terms of success ratio and scheduling jitter by comparing it
against a time-triggered and an event-driven method in a non-preemptive context.

Keywords: real-time scheduling; non-preemptive scheduling; mixed criticality systems; jitter;
embedded systems

1. Introduction

Safety-critical systems are ubiquitous in our everyday life, from medical equipment and smart
vehicles to military applications. These types of systems usually imply, on the one hand, a real-time
response due to direct interaction with the environment and, on the other hand, the inclusion of
several critical functionalities. Providing a real-time response while carefully managing resources and
providing temporal and spatial isolation for the critical applications imposes the need for carefully
tailored real-time scheduling approaches.

In a special category of safety-critical applications which run in a time-triggered environment,
perfectly periodical (i.e., jitterless) scheduling for certain critical tasks is needed. This need can appear
from message synchronization problems [1], from signal processing applications [2–5], or simply from
conditions imposed by different types of certifications [6]. Moreover, jitterless execution is desired for
certain tasks in any embedded control system, as jitter only introduces difficulties in control loops [6].
As stated in [7], computer-controlled systems are designed assuming periodical sampling and zero or
negligible jitter. In practice, the only jitter that can be relatively easily eliminated is sampling jitter,
by using dedicated hardware. Input–output jitter is influenced by the scheduling policy. Guaranteeing

Appl. Sci. 2020, 10, 6702; doi:10.3390/app10196702 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-6552-9226
https://orcid.org/0000-0002-8224-2032
https://orcid.org/0000-0001-6617-073X
http://dx.doi.org/10.3390/app10196702
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/19/6702?type=check_update&version=2

Appl. Sci. 2020, 10, 6702 2 of 21

the performance and stability of the controller in target systems also implies, besides a bounded
response time, a guarantee that the input–output jitter is bounded within a so-called jitter margin [7].

Dealing with task execution in a time-triggered environment for classical real-time systems is
done using time-triggered (clock-driven) scheduling techniques, among which the static table-driven
approach stands out.

The table-driven approach is based on static schedulability analysis, generating a scheduling table
that is used at run time to decide the moment when each task instance (also called a job) must begin
its execution [8]. A special case of real-time systems is represented by the mixed criticality systems
(MCSs), where tasks with different criticalities, categorized based on a finite set of criticality levels,
share the same hardware [9]. The system is considered to run in a number of criticality modes, each
mode giving a certain degree of execution time assurance [9].

While the classical real-time approach implies the construction of a single scheduling table,
in MCSs, things become more complex due to the number of criticality modes. The change from one
criticality mode to another corresponds to a transition from one precomputed scheduling table to
another. Thus, in MCSs, there is one scheduling table per criticality level [10].

MCSs are a suitable variant that can be used with respect to providing a real-time response, while
isolating the critical functionalities. If we analyze safety-critical systems in the case of MCSs, there are
certain advantages of such table-driven approaches over event-driven scheduling: easier certification,
given by the fact that table-driven schedulers are completely deterministic [10]; easier synchronization
between tasks [1]; easier power management, as each power-mode corresponds to a criticality level,
and each level uses its own table; and easier adaptation of real-time applications from different fields
like automotive, avionics, etc., which already use table-driven approaches [11].

In this paper we propose an adaptation of a real-time, table-driven, non-preemptive scheduling
method for MCSs which guarantees jitterless execution in a mixed criticality time-triggered environment
for both uniprocessor and homogenous multiprocessor systems. We also provide a partitioning heuristic
for this scheduling method for multiprocessor systems.

The main contributions of this paper are as follows:

• A mixed criticality scheduling algorithm, FENP_MC (Fixed Execution Non-Preemptive Mixed
Criticality), is proposed for jitterless task execution in a time-triggered environment;

• An adaptation of the FENP_MC for homogenous multiprocessor systems, P_FENP_MC,
is provided;

• Feasibility tests are proposed for both uniprocessor and homogenous multiprocessor systems;
• The algorithm performance is analyzed using the success ratio against the utilization of the

task sets;
• The proposed algorithm performance is compared against a time-triggered and an event-driven

scheduling method in a non-preemptive context: Time-Triggered Merge (TT-Merge)/Energy-
efficient Time-Triggered Merge (Energy-efficient TT-Merge) [12] and Earliest Deadline First with
Virtual Deadlines (EDF-VD) [13], a non-preemptive variant.

The rest of this paper is structured as follows: In Section 2 we briefly present the state of the art
regarding scheduling in a mixed criticality time-triggered environment. In Section 3, we describe
our proposed scheduling algorithm for uniprocessor mixed criticality systems, while in Section 4,
we propose an adaptation for homogenous multiprocessor MCSs. In Section 5, we analyze the
performance of the proposed algorithm in terms of success ratio and compare it against a popular one,
namely, EDF-VD NP (EDF-VD in its non-preemptive form). We conclude our paper in Section 6, where
we also propose some future research and development directions.

2. Related Work

Since Vestal’s first mixed criticality model formalization [14], MCSs have attracted particular
attention that has materialized in a set of scheduling algorithms that can be classified based on their

Appl. Sci. 2020, 10, 6702 3 of 21

scheduling points (i.e., the moments in time when scheduling decisions are made) into three categories:
event-driven, time-triggered, and hierarchical scheduling approaches.

An extensive survey on scheduling in MCSs [9] shows that, until recently, the scheduling problem
was mainly focused on event-driven scheduling algorithms, despite the fact that there are also important
endeavors regarding time-triggered and hybrid approaches. In event-driven schedulers, the scheduling
points are defined by task completion and task arrival events. Examples of event-driven schedulers
were introduced in [15–19]. A popular event-driven scheduling algorithm in MCSs is Earliest Deadline
First with Virtual Deadlines (EDF-VD) for two criticality levels (Hi—high criticality and Lo—low
criticality) [13]. The algorithm computes a virtual deadline for every Hi-criticality task if the system is in
Lo mode. In Hi mode, Hi-criticality tasks are scheduled according to their real deadlines. This is done
in order to balance the schedulability on different criticality levels, which results in better schedulability
and run-time performance.

Due to their predictability, time-triggered approaches have become increasingly popular in the
last couple of years, but the relevant works are still limited and much more could be expected in
the future. Time-triggered schedulers make their scheduling decisions at predetermined points in
time. Few papers tackling MC scheduling in time-triggered environments appeared only in the
last decade [6,10,12,20,21]. In [20], a heuristic for constructing scheduling tables in a time-triggered
environment was presented. The algorithm relies on backtracking to guide the search in a tree-based
structure, and it consists of two heuristics: one for constructing the scheduling tables and the other
for backtracking. Another method for constructing scheduling tables based on priority ordering is
described in [10]. The technique incorporates “mode-change”, which increases flexibility and system
performance. In [21], a time-triggered scheduling algorithm for both independent and dependent
MC jobs on an identical multiprocessor platform is proposed. Two separate scheduling tables are
constructed for each processor to schedule dual-criticality tasks. Furthermore, the schedule is global,
which means that jobs can be preempted in one processor and resume their execution in another
processor. While the algorithms mentioned before are focused on predictability, the main goal of the
algorithm proposed in [6] is to provide a low-jitter periodic schedule for mixed criticality messages in
a time-triggered non-preemptive environment. Additionally, the algorithm introduced in [12] is meant
to reduce the energy consumption. However, none of the algorithms mentioned above are focused
on guaranteeing jitterless execution in a mixed criticality system, for all the active tasks, regardless
of the system criticality mode. This is obviously a requirement for many safety-critical systems and
represents the gap we aim to fill in this paper.

Hierarchical approaches combine both scheduling tables and event-driven scheduling methods,
but the research on such systems is still in its preliminary stage. A hierarchical algorithm was
introduced in [22] for scheduling MC real-time tasks on multiprocessor platforms. The method provides
temporal isolation among tasks of different criticalities while allowing slack to be redistributed across
different criticality levels. The same algorithm was implemented and tested on a standard real-time
operating system (RTOS) in [23]. The experimental results showed that RTOS-related overheads are
maintained at acceptable levels and the system is robust with respect to breaches of optimistic execution
time assumptions.

3. FENP_MC: Fixed Execution Non-Preemptive Mixed Criticality

In this section we propose a scheduling algorithm for MCSs running in a time-triggered
non-preemptive environment in response to the demand for jitterless task execution, with applicability
to tasks used in signal processing, different types of synchronizations, control loops, etc. [1,6,7,24].

3.1. Perfectly Periodical Task Model

In real-time mixed criticality systems, periodical task execution models are based on the model
originally proposed by Liu and Layland in 1973 [25]. This model imposes periodical behavior only

Appl. Sci. 2020, 10, 6702 4 of 21

regarding the release time. In most of the systems based on this periodical task model, the actual
execution starting time is pseudo periodical [26].

Another type of model, not very different from the one proposed by Liu and Layland, but focused
on this special case of periodical real-time tasks, was firstly proposed in [24]. In this paper, the tasks
are called FModXs (fixed execution executable modules). Starting from this model, we propose a
simplified version of a perfectly periodical task model for real-time systems:

Mi = {Ti, Di, Ci, Si} (1)

where Ti represents the period of periodical task i, Di is the time by which any job execution needs to
complete, relative to its release time, Ci represents the computation time, and Si gives the execution
start time, relative to its release time.

Following Vestal’s approach to extend Liu and Layland’s model to mixed criticality systems [14],
we propose the following perfectly periodical task model for MCSs:

Mi =
{
Ti, Di, Li,

{
Ci,L j

∣∣∣∣ j ∈ 1 . . . l
}
,
{
Si,L j

∣∣∣∣ j ∈ 1, . . . , l
}}

(2)

where Mi is a mixed criticality fixed execution task (MC-FModX), l represents the number of criticality
levels, Ti is the period for periodical tasks, Di is the time by which any job execution needs to complete,
relative to its release time, Li represents the criticality level (1 being the lowest level), Ci,L j is the
computation time, and Si,L j is a vector of values—one per criticality level, for levels lower than or
equal to the criticality level Li. C expresses the worst-case execution time (WCET) for each criticality
level and S the execution start time, relative to its release time, for each level of criticality lower than or
equal to the task criticality level Li.

A task consists of a series of jobs, with each job inheriting the set of parameters of the task,
(Ti, Di, Li), to which it adds its own parameters [27]. Thus, the kth job of task τi is characterized as

Ji,k =
{
ai,k, di,k, ci,k, si,k Ti, Di, Li

}
(3)

where ai,k represents the arrival time (ai,k+1 − ai,k ≥ Ti), di,k is the absolute deadline (di,k+1 = ai,k + Di),
C represents the execution time allocated by the system, which is dependent on the criticality mode of
the system (for L j, Ci,k = Ci,L j), si,k gives the absolute execution start time of job k of task i which is
also dependent on the criticality mode of the system, and Ti, Di, Li have the same meaning as in the
task model.

3.2. Perfectly Periodical Task Execution Model

Definition 1. We say that the execution of task i is perfectly periodical if for each job k of task i, Ji, k , the difference
between the absolute start times of jobs k and k − 1 is constant:

si,1 − si,0 = si,2 − si,1 = . . . = si,n − si,n−1 = Ti. (4)

In order to exemplify a perfectly periodical execution algorithm, let us consider the task set
presented in Table 1 that needs to be scheduled on a single-processor system, with two criticality
levels (Low—Lo and High—Hi). In Table 1, Ti is the period of task i, Di represents the deadline, Li is
the criticality level, Ci,LLo expresses the computation time for the Lo-criticality mode and Ci,LHi is the
computation time for the Hi-criticality mode Ci,LHi .

Appl. Sci. 2020, 10, 6702 5 of 21

Table 1. Three-task set example.

Task Ti Di Li Ci,LLo Ci,LHi

M1 10 10 Lo 3 -
M2 20 20 Hi 2 4
M3 30 30 Hi 5 6

The start times of the tasks for the Lo-criticality case are depicted in Figure 1.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 22

Figure 1. Start times for the three-task set example in Lo-criticality mode.

In an MCS, Equation (4) must be true for all the criticality modes of the system (i.e., for all
criticality levels), as shown in Figure 2, where 𝑃0௅௢ represents low criticality and 𝑃0ு௜ represents the
high criticality level.

Figure 2. Scheduling the three-task set example in (a) Lo-criticality mode and (b) Hi-criticality

mode.

In MCSs, different tasks with different criticality requirements share the same hardware; thus,
in these systems, missing a deadline varies in severity from task to task [14]. In order to protect critical
tasks from the interference of less critical ones, different levels of criticality are assigned to each task
and different levels of assurance are provided for tasks running in different running scenarios, called
criticality modes.

As explained in [9], the classical model implies that the MCS starts in the lowest criticality mode.
If all jobs behave according to the level of assurance imposed by this mode, then the system stays in
that mode. On the other hand, if they attempt to execute for a longer time, then a criticality mode
change occurs to a higher level of assurance.

Next, we present an example where this mode change must occur and how FENP_MC treats the
situation. Let us consider the task set presented in Table 2.

Table 2. Four-task set example.

Task 𝑻𝒊 𝑫𝒊 𝑳𝒊 𝑪𝒊,𝑳𝑳𝒐 𝑪𝒊,𝑳𝑯𝒊 𝑀ଵ 8 8 Lo 2 - 𝑀ଶ 12 12 Hi 2 6 𝑀ଷ 16 16 Lo 2 - 𝑀ସ 24 24 Hi 1 5

In Figure 3a, two scheduling tables are provided for two criticality modes (𝑃0௅௢ for the Lo-
criticality mode and 𝑃0ு௜ for the Hi-criticality mode, where Lo < Hi). The system starts in the Lo-
criticality mode, using the 𝑃0௅௢ scheduling table, but at Moment 4, task 𝑀ଶ exceeds its time budget
allocated for the Lo-criticality mode, and that causes a criticality mode switch (see Figure 3b). The
system continues to run according to the 𝑃0ு௜ scheduling table, starting with the zeroth time

Figure 1. Start times for the three-task set example in Lo-criticality mode.

In an MCS, Equation (4) must be true for all the criticality modes of the system (i.e., for all
criticality levels), as shown in Figure 2, where P0Lo represents low criticality and P0Hi represents the
high criticality level.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 22

Figure 1. Start times for the three-task set example in Lo-criticality mode.

In an MCS, Equation (4) must be true for all the criticality modes of the system (i.e., for all
criticality levels), as shown in Figure 2, where 𝑃0௅௢ represents low criticality and 𝑃0ு௜ represents the
high criticality level.

Figure 2. Scheduling the three-task set example in (a) Lo-criticality mode and (b) Hi-criticality

mode.

In MCSs, different tasks with different criticality requirements share the same hardware; thus,
in these systems, missing a deadline varies in severity from task to task [14]. In order to protect critical
tasks from the interference of less critical ones, different levels of criticality are assigned to each task
and different levels of assurance are provided for tasks running in different running scenarios, called
criticality modes.

As explained in [9], the classical model implies that the MCS starts in the lowest criticality mode.
If all jobs behave according to the level of assurance imposed by this mode, then the system stays in
that mode. On the other hand, if they attempt to execute for a longer time, then a criticality mode
change occurs to a higher level of assurance.

Next, we present an example where this mode change must occur and how FENP_MC treats the
situation. Let us consider the task set presented in Table 2.

Table 2. Four-task set example.

Task 𝑻𝒊 𝑫𝒊 𝑳𝒊 𝑪𝒊,𝑳𝑳𝒐 𝑪𝒊,𝑳𝑯𝒊 𝑀ଵ 8 8 Lo 2 - 𝑀ଶ 12 12 Hi 2 6 𝑀ଷ 16 16 Lo 2 - 𝑀ସ 24 24 Hi 1 5

In Figure 3a, two scheduling tables are provided for two criticality modes (𝑃0௅௢ for the Lo-
criticality mode and 𝑃0ு௜ for the Hi-criticality mode, where Lo < Hi). The system starts in the Lo-
criticality mode, using the 𝑃0௅௢ scheduling table, but at Moment 4, task 𝑀ଶ exceeds its time budget
allocated for the Lo-criticality mode, and that causes a criticality mode switch (see Figure 3b). The
system continues to run according to the 𝑃0ு௜ scheduling table, starting with the zeroth time

Figure 2. Scheduling the three-task set example in (a) Lo-criticality mode and (b) Hi-criticality mode.

In MCSs, different tasks with different criticality requirements share the same hardware; thus,
in these systems, missing a deadline varies in severity from task to task [14]. In order to protect critical
tasks from the interference of less critical ones, different levels of criticality are assigned to each task
and different levels of assurance are provided for tasks running in different running scenarios, called
criticality modes.

As explained in [9], the classical model implies that the MCS starts in the lowest criticality mode.
If all jobs behave according to the level of assurance imposed by this mode, then the system stays in
that mode. On the other hand, if they attempt to execute for a longer time, then a criticality mode
change occurs to a higher level of assurance.

Next, we present an example where this mode change must occur and how FENP_MC treats the
situation. Let us consider the task set presented in Table 2.

Appl. Sci. 2020, 10, 6702 6 of 21

Table 2. Four-task set example.

Task Ti Di Li Ci,LLo Ci,LHi

M1 8 8 Lo 2 -
M2 12 12 Hi 2 6
M3 16 16 Lo 2 -
M4 24 24 Hi 1 5

In Figure 3a, two scheduling tables are provided for two criticality modes (P0Lo for the Lo-criticality
mode and P0Hi for the Hi-criticality mode, where Lo < Hi). The system starts in the Lo-criticality mode,
using the P0Lo scheduling table, but at Moment 4, task M2 exceeds its time budget allocated for the
Lo-criticality mode, and that causes a criticality mode switch (see Figure 3b). The system continues to
run according to the P0Hi scheduling table, starting with the zeroth time instance. In this Hi mode, all
Lo-criticality tasks are dropped, and only Hi-criticality tasks are scheduled according to their Hi level
of assurance computation time.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 22

instance. In this Hi mode, all Lo-criticality tasks are dropped, and only Hi-criticality tasks are
scheduled according to their Hi level of assurance computation time.

Figure 3. Example of a criticality mode switch.

3.3. Feasibility Analysis

3.3.1. Theoretical Aspects

Next, we present an exact feasibility test for perfectly periodical execution in a non-preemptive
context. We call this type of execution Fixed Execution Non-Preemptive (FENP). The test is analogous
with that provided in [24].

Let 𝑀 = {𝑀ଵ, 𝑀ଶ, … , 𝑀௡} be a set of n independent MC fixed execution tasks (MC-FModXs),
sorted in nondecreasing order of their periods. The MC tasks are characterized by the same
parameters as those in Equation (2); thus, 𝑀௞ ≡ ቄ𝑇௞, 𝐷௞, 𝐿௞, ቄ𝐶௞,௅ೕቚ 𝑗 ∈ 1, … , 𝑙}, {𝑆௞,௅ೕ| 𝑗 ∈ 1, … , 𝑙}ቅ, where for any task 𝑖, 𝑇௜ ≤ 𝑇௞ 𝑓𝑜𝑟 𝑖 < 𝑘. (5)

Definition 2. The task set M is FENP schedulable in a mixed criticality system if, and only if, the task set M
is FENP schedulable for each criticality level 𝐿௝, where 𝑗 ∈ 1, … , 𝑙.
Definition 3. The task set M is FENP schedulable in a mixed criticality system for criticality level 𝐿௝ if all
the tasks in the set M with criticality equal to or higher than 𝐿௝ are FENP schedulable using the next feasibility
test. Only the parameters for level 𝐿௝ (𝐶௞,௅ೕ and 𝑆௞,௅ೕ) are considered in this case.

The feasibility tests are based on an execution mapping function, which is defined next.
Definition 4. A fixed-execution mapping of task 𝑀௞ over the period of task 𝑀௜ is a function of the form:

Figure 3. Example of a criticality mode switch.

3.3. Feasibility Analysis

3.3.1. Theoretical Aspects

Next, we present an exact feasibility test for perfectly periodical execution in a non-preemptive
context. We call this type of execution Fixed Execution Non-Preemptive (FENP). The test is analogous
with that provided in [24].

Appl. Sci. 2020, 10, 6702 7 of 21

Let M = {M1, M2, . . . , Mn} be a set of n independent MC fixed execution tasks (MC-FModXs),
sorted in nondecreasing order of their periods. The MC tasks are characterized by the same parameters
as those in Equation (2); thus,

Mk ≡

{
Tk, Dk, Lk,

{
Ck,L j

∣∣∣∣ j ∈ 1, . . . , l
}
,
{
Sk,L j

∣∣∣∣ j ∈ 1, . . . , l
}}

, where for any task i,

Ti ≤ Tk for i < k.
(5)

Definition 2. The task set M is FENP schedulable in a mixed criticality system if, and only if, the task set M is
FENP schedulable for each criticality level L j , where j ∈ 1, . . . , l.

Definition 3. The task set M is FENP schedulable in a mixed criticality system for criticality level L j if all the
tasks in the set M with criticality equal to or higher than L j are FENP schedulable using the next feasibility test.
Only the parameters for level L j (Ck,L j and Sk,L j) are considered in this case.

The feasibility tests are based on an execution mapping function, which is defined next.

Definition 4. A fixed-execution mapping of task Mk over the period of task Mi is a function of the form:

∆Mi/Mk : {0, 1, . . . , Ti − 1} → {0, 1}

∆Mi/Mk
(τ) =

1
GCD(Ti ,Tk)

· Tk−1

∪
x=0

Mk(τ+ x·Ti)
(6)

where τ represents a discrete time function with values between 0 and Ti, GCD(Ti, Tk) computes the greatest
common divisor of the periods of tasks Mi and Mk, and Mk(τ+ x·Ti) represents the execution function of Mk:

Mk : N→ {0, 1}, Mk(τ) = σ (t mod Tk − Sk) − σ (t mod Tk − Sk −Ck) (7)

where mod is the modulo operator and σ is the unity step function:

Z→ {0, 1}, σ =

{
1, x ≥ 0,
0, x < 0.

(8)

For a certain criticality level L j, Equation (7) becomes

Mk : N→ {0, 1}, Mk(τ) = σ
(
t mod Tk − Sk,Lj

)
− σ

(
t mod Tk − Sk,Lj −Ck,Lj

)
. (9)

Feasibility test: For a given criticality level L j, a subset ML j of tasks with criticality level Lk ≥ L j
are schedulable if, and only if,

∀Mk ∈ML j , Mk ≡
{
Tk, Dk, Lk, Ck,L j , Sk,L j

}
,

∃tq ∈
{
0, 1, . . . , Tk −Ck,L j

}
so that ∪

tq+Ck,Lj
−1

τ=t0
∪

k−1
i=1∆Mk/Mi(τ) = 0

(10)

where tq is a discrete time instant between 0 and the latest possible start time of task Mk and ∆Mi/Mk(τ)

is defined by Equation (6).

3.3.2. Execution Examples

For a better understanding, the execution mapping function for the task set example in Table 1 is
depicted in Figure 4 for a system with two criticality modes.

Appl. Sci. 2020, 10, 6702 8 of 21

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 22

Figure 4. The execution mapping function for the task set example in Table 1 in (a) Lo-criticality mode
and (b) Hi-criticality mode.

3.3.3. Implementation Guidelines

Algorithm 1 represents the pseudocode form of the feasibility test, which is an adaptation of [24]
for MCSs.

Algorithm 1. Feasibility_test

Input: Γ௤ (𝑡ℎ𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝑡𝑎𝑏𝑙𝑒 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑞), 𝑐𝑟𝑖𝑡𝐿𝑒𝑣𝑒𝑙 (𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑚𝑜𝑑𝑒)

Output: 𝐹𝐴𝐼𝐿𝑈𝑅𝐸 𝑓𝑜𝑟 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑒𝑠𝑡, 𝑆𝑈𝐶𝐶𝐸𝑆𝑆 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1 sort Γ௤ according to 𝑇௜ in a non-decreasing order

2 for 𝑖 = 1; 𝑖 < 𝑠𝑖𝑧𝑒 𝑜𝑓 Γ௤; 𝑖 + + do

3 for 𝑗 = 0; 𝑗 < 𝑖; 𝑗 + + do

4 𝑔𝑐𝑑 ← 𝑔𝑟𝑒𝑎𝑡𝑒𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑜𝑓 𝑇௜ 𝑎𝑛𝑑 𝑇௝

5 if 𝑐𝑟𝑖𝑡𝐿𝑒𝑣𝑒𝑙 = 𝐿𝑜 and 𝐶௜,௖௥௜௧௅௘௩௘௟ + 𝐶௝,௖௥௜௧௅௘௩௘௟ > 𝑔𝑐𝑑 then

6 return 𝐹𝐴𝐼𝐿𝑈𝑅𝐸

7 end if

8 if 𝑐𝑟𝑖𝑡𝐿𝑒𝑣𝑒𝑙 = 𝐻𝑖 𝑎𝑛𝑑 𝐿௜ = 𝐻𝑖 and 𝐿௝ = 𝐻𝑖 and 𝐶௜,௖௥௜௧௅௘௩௘௟ + 𝐶௝,௖௥௜௧௅௘௩௘௟ > 𝑔𝑐𝑑 then

Figure 4. The execution mapping function for the task set example in Table 1 in (a) Lo-criticality mode
and (b) Hi-criticality mode.

3.3.3. Implementation Guidelines

Algorithm 1 represents the pseudocode form of the feasibility test, which is an adaptation of [24]
for MCSs.

Algorithm 1 Feasibility_test

Input: Γq (the scheduling table o f processor q), critLevel (the system criticality mode)
Output: FAILURE f or a negative f easibility test, SUCCESS otherwise

1 sort Γq according to Ti in a non-decreasing order
2 for i = 1; i < size o f Γq; i ++ do
3 for j = 0; j < i; j ++ do
4 gcd← greatest common divisor o f Ti and T j

5 if critLevel = Lo and Ci,critLevel + C j,critLevel > gcd then

6 return FAILURE
7 end if
8 if critLevel = Hi and Li = Hi and L j = Hi and Ci,critLevel + C j,critLevel > gcd then

9 return FAILURE
10 end if
11 end for
12 end for
13 return SUCCESS

Appl. Sci. 2020, 10, 6702 9 of 21

3.4. FENP_MC

3.4.1. Theoretical Aspects

While event-driven scheduling approaches can only guarantee pseudo periodical execution,
a carefully designed time-triggered approach can offer a solution for perfectly periodical tasks if we
ignore the small jitter introduced by the criticality mode switch.

Next, we propose an adaptation to MCSs of the real-time table-driven scheduling algorithm
FENP [24] for single processors and its partitioned P_FENP [28] variation for multicore systems.

The Fixed Execution Non-Preemptive (FENP) algorithm has been designed to provide maximum
predictability for the execution of perfectly periodical tasks (FModXs) in a non-preemptive context.

Because the FENP algorithm follows Equation (4), each start time of job Ji,k of task i can be
determined knowing the start time of the previous job Ji,k−1:

si,k = si,k−1 + Ti. (11)

Moreover, sk can be statically determined in a direct manner:

si,k = si,k−1 + k·Ti. (12)

By designing a static scheduler based on Equations (11) and (12), we obtain jitterless task execution.
The FENP_MC scheduler creates, in an offline phase, a dispatch table for each criticality level

of the system based on Equation (11) and on the feasibility tests firstly proposed in [24] for real-time
operation and further developed and presented in the next section for mixed criticality systems.

The dispatch table is represented by an array of structures:

Γq ={TaskID; StartTime} (13)

where Γq is sorted in nondecreasing order of start time for each job in the system for a scheduling period.

3.4.2. Execution Examples

Tables 3 and 4 illustrate the Lo-criticality mode dispatch table and the Hi-criticality mode dispatch
table, respectively, for the task set presented in Table 1:

Table 3. Lo-criticality mode dispatch table for the task set example in Table 1.

TaskID StartTime

1 0
2 3
3 5

Table 4. Hi-criticality mode dispatch table for the task set example in Table 1.

TaskID StartTime

2 0
3 4

3.4.3. Implementation Guidelines

The execution mapping function, presented in Algorithm 2 is used by the function for computing
start times in Algorithm 3. Both algorithms are adaptations of [24] for MCSs.

Appl. Sci. 2020, 10, 6702 10 of 21

Algorithm 2 MFunc

Input: i (task index), t (time instance), critLevel (the system criticality mode)
Output: ∆sigma = sigma1− sigma2

1 temp← mod(t, Ti) − Si, critLevel

2 if temp < 0 then
3 sigma1← 0
4 else
5 sigma1← 1
6 end if
7 if temp−Ci, critLevel < 0 then
8 sigma2← 0
9 else
10 sigma2← 1
11 end if
12 return sigma1− sigma2

Algorithm 3 Start_Time_calculation

Input: Γq (the scheduling table o f processor q), critLevel (the system criticality mode)
Output: FAILURE to calculate the start times, SUCCESS otherwise

13 for i = 1; i < size o f Γq; i ++ do
14 schedulable← 0
15 count← 0
16 gcd← 1
17 StartTime← −1
18 for t = 0; t ≤ Ti; t ++ do
19 delta← 0
20 for j = 0; j < i; j ++ do
21 if delta , 0 then
22 break
23 end if
24 gcd← greatest common divisor o f Ti and T j

25 for k = 0; k < T j/gcd; k ++ do
26 if delta , 0 or MFunc(j, t + k ∗ Ti, critLevel) , 0 then
27 delta← 1
28 break
29 end if
30 end for
31 end for
32 if count ≥ C j,critLevel then

33 Si, critLevel ← StartTime
34 schedulable← 1
35 break
36 end if
37 if delta , 0 then
38 count← 0
39 StartTime← −1

Appl. Sci. 2020, 10, 6702 11 of 21

Algorithm 3 Cont.

40 else
41 count← count + 1
42 if StartTime = −1 then
43 StartTime← t
44 end if
45 end if
46 end for
47 if StartTime = −1 then
48 return FAILURE
49 end if
50 if schedulable = 0 then
51 return FAILURE
52 end if
53 end for
54 return SUCCESS

4. P_FENP_MC

4.1. Theoretical Aspects

For mixed criticality multicore systems, we propose an adaptation of the P_FENP which we call
P_FENP_MC. The mapping algorithm is similar to that proposed in [28].

P_FENP_MC consists of two phases, namely, an offline phase and an online phase. The task
partitioning to processors is carried out offline. A feasibility test is then conducted on each processor,
followed by creating the table for that processor. Tasks are scheduled according to the dispatch
tables in the online phase. The system starts in Lo-criticality mode; therefore, tasks will be scheduled
according to the Lo-criticality dispatch table. Once a job executes beyond its Lo-criticality WCET, the
system switches to Hi-criticality mode and tasks will be scheduled in compliance with the Hi-criticality
dispatch table. For each processor dispatch table, tasks are sorted in nondecreasing order of their start
times. Next, the task with the lowest start time Mi is extracted from the dispatch table and its first
instance Ji,0 is executed. After job Ji,0 finishes executing, the start time of task Mi is recalculated. Mi is
then added to the corresponding dispatch table based on Equation (11), and the task with the lowest
start time is again extracted from the sorted list of tasks and executed.

The partitioning algorithm proceeds as follows:
Each processor has a scheduling table associated to it. Tasks from the task set are selected one by

one and added in each scheduling table. If the scheduling table was initially not empty, two conditions
are verified:

I. The current processor utilization, which is the sum of utilizations of all the tasks from the
scheduling table associated with the corresponding processor and must not exceed 1 [29]:

UΓq ≤ 1, q = 1, . . . , m (14)

where q = 1, . . . , m.
II. The schedulability test performed for the task subset on the processor must be positive.

If the two conditions are met, the task will remain in the scheduling table, the processor utilization
is updated, and the next task is removed from the ready queue and tested. If the scheduling table was
initially empty, the task is added without verifying the two conditions and the processor utilization
is updated.

Appl. Sci. 2020, 10, 6702 12 of 21

If one of the two conditions returns FAILURE, the task is removed from the scheduling table and
added in the next processor scheduling list, where the same test is performed.

4.2. Execution Examples

In order to illustrate the task partitioning method described in Section 4.1 we provide an example
of six mixed criticality tasks scheduled on a dual-criticality system with two processors. Table 5
contains the timing parameters of the tasks and the processor utilization for each criticality level.

Table 5. Six-task set example.

Task Ti Di Li Ci,LLo Ci,LHi Ui,LLo Ui,LHi

M1 24 24 Hi 5 6 0.208 0.25
M2 72 72 Hi 8 9 0.111 0.125
M3 18 18 Hi 3 4 0.167 0.222
M4 8 8 Hi 1 2 0.125 0.25
M5 36 36 Lo 6 - 0.167 -
M6 12 12 Lo 2 - 0.167 -

In this case, P_FENP_MC provides the following results: tasks M1, M4, and M6 are assigned to
the first processor (P0) with a Lo-criticality total utilization of 0.5 and a Hi-criticality total utilization
of 0.5, while tasks M2, M3, and M5 are partitioned to P1 with a Lo-criticality total utilization of 0.445
and a Hi-criticality total utilization of 0.347. Scheduling for both the Hi- and Lo-criticality modes is
illustrated in Figure 5.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 22

and a Hi-criticality total utilization of 0.347. Scheduling for both the Hi- and Lo-criticality modes is
illustrated in Figure 5.

Figure 5. Partitioned Fixed Execution Non-Preemptive Mixed Criticality (P_FENP_MC) scheduling
of the six-task set example.

It must be noted that for Condition I and for calculating the total utilization on each processor,
we use Hi-criticality total utilization for the Hi-criticality WCET and Lo-criticality total utilization for
the Lo-criticality WCET. Therefore, Condition I must be verified for both the Hi-criticality total
utilization and the Lo-criticality total utilization. For Condition II, both the Lo-criticality WCET and
the Hi-criticality WCET are considered.

4.3. Implementation Guidelines

Next, the two phases of the algorithm are described using diagrams. In the offline phase, the
dispatch tables for each processor are created using the mapping function and the feasibility test. A
diagram of the P_FENP_MC offline phase is presented in Figure 6.

Figure 5. Partitioned Fixed Execution Non-Preemptive Mixed Criticality (P_FENP_MC) scheduling of
the six-task set example.

It must be noted that for Condition I and for calculating the total utilization on each processor,
we use Hi-criticality total utilization for the Hi-criticality WCET and Lo-criticality total utilization
for the Lo-criticality WCET. Therefore, Condition I must be verified for both the Hi-criticality total

Appl. Sci. 2020, 10, 6702 13 of 21

utilization and the Lo-criticality total utilization. For Condition II, both the Lo-criticality WCET and
the Hi-criticality WCET are considered.

4.3. Implementation Guidelines

Next, the two phases of the algorithm are described using diagrams. In the offline phase, the
dispatch tables for each processor are created using the mapping function and the feasibility test.
A diagram of the P_FENP_MC offline phase is presented in Figure 6.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 22

Figure 6. Offline phase execution.

The online phase uses the dispatch tables created in the previous phase and consists of the actual
scheduling algorithm. On each processor, its dispatch table is used and updated dynamically. In this
table, jobs are sorted in nondecreasing order of their start times and then, one by one, extracted from
the set in order to be executed. Once a task instance is executed, the start time of the next instance is
calculated using Equation (11) and inserted in the dispatch table so that the table remains sorted by
start times. Figure 7 depicts the online phase of the P_FENP_MC algorithm.

Figure 7. Online phase execution.

Figure 6. Offline phase execution.

The online phase uses the dispatch tables created in the previous phase and consists of the actual
scheduling algorithm. On each processor, its dispatch table is used and updated dynamically. In this
table, jobs are sorted in nondecreasing order of their start times and then, one by one, extracted from
the set in order to be executed. Once a task instance is executed, the start time of the next instance is
calculated using Equation (11) and inserted in the dispatch table so that the table remains sorted by
start times. Figure 7 depicts the online phase of the P_FENP_MC algorithm.

Appl. Sci. 2020, 10, 6702 14 of 21

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 22

Figure 6. Offline phase execution.

The online phase uses the dispatch tables created in the previous phase and consists of the actual
scheduling algorithm. On each processor, its dispatch table is used and updated dynamically. In this
table, jobs are sorted in nondecreasing order of their start times and then, one by one, extracted from
the set in order to be executed. Once a task instance is executed, the start time of the next instance is
calculated using Equation (11) and inserted in the dispatch table so that the table remains sorted by
start times. Figure 7 depicts the online phase of the P_FENP_MC algorithm.

Figure 7. Online phase execution. Figure 7. Online phase execution.

The feasibility test conducted on each processor is shown in Algorithm 4, while Algorithm 5
computes the processor dispatch tables.

Algorithm 4 Mapping_test

Input: Γq (the scheduling table o f processor q), Mi (task to be mapped on processor q)
Output: FAILURE f or a negative mapping test, SUCCESS otherwise

55 add Mi to Γq

56 sort Γq according to Ti in a nondecreasing order
57 for i = 1; i < size o f Γq; i ++ do
58 for j = 0; j < i; j ++ do
59 gcd← greatest common divisor o f Ti and T j

60 if Ci,Lo + C j,Lo > gcd then
61 remove Mi from Γq

62 return FAILURE
63 end if
64 if Li = Hi and L j = Hi and Ci,Hi + C j,Hi > gcd then
65 remove Mi from Γq

66 return FAILURE
67 end if
68 end for
69 end for
70 return SUCCESS

Appl. Sci. 2020, 10, 6702 15 of 21

Algorithm 5 P_FENP_MC

Input: M ∈ {M0, M1, . . . , Mn−1}, where n← number o f tasks
Output: Γ ∈ {Γ0, Γ1, . . . , Γm−1}, where m← number o f processors

FAILURE i f there are not enough processors to execute the task set,
SUCCESS otherwise

1 q← 0
2 ULoΓ0 ← 0
3 UHiΓ0 ← 0
4 for i = 0; i < n; i ++ do
5 for j = 0; j ≤ q; j ++ do
6 tempUtilLo← Ci, Lo/ Ti

7 if Li = Hi
8 tempUtilHi← Ci, Hi/ Ti

9 else
10 tempUtilHi← 0
11 end if

12 if ULoΓ j ≤ 1 and UHiΓ j ≤ 1 and mapping_test
(
Γ j, Mi

)
= SUCCESS then

13 ULoΓ j ← ULoΓ j + tempUtilLo

14 UHiΓ j ← UHiΓ j + tempUtilHi

15 break
16 ened if
17 end for
18 if j > q then
19 if j + 1 > m then
20 return FAILURE
21 end if
22 q← q + 1
23 ULoΓq ← tempUtilLo

24 UHiΓq ← tempUtilHi

25 add Mi to Γq

26 end if
27 end for
28 return SUCCESS

5. Performance Analysis

5.1. Random Task Set Generation

Our experiments were conducted upon randomly-generated task sets in a dual-criticality system
(Lo, Hi). A slight modification of the workload-generation algorithm introduced by Guan et al. [30]
was used for the random task set generation process [31]. The parameters for each new task Mi are
generated as follows:

• Criticality level: Li = Hi with probability PHi; otherwise, Li = Lo.
• Period: Ti is drawn using a uniform distribution over [10, 50].
• Deadline: Di = Ti because of the implicit deadline constraint.
• Utilization: Ui,L j is a vector of size l, where l is the number of criticality levels. Five input

parameters are considered when generating the utilizations [31]:

Ubound :
max(ULo(M), UHi(M)) = Ubound (15)

Appl. Sci. 2020, 10, 6702 16 of 21

ULo(M) =
∑

Mi∈π

Ui,LLo (16)

UHi(M) =
∑

Mi∈Hi(π)

Ui,LHi (17)

where π is the task set and Hi(π) is a subset of π that contains only the Hi-criticality tasks.
[UL, UU]: The range of task utilization, with 0 ≤ UL ≤ UU ≤ 1.
[ZL, ZU]: The range of the ratio between the Hi-criticality utilization of a task and its

Lo-criticality utilization, with 0 ≤ ZL ≤ ZU.

• WCET for criticality level Lo: Ci,LLo = Ui,LLo ·Ti.
• WCET for criticality level Hi: Ci,LHi = Ui,LHi ·Ti if Li = Hi. Otherwise, Ci,LHi = Ci,LLo .
• Start time: Si,LLo = Si,LHi = 0.

5.2. Success Ratio

In this section we undertake an experimental evaluation of our algorithm P_FENP_MC by
comparing it to another known scheduling method, P-EDF-VD. For the latter, task partitioning is done
with regard to Condition (14) under the First-Fit Decreasing (FFD) [32] heuristic with sorting as the
period. A non-preemptive version of the EDF-VD method is used. For P_FENP_MC, task mapping is
done according to the heuristic described in Section 4.

The parameters used in generating the task sets are provided in the graph caption. Each datapoint
was determined by randomly generating 100 task sets. In Figure 8, the task set utilization bound
(x-axis) ranges from 0.2 to 0.8 times the number of processors divided by 2, in steps of 0.1, while in
Figure 9, the number of processors (x-axis) ranges from 2 to 10 in steps of 2. The number of tasks in a
task set will vary according to the task set utilization bound, being at least 3 times and at most 9 times
the utilization bound. Thus, a higher value on the x-axis increases the number of tasks in a task set,
while a lower value decreases it.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 22

 𝑈ு௜(𝑀) = ෍ 𝑈௜,௅ಹ೔ெ೔∈ு௜(గ) (17)

where π is the task set and Hi(π) is a subset of π that contains only the Hi-criticality tasks.
o [𝑈௅, 𝑈௎]: The range of task utilization, with 0 ≤ 𝑈௅ ≤ 𝑈௎ ≤ 1.

o [𝑍௅, 𝑍௎]: The range of the ratio between the Hi-criticality utilization of a task and its Lo-
criticality utilization, with 0 ≤ 𝑍௅ ≤ 𝑍௎.

• WCET for criticality level Lo: 𝐶௜,௅ಽ೚ = 𝑈௜,௅ಽ೚ ∙ 𝑇௜.
• WCET for criticality level Hi: 𝐶௜,௅ಹ೔ = 𝑈௜,௅ಹ೔ ∙ 𝑇௜ if 𝐿௜ = 𝐻𝑖. Otherwise, 𝐶௜,௅ಹ೔ = 𝐶௜,௅ಽ೚.
• Start time: 𝑆௜,௅ಽ೚ = 𝑆௜,௅ಹ೔ = 0.

5.2. Success Ratio

In this section we undertake an experimental evaluation of our algorithm P_FENP_MC by
comparing it to another known scheduling method, P-EDF-VD. For the latter, task partitioning is
done with regard to Condition (14) under the First-Fit Decreasing (FFD) [32] heuristic with sorting as
the period. A non-preemptive version of the EDF-VD method is used. For P_FENP_MC, task
mapping is done according to the heuristic described in Section 4.

The parameters used in generating the task sets are provided in the graph caption. Each
datapoint was determined by randomly generating 100 task sets. In Figure 8, the task set utilization
bound (x-axis) ranges from 0.2 to 0.8 times the number of processors divided by 2, in steps of 0.1,
while in Figure 9, the number of processors (x-axis) ranges from 2 to 10 in steps of 2. The number of
tasks in a task set will vary according to the task set utilization bound, being at least 3 times and at
most 9 times the utilization bound. Thus, a higher value on the x-axis increases the number of tasks
in a task set, while a lower value decreases it.

Figure 8. Success ratio by varying the utilization bound. 𝑈௅ = 0.05, 𝑈௎ = 0.75, 𝑍௅ = 1, 𝑍௎ = 4.

0

0.2

0.4

0.6

0.8

1

1.2

0.8 1.2 1.6 2 2.4 2.8 3.2

Su
cc

es
s r

at
io

Utilization bound
8-processor system, PHI = 0.3

Success ratio

P-EDF-VD

P_FENP_MC

Figure 8. Success ratio by varying the utilization bound. UL = 0.05, UU = 0.75, ZL = 1, ZU = 4.

Appl. Sci. 2020, 10, 6702 17 of 21

Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 22

Figure 9. Success ratio by varying the number of processors. 𝑈௅ = 0.05, 𝑈௎ = 0.75, 𝑍௅ = 1, 𝑍௎ = 4.

As the number of processors increases (see Figure 9), tasks are better scheduled in terms of
success ratio when using our proposed algorithm. With more available resources there is a higher
chance each task is partitioned on a suitable processor with regard to Conditions I and II (see Section
4.1). The FFD does not run a schedulability test when mapping each task; therefore, if a high number
of tasks are partitioned on a single processor, the local scheduling algorithm may return a negative
schedulability test.

5.3. Jitterless Execution—Test Case

In order to illustrate the jitterless execution of a task set scheduled with P_FENP_MC and to
compare the task execution with that under other scheduling algorithms, we provide an example of
three mixed criticality tasks scheduled on a dual-criticality system with one processor. Table 6
contains the timing parameters of the tasks.

Table 6. Task set example.

Task 𝑻𝒊 𝑫𝒊 𝑳𝒊 𝑪𝒊,𝑳𝑳𝒐 𝑪𝒊,𝑳𝑯𝒊 𝑀ଵ 8 8 Hi 2 5 𝑀ଶ 12 12 Lo 1 - 𝑀ଷ 16 16 Lo 2 -

Scheduling for both the Hi- and Lo-criticality modes is illustrated in Figure 10.

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10

Su
cc

es
s r

at
io

Number of processors
Ubound = 0.4*(number of processors/2), PHi = 0.3

Success ratio

P-EDF-VD

P_FENP_MC

Figure 9. Success ratio by varying the number of processors. UL = 0.05, UU = 0.75, ZL = 1, ZU = 4.

As the number of processors increases (see Figure 9), tasks are better scheduled in terms of success
ratio when using our proposed algorithm. With more available resources there is a higher chance
each task is partitioned on a suitable processor with regard to Conditions I and II (see Section 4.1).
The FFD does not run a schedulability test when mapping each task; therefore, if a high number
of tasks are partitioned on a single processor, the local scheduling algorithm may return a negative
schedulability test.

5.3. Jitterless Execution—Test Case

In order to illustrate the jitterless execution of a task set scheduled with P_FENP_MC and to
compare the task execution with that under other scheduling algorithms, we provide an example of
three mixed criticality tasks scheduled on a dual-criticality system with one processor. Table 6 contains
the timing parameters of the tasks.

Table 6. Task set example.

Task Ti Di Li Ci,LLo Ci,LHi

M1 8 8 Hi 2 5
M2 12 12 Lo 1 -
M3 16 16 Lo 2 -

Scheduling for both the Hi- and Lo-criticality modes is illustrated in Figure 10.
The jitter of a task is calculated as the difference between the maximum and minimum separation

between two consecutive jobs of the same task Mi [33] and is given by (18):

Jitter(Mi) = max
k≥1

{∣∣∣ Ji,k − Ji,k+1

∣∣∣}−min
k≥1

{∣∣∣ Ji,k − Ji,k+1

∣∣∣} (18)

where Ji,k is the kth job of task Mi.

Appl. Sci. 2020, 10, 6702 18 of 21
Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 22

Figure 10. Scheduling of the task set example using four methods: Partitioned Fixed Execution Non-
Preemptive Mixed Criticality (P_FENP_MC), Partitioned Earliest Deadline First with Virtual
Deadlines (P-EDF-VD), a non-preemptive variant, Time-Triggered Merge (TT-Merge), and Energy-
efficient Time-Triggered Merge (Energy-efficient TT-Merge).

The jitter of a task is calculated as the difference between the maximum and minimum separation
between two consecutive jobs of the same task 𝑀௜ [33] and is given by (18): 𝐽𝑖𝑡𝑡𝑒𝑟(𝑀௜) = max௞ஹଵ {ห 𝐽௜,௞ − 𝐽௜,௞ାଵห} − min௞ஹଵ {ห 𝐽௜,௞ − 𝐽௜,௞ାଵห} (18)
where 𝐽௜,௞ is the kth job of task 𝑀௜.

Table 7 contains the jitter values for the task set example scheduled by P_FENP_MC, P-EDF-VD
[13] (non-preemptive variant), TT-Merge, and Energy-efficient TT-Merge [12].

Table 7. Jitter values of the task set example scheduled using four algorithms: P_FENP_MC, P-EDF-
VD (non-preemptive variant), TT-Merge, and Energy-efficient TT-Merge.

Criticality Mode. Task
Jitter Value

P_FENP_MC P-EDF-VD TT-Merge
Energy-Efficient TT-

Merge

Lo
 𝑀ଵ 0 0 5 0 𝑀ଶ 0 4 0 2 𝑀ଷ 0 1 1 1

Hi 𝑀ଵ 0 0 5 0

As can be seen from the table above, three of the algorithms (P_FENP_MC, P-EDF-VD, and
Energy-efficient TT-Merge) provided jitterless execution for the first task (𝑀ଵ), but only P_FENP_MC
delivered a scheduling table for jitterless execution of all the tasks in the system.

Figure 10. Scheduling of the task set example using four methods: Partitioned Fixed
Execution Non-Preemptive Mixed Criticality (P_FENP_MC), Partitioned Earliest Deadline First with
Virtual Deadlines (P-EDF-VD), a non-preemptive variant, Time-Triggered Merge (TT-Merge), and
Energy-efficient Time-Triggered Merge (Energy-efficient TT-Merge).

Table 7 contains the jitter values for the task set example scheduled by P_FENP_MC, P-EDF-VD [13]
(non-preemptive variant), TT-Merge, and Energy-efficient TT-Merge [12].

Table 7. Jitter values of the task set example scheduled using four algorithms: P_FENP_MC, P-EDF-VD
(non-preemptive variant), TT-Merge, and Energy-efficient TT-Merge.

Criticality Mode Task
Jitter Value

P_FENP_MC P-EDF-VD TT-Merge Energy-Efficient TT-Merge

Lo
M1 0 0 5 0
M2 0 4 0 2
M3 0 1 1 1

Hi M1 0 0 5 0

As can be seen from the table above, three of the algorithms (P_FENP_MC, P-EDF-VD, and
Energy-efficient TT-Merge) provided jitterless execution for the first task (M1), but only P_FENP_MC
delivered a scheduling table for jitterless execution of all the tasks in the system.

5.4. Discussion

The jitterless task execution achieved by designing perfectly periodical scheduling for all the
criticality levels in an MCS brings advantages in applications regarding message synchronization,
signal processing, control applications, or simply different types of certifications. Having jitterless

Appl. Sci. 2020, 10, 6702 19 of 21

task execution and respecting the time constraints imposed by MCSs, we have full determinism and
predictability regarding task execution.

Still, the tradeoff for jitterless scheduling on a uniprocessor is a lower success ratio value compared
to using an event-driven method. An algorithm such as EDF-VD can reach up to 80% success ratio for
a total utilization factor of 1 for the lowest criticality mode [13]. However, comparative results are
harder to obtain with a time-triggered algorithm without using any resource enhancements, such as
frequency scaling, for instance [10,12].

For a multiprocessor platform, the success ratio is not only influenced by the scheduling algorithm
but also by the function used to map tasks to processors (see Figure 8). If we use a proper partitioned
mapping function, we have comparative results between time-triggered and event-driven schedulers
in terms of success ratio. As illustrated in Figure 8, our proposed scheduling algorithm obtained better
schedulabitily results by using a well-tailored partitioned function in comparison to P-EDF-VD (with
an FFD partitioned mapping function).

6. Conclusions and Future Work

As the number and complexity of safety-critical real-time applications increase, special attention
needs to be paid to developing suitable and reliable scheduling techniques, especially for safety-critical
systems running in time-triggered environments. In this paper we proposed a scheduling method for
jitterless execution of hard real-time tasks in mixed criticality systems. Our approach is based on the
real-time FENP scheduling algorithm and specifically tailored to MCS requirements. Additionally,
feasibility tests were proposed for both uniprocessor and homogenous multiprocessor systems,
and the algorithm performance was compared against an event-driven scheduling algorithm in a
non-preemptive context, P-EDF-VD.

As future work, we intend to further investigate implementations of this scheduling methodology
in RTOSs and to analyze the performance improvements of jitter-sensitive applications scheduled with
P_FENP_MC in domains such as system control, robotic systems, and real-time communications.

Author Contributions: Conceptualization and Methodology, E.A.C., C.S.S., M.V.M. and D.-I.C.; Software, E.A.C.,
C.S.S. and M.V.M.; Validation E.A.C. and C.S.S.; Investigation, E.A.C., C.S.S., and D.-I.C.; Resources, M.V.M.
and D.-I.C.; Writing—original draft preparation, E.A.C. and C.S.S.; Project administration, M.V.M. and D.-I.C.;
Supervision, M.V.M. and D.-I.C; Writing—review and editing, M.V.M. and D.-I.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received not external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hanzalek, Z.; Tunys, T.; Sucha, P. An Analysis of the Non-Preemptive Mixed-Criticality Match-Up Scheduling
Problem. J. Sched. 2016, 19, 601–607. [CrossRef]

2. Capota, E.A.; Stangaciu, C.S.; Micea, M.V.; Curiac, D.-I. Towards Mixed Criticality Task Scheduling in Cyber
Physical Systems: Challenges and Perspectives. J. Syst. Softw. 2019, 156, 204–216. [CrossRef]

3. Micea, M.; Stangaciu, C.-S.; Stangaciu, V.; Curiac, D.-I. Novel Hybrid Scheduling Technique for Sensor Nodes
with Mixed Criticality Tasks. Sensors 2017, 17, 1504. [CrossRef]

4. Stangaciu, C.; Micea, M.; Cretu, V. An Analysis of a Hard Real-Time Execution Environment Extension for
FreeRTOS. Adv. Electr. Comput. Eng. 2015, 15, 79–86. [CrossRef]

5. Stangaciu, C.S.; Micea, M.; Cretu, V.I. Hard Real-Time Execution Environment Extension for FreeRTOS.
In Proceedings of the 2014 IEEE International Symposium on Robotic and Sensors Environments (ROSE),
Institute of Electrical and Electronics Engineers, Timisoara, Romania, 16–18 October 2014; pp. 124–129.

6. Novak, A.; Sucha, P.; Hanzalek, Z. Efficient Algorithm for Jitter Minimization in Time-Triggered Periodic
Mixed-Criticality Message Scheduling Problem. In Proceedings of the 24th International Conference on
Real-Time Networks and Systems-RTNS, Brest, France, 19–21 October 2016; pp. 23–31.

http://dx.doi.org/10.1007/s10951-016-0468-y
http://dx.doi.org/10.1016/j.jss.2019.06.099
http://dx.doi.org/10.3390/s17071504
http://dx.doi.org/10.4316/AECE.2015.03011

Appl. Sci. 2020, 10, 6702 20 of 21

7. Cervin, A.; Lincoln, B.; Eker, J.; Arzen, K.E.; Buttazzo, G. The Jitter Margin and Its Application in the
Design of Real-Time Control Systems. In Proceedings of the 10th International Conference on Real-Time and
Embedded Computing Systems and Applications, Gothenburg, Sweden, 25–27 August 2004; pp. 1–10.

8. Ramamritham, K.; Stankovic, J. Scheduling Algorithms and Operating Systems Support for Real-Time
Systems. Proc. IEEE 1994, 82, 55–67. [CrossRef]

9. Burns, A.; Davis, R.I. A Survey of Research into Mixed Criticality Systems. ACM Comput. Surv. 2018, 50,
1–37. [CrossRef]

10. Baruah, S.; Fohler, G. Certification-Cognizant Time-Triggered Scheduling of Mixed-Criticality Systems.
In Proceedings of the 2011 IEEE 32nd Real-Time Systems Symposium, Vienna, Austria, 29 November–2
December 2011; pp. 3–12.

11. Sagstetter, F.; Andalam, S.; Waszecki, P.; Lukasiewycz, M.; Stahle, H.; Chakraborty, S.; Knoll, A. Schedule
Integration Framework for Time-Triggered Automotive Architectures. In Proceedings of the 51st Annual
Design Automation Conference on Design Automation Conference, San Francisco, CA, USA, 1–5 June 2014;
pp. 1–6.

12. Behera, L.; Bhaduri, P. An Energy-Efficient Time-Triggered Scheduling Algorithm for Mixed-Criticality
Systems. Des. Autom. Embed. Syst. 2019, 24, 79–109. [CrossRef]

13. Baruah, S.; Bonifaci, V.; D’Angelo, G.; Li, H.; Marchetti-Spaccamela, A.; Van Der Ster, S.; Stougie, L. The
Preemptive Uniprocessor Scheduling of Mixed-Criticality Implicit-Deadline Sporadic Task Systems. In
Proceedings of the 2012 24th Euromicro Conference on Real-Time Systems, Pisa, Italy, 11–13 July 2012;
pp. 145–154.

14. Vestal, S. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Execution Time
Assurance. In Proceedings of the 28th IEEE International Real-Time Systems Symposium (RTSS 2007),
Tucson, AZ, USA, 3–6 December 2007; pp. 239–243. [CrossRef]

15. Baruah, S.; Burns, A.; Guo, Z. Scheduling Mixed-Criticality Systems to Guarantee Some Service under All
Non-erroneous Behaviors. In Proceedings of the 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), Toulouse, France, 5–8 July 2016; pp. 131–138.

16. Burns, A.; Davis, R.I. Response Time Analysis for Mixed Criticality Systems with Arbitrary Deadlines.
In Proceedings of the 5th International Workshop on Mixed Criticality Systems (WMC 2017), York, UK,
5 December 2017.

17. Guan, N.; Ekberg, P.; Stigge, M.; Yi, W. Effective and Efficient Scheduling of Certifiable Mixed-Criticality
Sporadic Task Systems. In Proceedings of the 2011 IEEE 32nd Real-Time Systems Symposium, Vienna,
Austria, 29 November–2 December 2011; pp. 13–23.

18. Park, T.; Kim, S. Dynamic Scheduling Algorithm and Its Schedulability Analysis for Certifiable Dual-Criticality
Systems. In Proceedings of the 9th ACM International Conference on Multimedia, Taipei, Taiwan, 9–14
October 2011; p. 253.

19. Lee, J.; Chwa, H.S.; Phan, L.T.; Shin, I.; Lee, I. MC-ADAPT: Adaptive Task Dropping in Mixed-Criticality
Scheduling. ACM Trans. Embed. Comput. Syst. 2017, 16, 1–21. [CrossRef]

20. Theis, J.; Fohler, G.; Baruah, S. Schedule Table Generation for Time-Triggered Mixed Criticality Systems.
Proc. WMC RTSS 2013, 1, 79–84.

21. Behera, L.; Bhaduri, P. Time-Triggered Scheduling for Multiprocessor Mixed-Criticality Systems. In
Proceedings of the 14th International Conference on Distributed Computing and Internet Technology,
Bhubaneswar, India, 11–13 January 2018; pp. 135–151.

22. Mollison, M.S.; Erickson, J.P.; Anderson, J.H.; Baruah, S.K.; Scoredos, J.A. Mixed-Criticality Real-Time
Scheduling for Multicore Systems. In Proceedings of the 2010 10th IEEE International Conference on
Computer and Information Technology, Bradford, UK, 29 June–1 July 2010; pp. 1864–1871.

23. Herman, J.L.; Kenna, C.J.; Mollison, M.S.; Anderson, J.H.; Johnson, D. RTOS Support for Multicore
Mixed-Criticality Systems. In Proceedings of the 2012 IEEE 18th Real Time and Embedded Technology and
Applications Symposium, Beijing, China, 16–19 April 2012; pp. 197–208. [CrossRef]

24. Micea, M.; Cretu, V.-I.; Groza, V. Maximum Predictability in Signal Interactions with HARETICK Kernel.
IEEE Trans. Instrum. Meas. 2006, 55, 1317–1330. [CrossRef]

25. Liu, C.L.; Layland, J.W. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment.
J. ACM 1973, 20, 46–61. [CrossRef]

http://dx.doi.org/10.1109/5.259426
http://dx.doi.org/10.1145/3131347
http://dx.doi.org/10.1007/s10617-019-09232-3
http://dx.doi.org/10.1109/rtss.2007.47
http://dx.doi.org/10.1145/3126498
http://dx.doi.org/10.1109/rtas.2012.24
http://dx.doi.org/10.1109/TIM.2006.876530
http://dx.doi.org/10.1145/321738.321743

Appl. Sci. 2020, 10, 6702 21 of 21

26. Buttazzo, G.C. Hard Real-Time Computing Systems; Springer Science and Business Media LLC: Berlin, Germany,
2011; Volume 24.

27. Zeng, L.; Xu, C.; Li, R. Partition and Scheduling of the Mixed-Criticality Tasks Based on Probability.
IEEE Access 2019, 7, 87837–87848. [CrossRef]

28. Capota, E.A.; Stangaciu, C.S.; Micea, M.; Cretu, V.I. P_FENP: A Multiprocessor Real-Time Scheduling
Algorithm. In Proceedings of the 2018 IEEE 12th International Symposium on Applied Computational
Intelligence and Informatics (SACI), Timisoara, Romania, 17–19 May 2018; pp. 000509–000514. [CrossRef]

29. Socci, D. Scheduling of Certifiable Mixed-Criticality Systems. Ph.D. Thesis, Grenoble Alpes University,
Saint-Martin-d’Heres, France, 2016.

30. Guan, N.; Ekberg, P.; Stigge, M.; Yi, W. Improving the Scheduling of Certifiable Mixed-Criticality Sporadic
Task Systems; Technical Report 2013-008; Department of Information Technology, Uppsala University:
Uppsala, Sweden, 2013; pp. 1–12.

31. Li, H.; Baruah, S. Outstanding Paper Award: Global Mixed-Criticality Scheduling on Multiprocessors. In
Proceedings of the 2012 24th Euromicro Conference on Real-Time Systems, Pisa, Italy, 11–13 July 2012; Institute of
Electrical and Electronics Engineers: Piscataway, NJ, USA, 2012; pp. 166–175.

32. Rieck, B. Basic Analysis of Bin-Packing Heuristics; Interdisciplinary Center for Scientific Computing: Heidelberg,
Germany, 2010.

33. Baruah, S.; Buttazzo, G.; Gorinsky, S.; Lipari, G. Scheduling Periodic Task Systems to Minimize Output Jitter.
In Proceedings of the 6th International Conference on Real-Time Computing Systems and Applications,
Hong Kong, China, 13 December 1999; pp. 62–69. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2926299
http://dx.doi.org/10.1109/saci.2018.8440932
http://dx.doi.org/10.1109/rtcsa.1999.811194
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	FENP_MC: Fixed Execution Non-Preemptive Mixed Criticality
	Perfectly Periodical Task Model
	Perfectly Periodical Task Execution Model
	Feasibility Analysis
	Theoretical Aspects
	Execution Examples
	Implementation Guidelines

	FENP_MC
	Theoretical Aspects
	Execution Examples
	Implementation Guidelines

	P_FENP_MC
	Theoretical Aspects
	Execution Examples
	Implementation Guidelines

	Performance Analysis
	Random Task Set Generation
	Success Ratio
	Jitterless Execution—Test Case
	Discussion

	Conclusions and Future Work
	References

