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Abstract: This paper investigates the design and MATLAB/Simulink implementation of two intelli-
gent neural reinforcement learning control algorithms based on deep learning neural network struc-
tures (RL DLNNs), for a complex Heating Ventilation Air Conditioning (HVAC) centrifugal chiller 
system (CCS). Our motivation to design such control strategies lies in this system’s significant con-
trol-related challenges, namely its high dimensionality and strongly nonlinear multi-input multi-
output (MIMO) structure, coupled with strong constraints and a substantial impact of measured 
disturbance on tracking performance. As a beneficial vehicle for “proof of concept”, two simplified 
CCS MIMO models were derived, and an extensive number of simulations were run to demonstrate 
the effectiveness of both RL DLNN control algorithm implementations compared with two conven-
tional control algorithms. The experiments involving the two investigated data-driven advanced 
neural control algorithms prove their high potential to adapt to various types of nonlinearities, sin-
gularities, dimensions, disruptions, constraints, and uncertainties that inherently characterize real-
world processes. 
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1. Introduction 
Control algorithms are essential parts of the successful operation of processes. In re-

cent years, data-driven intelligent control algorithms mainly relying on artificial intelli-
gence and soft computing concepts have emerged as a valuable alternative to conven-
tional model-based control methods, especially in cases involving complex systems. A 
special category of such new algorithms that employ the reinforcement learning principle 
to tune deep neural networks for optimal control of processes is still in the infancy stage 
but has shown promising results when applied to the control of highly nonlinear, high-
dimensional, time-delayed, time-varying, partially known, or hard-to-mathematically-
formalize systems. From this perspective, centrifugal chiller systems (CCSs) from com-
plex Heating Ventilation Air Conditioning (HVAC) are no exception, needing specifically 
tailored control strategies. In this context, the current paper aims to explore the develop-
ment and MATLAB/Simulink implementation of two neural reinforcement learning (RL) 
control algorithms utilizing deep learning neural network (DLNN) frameworks in 
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relation to a specific intricate HVAC centrifugal chiller system. We address the key limi-
tations of existing approaches by making the following contributions: 
• We developed an accurate simplified CCS model in a state-space representation. 

Based on the input–output measurement dataset of the open loop multi-input multi-
output (MIMO) CCS extended nonlinear model, having 39 states, three inputs and 
two outputs, a MIMO autoregressive moving average with an exogenous input (AR-
MAX) delayed fourth-order polynomial model of z-representation in the complex 
domain is obtained. This ARMAX model was converted into a linearized MIMO CCS 
model with four states, three inputs, and two outputs; 

• We designed and tuned a standard PID controller and also a standard model predic-
tive control (MPC) for comparison purposes; 

• We built two RL DLNN controllers connected in series in a forward path with the 
MIMO CCS simplified model represented in state space, for temperature control in-
side the evaporator subsystem and liquid refrigerant level control within the conden-
ser subsystem; 

• We rigorously evaluated the tracking performance for both RL DLNNs and com-
pared it with the results obtained using classic PID or MPC controllers. 
The remainder of this research paper is structured in the following six sections. Sec-

tion 2 is devoted to a brief literature review and some preliminaries regarding HVAC 
control systems. Section 3 outlines four conventional closed-loop control methods, de-
signed and implemented in Matlab/Simulink, with three being based on a standard PID 
controller, and the fourth being an MPC. Section 4 focuses on the design of two RL DLNN 
controllers. The extensive simulation results are reported in Section 5. Section 6 is dedi-
cated to discussions, and Section 7 concludes the paper, briefly highlighting the main 
yields and the future work directions. 

2. Related Work and Preliminaries on HVAC Systems 
2.1. Literature Review of HVAC Control Systems 

It is well known that the electricity market is undergoing substantial transformations 
in grid modernization, large-scale energy storage, and efficient energy transfer manage-
ment. Many elements must work together to effectively provide domestic and commercial 
consumers with the electricity services necessary for sustainable development. Both sup-
ply and demand will need to adapt to a new and diverse energy mix, including expanding 
demand-side management, building new energy storage capacities, and investing in mod-
ern and efficient power grids. In this context, a considerable amount of energy consump-
tion in any commercial or residential building is due to heating, ventilation and air con-
ditioning (HVAC) systems [1–4]. Therefore, improving their efficiency becomes critical 
for energy and environmental sustainability [5–8]. In general, centrifugal chillers are the 
widely preferred cooling units for a wide range of HVAC control system applications due 
to their high efficiency, reliability, and low maintenance costs. More precisely, they are 
suitable for providing cold water for the cooling needs of all the air-handling units in a 
building [1]. Since a centrifugal chiller is the most energy-consuming HVAC device, its 
efficiency can be improved by using advanced model-based as well as data-driven con-
troller design strategies [9–11]. A brief review of the literature on HVAC centrifugal chill-
ers reveals that a significant amount of work has been carried out on steady-state and 
transient modeling. Several dynamic models for the vapor compression cycle have been 
extensively studied [8]. Also, as previously discussed [1], mechanistic models of single-
stage and two-stage centrifugal chillers have been developed in which the centrifugal 
compressor is modeled based on the Euler turbomachinery, the balance energy, and the 
impeller velocity equations. The energy coefficient of performance (COP) of the chiller is 
simulated by considering the compressor polytropic efficiency and hydrodynamic, me-
chanical, and electrical losses. Meanwhile, the condenser and evaporator are modeled 
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based on the lumped parameter approach, and the heat transfer is calculated based on the 
effectiveness model. Taking into account the fact that their dynamics are of high nonline-
arity, complexity, and dimensionality, from an appropriate control perspective, the devel-
oped models must be simplified [8]. An interesting dynamic model of a semi-hermetic 
reciprocating compressor was developed based on the first law of thermodynamics ap-
plied to a lumped control volume, the expansion valve modeled based on a simple orifice 
flow model [1]. Over the past two decades, our research team has worked intensively with 
HVAC field control systems, focusing on developing high-fidelity dynamic modeling of 
centrifugal chillers and building the most suitable control strategies based on them, as a 
priority task of our research [8]. Interested readers and specialists working in the field can 
find in [8] a valuable support for the development of simplified, linearized, low-dimen-
sionality, accurate, robust, and stable models in different state-space representations or in 
the complex domain. Moreover, these models have been validated and adapted to the 
harshest realistic working environment including a variety of uncertainties, nonlineari-
ties, high dimensionality, and disturbances. Therefore, this paper presents some models 
of multi-input multi-output (MIMO) centrifugal cooling systems (CCS) with enough de-
tails for good readability and understanding. Based on these, advanced closed-loop intel-
ligent neural control strategies of real practical interest were developed. Specifically, the 
models chosen for our case study served as a valuable vehicle for “proof of concept” and 
simulation purposes. These models were inspired by the literature in the field, with one 
of the works being particularly fundamental [12], and others [13–16] providing some val-
uable and useful references for the design of models based on discrete time data, such as 
AutoRegressive with eXogenous input (ARX) and Autoregressive Moving Average with 
eXogenous input (ARMAX), which are polynomial models built in state space. Compared 
with standard control strategies such as proportional integral derivative (PID) control [17] 
and also Model Predictive Control (MPC), the advanced neural intelligent reinforcement 
learning deep learning neural network (RL DLNN) control systems [17–19] demonstrated 
better performance in various abilities such as possessing human-like expertise in a par-
ticular domain, self-adjusting, adaptively learning environmental changes, and taking the 
best decisions or most appropriate actions [20–24]. 

2.2. Preliminaries—Adopted CCS Model and Its Implementation 
This research used a valuable vehicle, namely three MIMO Centrifugal Chiller Sys-

tem (CCS) models, adopted as a case study, for “proof of concept” and MATLAB R2024a 
simulation purposes. 

2.2.1. MIMO Centrifugal Chiller Modeling Assumptions 
The proposed MIMO (three inputs, two outputs) Centrifugal Chiller model used in 

the case study for this research was previously developed with sufficient detail [8] and 
also validated [7]. In the current research, this model has been simplified to be suitable for 
control purposes. In the case study, the proposed dynamic model of the Centrifugal 
Chiller System was constructed by interconnecting the following subsystems: a water-
cooled centrifugal chiller, a centrifugal compressor, shell-and-tube heat exchangers, a 
thermal expansion valve, and the controller. The water-cooled centrifugal chiller was 
modeled based on the mechanics of fluid theory, and the centrifugal compressor was 
modeled based on turbo-machinery theory, similar to those developed previously [8]. The 
chiller’s capacity control was achieved by the combination of variable inlet guide vane 
and variable speed drive and the entire system consisted of four major components [1,8], 
as shown in Figure 1, namely, a centrifugal compressor, a condenser, an expansion valve, 
and an evaporator. Typically, the chilled-water system consists of one circulating refrig-
erant loop and two water loops. The first water loop circulates between the condenser and 
the cooling tower, and the second water loop circulates between the evaporator and the 
air handling units (AHUs) that produce chilled water for the cooling coil. 
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Figure 1. Following the direction of the arrows, chilled water flows through centrifugal chiller evap-
orator and condenser subsystems, with all four main components [1,8]. 

A thermal expansion valve is used to regulate the pressure levels at the condenser 
and evaporator sides. In this research, the overall dynamics of the MIMO chiller control 
system are calculated in a state-space representation via a set of 39 nonlinear differential 
equations, with 39 states, two inputs (compressor driver relative speed, expansion valve 
opening), and two outputs (water temperature, liquid level in the evaporator). The impact 
of load temperature as a main disturbance was also investigated. Even if a centrifugal 
chiller is a highly dimensional system, it can easily be integrated into various control 
HVAC control applications in commercial buildings, with the chilled-water system sup-
plying chilled water for the cooling needs of all the building’s air-handling units. In order 
to accomplish these tasks HVAC, control systems usually include a water pump to circu-
late the chilled water through the evaporator and throughout the building for cooling. 
Also, another water loop from the chiller moves the heated condenser water, and another 
pump circulates the heated water to the cooling tower and cools it back [1,8]. 

2.2.2. Case Study—MIMO Centrifugal Chiller System Assumptions and Decomposition 
The dynamic model of the overall centrifugal chiller control system is of high com-

plexity in terms of state dimensionality and nonlinearity and is described in state space 
by a set of 39 first-order differential equations (ODE), as a natural mathematical form to 
represent a physical system. It is beyond the current scope to write out all these equations, 
since the MIMO Centrifugal Chiller model used in the case study has already been devel-
oped and validated in sufficient details in other work [14,15], but we briefly present some 
significant aspects of the modeling methodology in this section. The first assumption un-
der consideration in the case study related to the decomposition of the overall centrifugal 
chilller control system into two embedded open-loop subsystems, the first one an open-
loop temperature control of the chilled water Tchw_sp inside the evaporator subsystem, 
and the second an open-loop level control of the liquid refrigerant level L inside the re-
frigerator subsystem. The second assumption related to the interference and independ-
ence of both loops. Based on two of these assumptions, the three-input two-outputs 
MIMO model with temperature load disturbance and two independent loops was at-
tached to a data-based CCS model to be investigated. More precisely, the input triplet 
(compressor speed Ucom, expansion valve opening U_EXV, temperature load disturb-
ance Tchw_rr (chilled water return temperature)) and output doublet (temperature 
Tchw_sp, level L) were considered. It is worth noting that this modeling strategy, using a 
deterministic input disturbance Tchw_rr, was the most reflective of real life, which is of 
particular interest for investigation. As an oriented object, the MIMO Centrifugal Chiller 
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plant is considered in MATLAB as an iddata object, generated based on the dataset of in-
put–output measurements loaded in the MATLAB workspace, using the following 
MATLAB code lines: 
load InputOutputChiller_Data.mat Tchw_sp Level Ucom U_EXV Tchw_rr; 
CentrChiller = iddata (y,u,1) 
where the input–output measurement dataset is collected in an open loop using a specific 
data acquisition equipment and stored in the input vector u = [u1 u2 u3], which is a three-
columns vector assigned as follows: 
u1= Ucom; u2 = U_EXV; u3 = Tchw_rr  
and in the output vector y = [y1 y2] that is a two-column vector assigned as follows: 
y1 = Tchw_sp of the chilled water temperature inside the evaporator subsystem 
y2 = Level of the liquid refrigerant level of the refrigerator subsystem 

2.2.3. Open-Loop MIMO Centrifugal Chiller System (MIMO) MATLAB Simulink Ex-
tended Model Diagram 

Representation of the MIMO Centrifugal Chiller System dynamics in state space is 
achieved with a MIMO Simulink model with three inputs (u1 = Ucom, u2 = U_EXV, u3 = 
Tchw_rr), two outputs (y1 = Tchw_sp, y2 = Level), and 39 states described by 39 nonlinear 
first-order differential equations encapsulated in a MATLAB function block, as shown in 
Figure 2. Also, in Figure 3 are presented the MATLAB Simulink open-loop simulation 
results.  

 
Figure 2. Simulink model of MIMO centrifugal chiller system in state-space representation. 
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Figure 3. MATLAB Simulink open-loop simulation results: (a) condensing pressure (Pc); (b) evapo-
rator pressure (Pev); (c) chilled water temperature (Tchwr) in evaporator; (d) cooling water temper-
ature (Tchwsp) in condenser; (e) heat exchange rate; (f) coefficient of performance (COP); (g) uCom 
input—relative compressor speed (RPM/RPMnominal); (h) u_EXV input–expension valve opening 
in (%); (i) liquid refrigerant level in the condenser (%); (j) the MATLAB function selected for the 
visualization block. 

A detailed Simulink model of an extended MIMO Centrifugal Chiller closed-loop 
control system (three inputs, two outputs, and 39 states) using a proportional integral de-
rivative (PID) controller described in Section 3, and the MATLAB simulations result is 
depicted in Section 5. 

2.2.4. Case Study—The Data-Driven ARMAX Model for MIMO Centrifugal Chiller  
Subsystems in Discrete-Time State-Space Representation. 

The MATLAB System Identification Toolbox provided valuable tools for developing 
a simplified second-order polynomial ARMAX model of high accuracy, which was as-
signed to the full model of the MIMO Centrifugal Chiller. This simplified model proved 
very useful for building two traditional closed-loop control strategies, namely a PID and 
MPC, as well as two alternative advanced intelligent reinforcement learning control strat-
egies based on the reinforcement learning deep learning neural networks (RL DLNNs) as 
a viable alternative to traditional approaches. Finally, a rigorous performance analysis 
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was carried out for comparison purposes, in order to decide which model performed bet-
ter in terms of meeting the control design requirements and process control constraints, 
rejecting the effect of possible disturbances acting on the controlled process, accuracy and 
tracking error. The original MIMO ARMAX model was developed in state-space repre-
sentation, using a nonlinear set of ordinary differential equations (ODE) as a natural rep-
resentation of a physical system, easily solved using a suitable MATLAB solver. Due to 
its nonlinearity and high dimensionality (39 states), a new simplified MIMO Centrifugal 
Chiller model is developed in a state space representation. 

The following two MATLAB code lines generated the MIMO ARMAX (MIMO) dis-
crete state-space model in the z-complex domain [8]: 

MIMO = armax(CentrifugalChiller_DATA, [[2 0; 0 2],[2 2 2; 3 2 3], [1; 1], [1 1 1; 1 1 1]], options) 

where the options are selected by using the MATLAB code line: 
options = armaxOptions(‘InitialCondition’,’estimate’,’Focus’,’prediction’) 

In the z-complex domain, the MIMO ARMAX centrifugal chiller model generated in 
MATLAB is three-input, two-output, four-state linear model described in discrete-time 
state space by a triplet of matrices (A, B, C) given as follows [8]: 𝐴(𝑧ିଵ) = 𝐼ଶ×ଶ + ቂ−1.757 00 −1.581ቃ 𝑧ିଵ + ቂ0.7601 00 0.6884ቃ 𝑧ିଶ, 𝑛 = 2 (1)

𝐵(𝑧ିଵ) = ቂ−0.0282 −0.008134 0.0011731.469 −3.07 0.03456 ቃ 𝑧ିଵ + ቂ0 0.001721 00 2.079 0ቃ 𝑧ିଶ (2)

𝐶(𝑧ିଵ) = 𝐼ଶ×ଶ + ቂ0.3064 00 0.7141ቃ 𝑧ିଵ (3)

or condensed in discrete-time z-transform transfer matrix representation: 𝐻௬௨(𝑧) ≝ ቈ𝐻௬భ௨భ(𝑧) 𝐻௬భ௨మ(𝑧) 𝐻௬భ௨య(𝑧)𝐻௬మ௨భ(𝑧) 𝐻௬మ௨మ(𝑧) 𝐻௬మ௨య(𝑧) (4)

such that: 

𝑌(𝑧) = 𝐻௬௨(𝑧) × 𝑈(𝑧), 𝑌(𝑧) = 𝑌ଵ(𝑧)𝑌ଵ(𝑧)൨ , and 𝑈(𝑧) = 𝑈ଵ(𝑧)𝑈ଶ(𝑧)𝑈ଷ(𝑧) (5)

where the input and output channels correspond to the following z-transfer functions. 
From the channel input u1 to output y1, the discrete-time transfer function is given 

as follows: 𝐻௬భ௨భ(𝑧) ≝ −0.0282𝑧ିଵ1 −  1.756𝑧ିଵ + 0.7601𝑧ିଶ 

From the channel input u1 to output y2, the discrete-time transfer function is denoted 
thus: 𝐻௬మ௨భ(𝑧) ≝ 1.469𝑧ିଵ1 −  1.628𝑧ିଵ + 0.6884𝑧ିଶ 

From the channel input u2 to output y1, the discrete-time transfer function is repre-
sented by: 𝐻௬భ௨మ(𝑧) ≝  −0.008134𝑧ିଵ + 0.001721𝑧ିଶ1 −  1.756𝑧ିଵ + 0.7601𝑧ିଶ  

From the channel input u2 to output y2, the discrete-time transfer function is desig-
nated as: 𝐻௬మ௨మ(𝑧) ≝ −3.07𝑧ିଵ + 2.079𝑧ିଶ1 −  1.628𝑧ିଵ + 0.6884𝑧ିଶ 
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From the channel input u3 to output y1, the discrete-time transfer function is given 
as follows: 𝐻௬భ௨య(𝑧) ≝ 0.001173𝑧ିଵ1 −  1.756𝑧ିଵ + 0.7601𝑧ିଶ 

From the channel input u3 to output y2, the discrete-time transfer function is defined 
as: 𝐻௬మ௨య(𝑧) ≝ 0.03456𝑧ିଵ1 −  1.628𝑧ିଵ + 0.6884𝑧ିଶ 

The Simulink diagram of MIMO centrifugal chiller model in the z-domain including 
all these z-transfer functions is represented in Figure A1 in Appendix A. 

A compact matrix description of the MIMO ARMAX centrifugal chiller system in 
discrete-time state space (three inputs, four states, two outputs, and sampling time Ts = 1 
s) is given by the following state-space equation: 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (6)

where the values of the matrix’s quadruplet (A, B, C and D) coefficients are given in Equa-
tion (7): 

𝐴 = 0 −0.7601 0         01 1.756 0        000 00 01 −0.68841.628  , 𝐵 =  0−0.112800.7347
0.006884−0.03254  1.04 −1.535

00.00469100.01728  , 𝐶 = ቂ0 0.25 0 00 0 0 2ቃ, 𝐷 = 0ଶ×ଷ (7)

The MIMO output responses with the disturbance temperature set to Tchw-rr = 48 
[°F] and the actuator inputs (Speedcomp, ExpValve) are shown in Figure 4. 

 
Figure 4. Open-loop linear simulation results for the MIMO ARMAX CCS state-space model. 

3. Traditional Controllers: PID and MPC Closed-Loop Control Strategies 
In the time domain, the general form of the PID control law in a closed-loop control 

strategy is given by the following input–output equation: 𝑢ூ(𝑡) = 𝑘𝜀(𝑡) + 𝑘ூ න 𝜀(𝑡) 𝑑𝑡 + 𝑘 𝑑𝜀(𝑡)𝑑𝑡  (8)

where 𝜀(𝑡)  represents the error between the actual measurement of system output 𝑦(𝑡) and its desired value 𝑦𝑠𝑝(𝑡), also called the setpoint, reference, or tracking value, as 
follows: 
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𝜀(𝑡) = 𝑦(𝑡) − 𝑦𝑠𝑝(𝑡) (9)

where 𝑢ூ(𝑡) refers to the controller output. 𝑘, 𝑘ூ = ଵ் , 𝑘 = 𝑇 represent the PID controller parameters, 𝑘 is the proportional gain, 𝑘ூ refers to the integral gain, 𝑘 denotes the derivative gain, and 𝑇ூ and 𝑇 are the time 
constants for the integral and derivative blocks, respectively. For a particular parameter 
setting, different controller architectures (e.g., P, I, PI, PD, and PID) may be obtained. 

In the complex domain, the transfer function of an ideal PID controller is given bel-
low: 𝐻(𝑠) = 𝑈ூ(𝑠)𝜀(𝑠) = 𝑘 + 𝑘ூ𝑠 + 𝑘𝑠 (10)

Furthermore, adding a compensator formula to Equation (10) using a low pass filter (LPF) 
of coefficient N can serve as a practical PID controller via the following transfer function: 𝐻(𝑠) = 𝑈ூ(𝑠)𝜀(𝑠) = 𝑘 + 𝑘ூ𝑠 + 𝑘𝑁1 + 𝑁𝑠  (11)

3.1. DTI MIMO Centrifugal Chiller Closed-Loop System Control in State-Space Representation 
The discrete-time integrator (DTI) closed-loop control strategy architecture of the 

proposed MIMO CCS model, a valuable “vehicle” for MATLAB Simulink simulations, is 
depicted in Figure A2, Appendix A. Its discrete-time transfer function in the z-complex 
domain is given as follows: 𝐻ଵ(𝑧) = 𝑘ଵ𝑇௦ 1 − 𝑧ିଵ , 𝑘ଵ = [−1 1], 𝐻ଵ(𝑧) = 𝑘ଶ𝑇௦ 1 − 𝑧ିଵ , 𝑘ଶ = [0.001 − 0.01], 𝑇௦ = 1 (12)

The parameters of both DTI controller blocks 𝑘ଵ,  𝑘ଶ are easy to adjust. However, the 
parameter adjustment process encounters some difficulties due to the constraints on the 
model inputs 0 ≤ 𝑢ଵ = uCom ≤ 1.1, 0 ≤ 𝑢ଶ = u_EXV ≤ 1. Also, the “trial and error” proce-
dure to track evaporator temperature and condenser level performance was inaccurate. 
Figure A2a presents the compact DTI Simulink diagram, with valuable details of the two 
integrators shown in Figure A2b,c. 

3.2. PID MIMO Centrifugal Chiller Closed Loop System Control in Extended State Space Repre-
sentation 

The PID closed-loop control strategy for the MIMO CCS extended model with 39 
internal states is depicted in Figure A3a–c. The PID transfer function in the s-complex 
domain is given by Equation (11). Both controllers’ parameter datasets for evaporator tem-
perature (indexed by T) and condenser liquid refrigerant level (indexed by L) were set to 
the following values: 𝑘் = 0.1, 𝑘ூ் = 0.0001, 𝑘் = 0.1, 𝑁் = 100, 𝑘 = 0.1, 𝑘ூ = 0.0001, 𝑘 = 0.1,  𝑁 = 100, 

The temperature setpoint within the evaporator was Tchw-sp = 6.67 [degC], and the 
level of liquid refrigerant inside the condenser was L = 45 (%), with a much longer simu-
lation time of Tf = 13,600 s (3 h 30 min). 

Therefore, alternative simplified ARMAX, ANFIS and neural network models of the 
MIMO Centrifugal Chillaer capable of capturing its entire dynamic evolution and suitable 
for control purposes were investigated in this research. 

Figure A3a shows the Simulink diagram of the PID closed-loop control strategy, and 
Figure A3b presents two subsystem components of the Simulink diagram (model + visu-
alization block). The code lines of the Simulink MATLAB function from the visualization 
block are given in Figure A3c. The Simulink simulation results are discussed in Section 5, 
and a rigorous performance analysis is conducted in Section 6. 
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3.3. Digital PID Control of MIMO Centrifugal Chiller Closed-Loop System in Extended  
State-Space Representation (39 States) 

A large number of simulations performed on a MATLAB Simulink R2024a platform 
showed a slow response of about 3 h and 30 min to reach a steady state and achieve accu-
rate tracking performance for control of the evaporator subsystem temperature and the 
levels of liquid refrigerant in the condenser subsystem. The development of a fast-tuning 
digital PID controller, similar to an interesting approach proposed previously [15], pro-
vided a substantial improvement. Furthermore, an alternative to the extended MIMO cen-
trifugal chiller model, a simplified Adaptive Neural Fuzzy Inference System (ANFIS) is 
under investigation for integration with the digital PID in the same closed-loop control 
strategy whose Simulink block diagram is shown in Figure 5. The MATLAB Simulink 
simulations are presented and discussed in Section 5 and a rigorous performance analysis 
is carried out in Section 6, revealing a fast response (settling time) and high tracking accu-
racy. Furthermore, the model’s performance was compared with an advanced deep learn-
ing neural network (RL DLNN) in which the reward function was generated based on the 
step response block specifications of digital PID control of the MIMO CCS ANFIS model 
developed in the next section. 

 
Figure 5. Digital PID ANFIS discrete-time control temperature inside evaporator and liquid refrig-
erant level within condenser—overall Simulink diagram. 

In the Simulink diagram shown in Figure 5 the digital PID controller appears on the 
left side, implemented based on Equation (8). The simplest way to implement a digital 
PID is to discretize Equation (8) and then to transform it into a difference equation of the 
form suggested in [22]. Specifically, this is a recursive method that calculates the PID con-
troller output at 𝑡 = 𝑘𝑇௦, 𝑘 ∈ ℤ,  𝑇௦ − sampling time, based on the previous value of the con-
troller output and its growth [22], as follows: 𝑢ூ(𝑘𝑇௦) = 𝑢ூ[(𝑘 − 1)𝑇௦] + Δ𝑢ூ(𝑘𝑇௦) (13)

For simplicity, assuming 𝑇௦ = 1[𝑠], Equation (13) becomes: 𝑢ூ(𝑘) = 𝑢ூ(𝑘 − 1) + 𝑘൫𝑒(𝑘) − 𝑒(𝑘 − 1)൯ + 𝑘ூ𝑒(𝑘) + 𝑘(𝑒(𝑘) − 2𝑒(𝑘 − 1) + 𝑒(𝑘 − 2)) (14)

or, compact: 𝑢ூ(𝑘) = 𝑢ூ(𝑘 − 1) + (𝑘 + 𝑘ூ + 𝑘)𝑒(𝑘) − (𝑘 + 2𝑘)𝑒(𝑘 − 1) + 𝑘𝑒(𝑘 − 2) (15)
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𝑢ூ(𝑘) = 𝑢ூ(𝑘 − 1) + 𝑎𝑒(𝑘) + 𝑏𝑒(𝑘 − 1) + 𝑐𝑒(𝑘 − 2) (16)

with the coefficients 𝑎, 𝑏 and 𝑐 given by: 𝑎 = 𝑘 + 𝑘ூ + 𝑘, 𝑏 = −𝑘 − 2𝑘, 𝑐 = 𝑘 (17)

In this research, the controller coefficients were set to (0.095, −0.225, 0.1) for the first 
digital PID controller integrated into the closed-loop feedback control of the chilled water 
temperature inside the ANFIS model evaporator subsystem. 

The set of values (0.025, −0.105, 0.05) was selected for the second digital PID controller 
that controlled the liquid refrigerant level in the ANFIS model condenser subsystem. As 
can be seen, the MIMO Centrifugal model was split into two accurate ANFIS models of 
the MIMO centrifugal chiller; the first a MISO ANFIS CentrChillerfis1 attached to the 
evaporator subsystem, and the second a MISO ANFIS CentrChillerfis2 assigned to the 
condenser, as shown in Figure 6a–h. Both MISO ANFIS models were generated using the 
Fuzzy Logic Designer app based on the measurement input–output dataset of the open-
loop MIMO Centrifugal Chiller plant. The first ANFIS MISO evaporator centrifugal chiller 
model (fisCentrChiller1) is shown along with the membership functions in Figures 6a,b, 
and its estimation performance is reported in Figure 6e. Data for the second ANFIS MISO 
condenser centrifugal chiller, including the membership functions, are shown in Figure 
6c,d and its estimation performance in Figure 6f. Figure 6g,h show a Rule Viewer for each 
MISO ANFIS model. 

  
(a) (b) 

 
(c) (d) 
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(e) (f) 

 
(g) (h) 

Figure 6. Fuzzy logic design application, MATLAB Simulink simulation results: (a) Centrifugal 
Chiller FIS temperature within evaporator; (b) Centrifugal Chiller FIS membership functions; (c) 
Centrifugal Chiller FIS temperature within condenser; (d) Centrifugal Chiller FIS membership func-
tions; (e) Chilled water temperature, evaporator training data and ANFIS model output estimation; 
(f) liquid refrigerant level inside condenser training data and ANFIS model output estimation; (g) 
Rule Viewer: fis MISO chilled water temperature inside the evaporator subsystem; (h) Rule Viewer: 
fis MISO liquid refrigerant level within the condenser subsystem. 

The MATLAB Simulink simulation results are discussed in Section 5, and a rigorous 
comparative performance analysis is made in Section 6. 

3.4. Model Predictive Control Based on Centrifugal Chiller MIMO State-Space Representation 
The MPC closed-loop control strategy architecture for MIMO CCS is shown in Figure 

7. The model predictive control (MPC) object was generated in MATLAB, as explained is 
detail in Section 4.2, and the MPC Simulink diagram shown in Figure 7 was obtained us-
ing the MPC MATLAB Simulink Toolbox. The MPC object has two manipulated variables 
(MVs): uCom and u_EXV; one measured disturbance (MD) (temperature Trr set to 48 de-
grees Fahrenheit); and two measured outputs variables (OV), namely, evaporator temper-
ature Tchw_sp and liquid refrigerant level inside condenser. The MIMO model of the 
Centrifugal Chiller plant is represented in a discrete-time state space via Equation (6), with 
the values of the matrices’ coefficients given in Equation (7). The MATLAB Simulink sim-
ulation results are shown in Section 5.2 and the performance analysis is reported in Section 
6. 
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Figure 7. Simulink models of MPC using Simulink MPC Toolbox and MPC Design application. 

4. Design and Implementation of Reinforcement Learning Using Deep Learning  
Neural Networks-MIMO CCS Closed-Loop Control Strategies 

This section focuses on the design and implementation in MATLAB Simulink of two 
RL DLNN advanced intelligent control strategies for a MIMO CCS simplified state-space 
model. The first uses the MPC specifications to generate the reward function, and the sec-
ond uses step response specifications imposed on a MIMO CCS model represented in the 
simplified state space. The tracking accuracy performance was compared with the MPC 
integrated in the first controller structure and an improved digital PID based on the MISO 
CCS ANFIS models. 

4.1. Reinforcement Learning Closed-Loop Control Strategy Using Deep Learning Neural Net-
work MIMO Centrifugal Chiller Plant Model Represented in State Space 
4.1.1. Reinforcement Learning Process—Description 

Reinforcement learning (RL) involving multi-layered deep learning neural networks 
is a well-used and well-suited method for research and development in modern artificial 
intelligence, as is shown in [18]. More precisely, RL is a modeling process in which an 
agent (controller) learns to make decisions by interacting with an unknown environment 
through trial and error, as shown in Figure 8a [18,19]. Mathematically speaking, the RL 
modeling process (algorithm) depicted in Figure 8a is typically based on a Markov deci-
sion process (MDP). In this type of process, the RL agent block receives in its current state 
the observation St as a result of the interaction with the unknown Environment, perform-
ing an action that it then sends to the same Environment. The latter reacts by sending a 
scalar reward Rt to the same RL block for a new transition to the next state St+1, according 
to the conditional probability of the Environment dynamics; p(St+1|St, At). The RL agent 
attempts to learn a policy π(At|St) or map from observations to actions, in order to max-
imize its returns (expected sum of rewards). In RL (as opposed to optimal control), the 
algorithm has access to Environment dynamics p(St+1|St, At) only during the sampling 
time. During the training process, the RL blocks learn the unknown environment and 
“make a series of decisions to maximize the cumulative reward for the task without hu-
man intervention and without being explicitly programmed to achieve the task” [18]. 



Algorithms 2025, 18, 170 14 of 53 
 

 

  
(a) (b) 

Figure 8. Reinforcement learning architecture [18,19]: (a) RL process; (b)standard feedback closed-
loop control schematic. In this figure, the blue color is used to identify the Agent and Environment 
blocks, the color green to show the direction of the information flow in the closed-loop of traditional 
system, and the red color is to highlight that the parameters of the controller are adjustable and a 
particular Reward function, respectively.  

From the perspective of a system-oriented approach, the diagram shown in Figure 
8a shows a general representation of a reinforcement learning (RL) algorithm. Figure 8b 
reveals its equivalence to a traditional closed-loop control strategy used in system appli-
cations [19]. In other words, the key role of the RL policy in Figure 8a is to observe the 
unknown environment (state St) and generate actions (At) to “complete a task optimally”, 
similar to a traditional controller operating in a control system application. Of course, the 
RL algorithm comes with a valuable improvement to the RL policy, known as policy up-
dating. More specifically, RL can be seen as a mapping of a conventional feedback control 
system depicted in Figure 8b, and the correspondence between both diagrams is well pre-
sented in [19]. The concept is based on “rewarding or punishing an agent’s performance in a 
specific environment” [24]. According to this definition, a state is a description of the envi-
ronment that provides the agent with helpful information for taking a decision at each 
time step. The agent receives observations and a reward from the Environment and the 
actions generated are sent into the same Environment. Reward is a measure of the achieve-
ment of an action on the completion of the task goal; i.e., the reward signal evaluates the 
outcome of past actions [18]. RL policy is based on cost function to map each state to the 
optimal action in order to maximize its reward function during the episode [17]. 

This RL policy can be a deterministic policy, defined as 𝐴௧ = π(𝑆௧) for π: 𝒮 → 𝒜, or 
stochastic policy, described as 𝐴௧ ~π( ⋅ |𝑆௧) for π: 𝒮 → 𝒫(𝒜), where 𝒫(𝒜) is a set of prob-
ability distributions over actions. For an MDP, these probability distributions have an in-
teresting feature; they factorize over trajectories [17,19]: 𝑝(𝑆ଵ, 𝐴ଵ, … , 𝑆, 𝐴) = 𝑝(𝑆ଵ)π(𝐴ଵ, 𝑆ଵ) 𝒫(𝑆ଶ|𝑆ଵ, 𝐴ଵ)π(𝐴ଶ, 𝑆ଶ) … … 𝒫(𝑆|𝑆ିଵ, 𝐴ିଵ)π(𝐴, 𝑆)  (18)

Thus, this feature is useful in the field of control applications, since RL policies need 
only to consider the current state, which is a strong consequence of the Markov assump-
tion and full observability [23]. Otherwise, if the RL environment is partially observable, 
then the RL policy must depend on the history of observations. It is important to note that 
the RL deep learning method differs from supervised learning because it does not require 
correct sets of actions and labelled input/output pairs [24–27]. The general reinforcement 
learning structure shown in Figure 8a is described by the following Equations [17]: 𝐴௧~π(𝐴௧|𝑆௧) (19)𝑆௧ାଵ~𝑓௦௧௧(𝑆௧ାଵ|𝑆௧, 𝐴௧) (20)𝑅௧ାଵ = 𝑓௪ௗ(𝑆௧, 𝐴௧, 𝑆௧ାଵ) (21)
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𝑅 =  𝛾௧𝑅௧ାଵ௧ୀஶ
௧ୀ  (22)

𝑄௪(𝑆௧, 𝐴௧) = 𝑄ௗ(𝑆௧, 𝐴௧) + 𝛼 ቆ𝑅௧ + maxᇲ∈𝒜 𝑄௫௧(𝑆௧ାଵ, 𝑎ᇱ) −  𝑄(𝑆௧, 𝐴௧)ቇ = 𝑄ௗ(𝑆௧, 𝐴௧) + 𝛼(𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) (23)

where π(𝐴௧|𝑆௧) is the policy at time t, 𝐴௧ denotes the action of time t, 𝑆௧ is the state (obser-
vation) at time t, 𝑓௦௧௧ and 𝑓௪ௗare the transition functions from time t to t+1, and Q is 
the state-action value function. The so-called Q function, 0 ≤ 𝛾 ൏ 1 is an important hy-
perparameter called the discount factor, which determines how much we care about re-
wards now versus rewards later; more precisely, this is an exponential decay factor, which 
means longer term planning is harder. 

Also, 0 ൏ 𝛼 ൏ 1 represents the learning rate—a value that controls how quickly an 
agent updates its Q-values based on new information, essentially determining how much 
weight is given to newly acquired experiences compared with previously learned infor-
mation; a higher value for 𝛼 means faster learning and more significant updates to Q-val-
ues with each new interaction. When adopting a Monte Carlo technique to estimate the 
Q-values, every iteration of the Q-value requires updating Q for every state. Monte Carlo 
estimation of the expectation 𝜇 = 𝔼[𝑋] repeatedly samples X, and the convex relationship 
[23] is updated as follows: 𝜇 ← 𝜇 + 𝛼(𝑋 − 𝜇) (24)

In this relationship, the X dynamics is required to evaluate the expectation 𝜇. 
The ε-greedy policy that appears in Figure 9f for a block of parameters of the TD3 RL 

agent is defined as a policy that chooses 𝑎𝑟𝑔𝑚𝑎𝑥∈𝒜Q(S, A) with probability 1-ε and a 
random action with probability ε. The typical value for the parameter 𝜀 is 0.005 [23]. 

 
(a) 
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Figure 9. Reinforcement learning control strategy based on deep neural network for a MIMO Cen-
trifugal Chiller simplified model in state-space representation: (a) compact Simulink diagram of 
MIMO Centrifugal Chiller plant and RL DLNN; (b) detailed Simulink diagram; (c) MPC and 
RLDNN subsystem; (d) visualization block; (e) MPC parameters block; (f) RL Agent block (control-
ler); (g) state-space representation block; (h) reward function; (i) RL Agent greedy policy block; (j) 
observation block-detail; (k) agent training process-print screen snapshot after 13 epochs; (l) agent 
training process-print screen snapshot after 262 epochs. 

Combining all the information on Monte Carlo estimation of the expectation 𝜇, a 
helpful pseudocode algorithm for implementers called Q-learning with 𝜀-greedy policy is 
given in [23]. 

The 𝜀-greedy policy is a valuable mechanism for managing the exploration–exploita-
tion balance, as has been stated [23]. It operates according to the following equation: πఌ(𝒮; 𝑄) = ൜ 𝑎𝑟𝑔𝑚𝑎𝑥∈𝒜Q(𝑆௧, A) with probability 1 −  𝜀𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝒜 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀 (25)

Due to its simplicity, the ε-greedy policy has become the most widely used method 
to balance exploitation and exploration. It ensures that most of the time (probability 1-ε), 
the RL agent exploits its incomplete knowledge of its environment by choosing the best 



Algorithms 2025, 18, 170 19 of 53 
 

 

action, and occasionally (probability ε) explores other actions. There may be some good 
actions that the agent will never find without exploration [23]. This is why the explora-
tion–exploitation trade-off is an important research topic. Also, for our readers and im-
plementers interested in being well-documented, the pseudocode of the RL Deep Learn-
ing NN algorithm described in [17] is reproduced below for its great informal value: 

Algorithm 1: RL Deep Learning NN [17] 
RL Agent states: Observations 𝒮 
RL Agent actions; 𝒜  
Define the optimal policy given by the Bellman equation [23]: 𝑄∗(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾( 𝑝(𝑠ᇱ|𝑠, 𝑎) maxᇲ 𝑄∗(𝑠ᇱ, 𝑎ᇱ)௦ᇲ  (26)

and 𝑄∗ = 𝑄∗ is the optimal state-action value function; 
Initialize the hyperparameter learning rate 𝛼,discount factor 𝛾, and exploration parameter 𝜀. 
for t in range (epoch) do 
Calculate the action 𝐴௧ according to the 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑜𝑙𝑖𝑐𝑦: 𝐴௧ ← ൜ 𝑎𝑟𝑔𝑚𝑎𝑥∈𝒜Q(𝑆௧, A) with probability 1 −  𝜀𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝒜 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀 (27) 

Send the action 𝐴௧ into the agent environment; 
Evaluate the next value of the observation 𝑆௧ାଵ starting from the previous state 𝑆௧ according Equation (20) and [23]: 𝑆௧ାଵ~𝑓௦௧௧(𝑆௧ାଵ|𝑆௧, 𝐴௧) = 𝒫(( ⋅ |𝑆௧, 𝐴௧))  (28) 
The agent is sensed by the next observation 𝑆௧ାଵ and the reward function 𝑅௧ାଵ given by Equations (21) and (22) (could
be r(𝑆௧, 𝐴௧), or could be stochastic); 
Update the new action-value function 𝑄௪(𝑆௧, 𝐴௧) at state-action (𝑆௧, 𝐴௧), according the Equation (23); 
Evaluate the estimation using the following loss function in terms of RMSE, MSE, and MAE as defined in [17]. 
End 

The MATLAB software package Simulink Reinforcement Learning Toolbox provides 
all the valuable tools to create and train reinforcement learning agents (controllers), as 
previously demonstrated [20,21]. In many practical decision-making problems, the MDP 
states are high-dimensional and cannot be solved by traditional RL algorithms. Deep re-
inforcement learning algorithms incorporate deep learning (DL) to solve such MDPs, of-
ten representing the π(𝐴௧|𝑆௧) policy or other learned functions as a neural network (NN) 
and developing specialized algorithms that perform well in this context. Therefore, in this 
study, the agent policy (control law) was implemented using deep neural networks 
(DNNs) created using the most appropriate tools provided in the MATLAB Simulink 
Deep Learning Toolbox software package [24–26]. Some problems related to the graphics 
issues encountered during the MATLAB simulations were solved based on the advice 
provided in [27]. 

4.1.2. Reinforcement Learning Workflow 
The following steps are suggested in [19] to illustrate the RL workflow: 
Step 1. Formulate problem: define the task for the RL agent to learn, including its 

interaction with the environment and primary and secondary achievement goals; 
Step 2. Create environment: employ MATLAB or Simulink to define the environ-

ment within which the RL agent will operate, including the interface between the agent 
and environment and the environment dynamic model; 

Step 3. Create RL Agent: create the RL agent containing policy and a learning algorithm 
[18,19]; 

A learning algorithm continuously updates the policy parameters based on the ac-
tions, observations, and rewards; 
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Step 4. Create Deep Neural Network Policies and Value Functions: as discussed in 
Section 4.1.1. 

The agents define the DLNN inputs and outputs based on specified actions and ob-
servations from the Environment. Also, an actor net and an actor critic representations for 
the RL agents can be created using Deep Learning Toolbox functionality. Pretrained deep 
neural networks or deep neural network layer architectures can be imported using the 
MATLAB Simulink Deep Learning Toolbox network import functionality. 

Step 5. Train RL Agent: the RL Agent policy representation is trained using the de-
fined environment, reward, and agent learning algorithm. Training an agent using rein-
forcement learning is an iterative process. 

Step 5. Validate RL Agent: Evaluate the performance of the trained agent by simu-
lating the agent and environment together. 

Step 6. Deploy policy: Deploy the trained policy representation using a generation 
code. 

4.2. Deep Learning Neural Network 
In this section, the deep learning neural networks (DLNN) is discussed. A deep learn-

ing neural network is structured as a series of interconnected layers with multiple nodes 
called “neurons”. Deep learning is used for training multi-layered, allowing them to learn 
hierarchical representations of datasets in order to make predictions and to generate out-
puts. 

4.2.1. DLNN Architectures, Components, Algorithms and Applications 
The deep learning (DL) architecture originated from artificial neural networks 

(ANNs) that were inspired by the structure of the human brain. Neural network (NN) 
architectures consist of several components working together to process and learn from 
massive datasets, extracting patterns and abstract representations of data as information 
flows through each layer. The components include the input layer, hidden layers, neurons 
(nodes), weights and biases, activation functions, the output layer, and the loss function; 
these are well explained in a comprehensive review presented in [24]. In that review, deep 
learning is described as a multi-layer machine learning method for performing complex 
tasks. This layered structure is why the deep learning technique differs from conventional 
machine learning methods; within this structure, the data flows from an input layer 
through several hidden layers to an output layer. These added hidden layers increase the 
accuracy performance of the neural network design. 

Each neuron performs calculations on the received input and passes the result to the 
next layer, allowing the network to learn complex patterns from the data [24]. Also, a per-
ceptron simulates a neuron with a set of inputs, each of these having a particular weight, 
such that the inputs with higher weights have a significant impact on the neural network. 
The neuron computes and produces an output based on the weighted inputs. Each neuron 
receives n inputs (features), sums them, applies a transformation (activation) and gener-
ates the output. A second parameter called bias is used to adjust the output based on the 
input weights; thus the model fits the data in the best possible way. An activation function 
converts the inputs into the output produced using a threshold. Briefly, the neural net-
work architecture serves as the support for the understanding and processing of diverse 
data types, and generative models unlock the ability to create new data samples that re-
semble the training data. In the literature [24], it is mentioned that deep learning is 
“among the fastest-growing areas in computational science, employing complex multi-
layered networks to model high level patterns in data”. The state-of-the-art of deep learn-
ing techniques has been enhanced in several fields, including “visual object recognition, 
speech recognition, genomics, and discovery of drugs, along with plenty of others”. 
Among the well-known deep learning algorithms discussed [24] are backpropagation 
models, autoencoders, variational autoencoders, restricted Boltzmann machines, deep be-
lief networks, convolutional natural networks, forward neural networks, recurrent neural 
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networks, LSTM, generative adversarial networks, transformer deep learning structure, 
embedding from language models, and bidirectional encoder representations from trans-
formers. A brief overview of the steps involved in using deep learning is expressed in the 
following sequence:  1. 𝐷𝑎𝑡𝑎 𝑃𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 → 2. 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑁𝑁 → 3. 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑁𝑁 → 4 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑇𝑢𝑛𝑖𝑛𝑔 → 5 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛→ 6. 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 

These steps can be seen in the MATLAB code lines of both the RL DLNN algorithms 
developed in the present research, presented in the Annex B.1 Algorithm B.1.1 and B.1.2. 

In the first step, the data are collected and preprocessed (cleaning by removing errors 
or inconsistences, normalization, and splitting, such as for example, 70% into training data 
and 30% testing data). The data format must be compatible with the NN. The architecture 
of the NN is defined in the second step. In the third step, the training process is launched 
for fine-tuning of the network’s weights and biases in order to minimize the difference 
between the predicted output and the true output. This is followed by step 4, evaluation 
and validation, required for a rigorous evaluation of performance accuracy, followed by 
a test validation to gather valuable information about how well the NN generalizes to 
unseen data. In step 5, the trained DLNN evaluated and validated in the previous step 
acquires good ability to predict or generate results for unseen data. If the proposed DLNN 
performance does not meet the control objective in the last step, an iterative improvement 
process is initiated to adjust the DLNN parameters, including modifications to the DLNN 
architecture using the “trial and error” procedure by changing the number of layers and 
hidden neurons, or exploring new optimization control algorithms to achieve the pro-
posed control objectives. 

4.2.2. NN Table Models 
Neural network tables can take various forms depending on the specific application 

and the type of data being processed. The most usual NN tables built to analyze NN per-
formance using evaluation metrics include the confusion matrix, the weight matrix, acti-
vation tables, and loss tables. In the following, we examine these particular tables. 
1. Confusion Matrix: This type of table is used to evaluate the performance of a classi-

fication model. It shows the numbers of true positives, true negatives, false positives, 
and false negatives. A generic example is presented as follows: 

Actual/Predicted Positive Negative 
Actual 60 20 

Predicted 10 25 

2. Weight Matrix: In each NN, the weights are critical parameters that transform input 
data within the network. A weight matrix represents the weights between layers of 
neurons, for which a simple matrix might look like this: 

Neuron k  Neuron k + 1 Neuron k + 2 
0.2 0.3 −0.1 
−0.3 0.5 0.2 

3. Activation Table: This type of table illustrates the activation values of the neurons in 
a NN for a given input, as shown below: 

Input k Input k + 1 Neuron k activation Neuron k + 1 activation 
0.4 0.2 0.5 0.5 
0.3 0.7 0.2 0.8 
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4. Loss Table: This table tracks the loss values during NN training, a valuable infor-
mation for understanding how well the model is learning over time; a figurative ex-
ample is presented below: 

Epoch Training Loss Validation Loss 
1 0.32 0.35 
2 0.15 0.2 
3 0.25 0.25 

These tables are essential for analyzing and understanding the performance and be-
havior of neural networks in various applications. Appendix B2 details two DLNN tables, 
namely the Table A1 and Table A2 with parameter simulation and monitoring training 
for the two proposed RL DLNN control algorithms developed in Section 4.3. Since both 
RL DLNN algorithms solve a tracking reference control regression problem, the most suit-
able evaluation metrics are RMSE and MSE [17]. The strong dependence of reward func-
tion of RMSE and MSE gives us the possibility of using an evaluation metric based on 
reward function, since the problem of minimization of RMSE or MSE to the smallest pos-
sible value closest to zero becomes a maximization problem of reward function, for which 
the most appropriate metrics are the cumulative reward value (return value) or average 
reward value. The evaluation metric used for DLNN performance in both NN tables is 
the average reward value for each training episode, since this value appears automatically 
in the monitoring of the RL agents’ training progress, as shown in Figures 9k,l and 11m 
and Tables A1 and Table A2 from Appendix B2. The RL agents are trained using the 
adopted RL DLNNs control algorithms whose reward functions are generated from MPC 
and the step response specifications of the MIMO Centrifugal Chiller System discussed 
below (paragraphs 4.3.1 and 4.3.2). 

4.3. Reinforcement Learning Deep Learning Neural Networks Closed-Loop Control Strategies 
Applied to a Centrifugal Chiller System 

In this section, we develop two advanced intelligent reinforcement learning deep 
learning neural network (RLDLNN) control algorithms to control the evaporator temper-
ature and the level of refrigerant in the condenser. The first algorithm generates a reward 
function for an RL Agent based on model predictive control (MPC) specifications and the 
second algorithm generates two reward functions for two RL agents (controllers) based 
on the step response block specifications. 

4.3.1. Generate Reward Function from the Cost and Constraint Specifications Defined in 
an MPC Object 

This intelligent control strategy and the training phase results were implemented in 
MATLAB Simulink in Figure 9.  

Its compact and detailed architecture is presented in Figure 9a–d and is of practical 
interest. It automatically generates the reward function from the cost and constraint spec-
ifications defined in a Simulink model predictive controller (MPC) object, as shown in 
Figure 9e. It is connected in a closed loop with the MIMO centrifugal cooling plant model 
given by Equation (6) and Equation (7) in Section 2.2 to control the chilled water temper-
ature Tchw-sp in the evaporator subsystem and the level of liquid refrigerant in the sec-
ond condenser subsystem, depicted in the state-space representation shown in Figure 9g. 
Implementing this control strategy follows the same procedure that is well described in 
the updated MathWorks documentation for MIMO Centrifugal Chiller System (CCS) 
model [18,19]. The MPC object appearing at the top of Figure 9b,c with its parameters 
block depicted in Figure 9e was created based on the CCS MIMO model, using an inline 
MATLAB code procedure. For the CCS MIMO plant model under investigation, the sam-
pling time value is set to Ts = 0.1 s, the prediction horizon was assumed to be p = 10 steps, 
and the control horizon m = 2 steps. 
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The following specifications of the MPC object are helpful for RL DLNN MPC strat-
egy design: 
• Standard linear bounds for output variables (OVs) and manipulated variables (MVs): 𝑦 = [0 0], 𝑦௫ = [10 52], 𝑚𝑣 = 0, 𝑚𝑣௫ = 1.1, 𝑚𝑣௧ = −1000, and 𝑚𝑣௧௫ = Inf 

• Scale factors as specified for OVs and MVs: 𝑆௬ = [10 52], 𝑆௩ = [1.1 1] 

• Standard cost weights: 𝑄௬ = [0.1 0.1], 𝑄௩ = [0 0], and 𝑄௩௧ = [0.1 0.1] 

The reward function generated based on the MPC object specifications was the start-
ing point for the reward design. The reward function is used to train the RL Agent, as 
shown in Figure 9f. The implementer can modify the reward function with different pen-
alty function options and adjust the weights: 

The reward function requires the following two components to be computed: 
1. The cost component, calculated according to the following equations: 𝑑𝑦 = ൫𝑟𝑒𝑓𝑦(: ) − 𝑦(: )൯./𝑆௬் (18)𝑑𝑚𝑣 = ൫𝑟𝑒𝑓𝑚𝑣(: ) − 𝑚𝑣(: )൯./𝑆௩் (19)𝑑𝑚𝑣𝑟𝑎𝑡𝑒 = ൫𝑚𝑣(: ) − 𝑙𝑎𝑠𝑡𝑚𝑣(: )൯./𝑆௩் (20)𝐽௬ = 𝑑𝑦்𝑑𝑖𝑎𝑔(𝑄௬. ^2)𝑑𝑦 (21)𝐽௩ = 𝑑𝑚𝑣்𝑑𝑖𝑎𝑔(𝑄௩. ^2)𝑑𝑚𝑣 (22)𝐽௩௧ = 𝑑𝑚𝑣𝑟𝑎𝑡𝑒்𝑑𝑖𝑎𝑔(𝑄௩௧. ^2)𝑑𝑚𝑣𝑟𝑎𝑡𝑒 (23)𝐶𝑜𝑠𝑡 = 𝐽௬ + 𝐽௩ + 𝐽௩௧ (24)

2. The penalty component for violation of linear bound constraints, with the following 
components: 

• Penalty function weight (specify nonnegative): 𝑊௬ = [1 1], 𝑊௩ = [10 10], 𝑊௩௧ = [10 10] (25)

o Choose the step or quadratic penalty method to calculate the exteriorPen-
alty; 

o Set the Pmv value to 0 if the RL Agent action specification has appropriate 
“LowerLimit” and “UpperLimit” values. 

• Penalty functions: 𝑃௬ = 𝑊௬(𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑦, 𝑦, 𝑦௫, ′𝒔𝒕𝒆𝒑 ᇱ)) (26)𝑃௩ = 𝑊௩(𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑚௩, 𝑚௩, 𝑚௩௫, ′𝒔𝒕𝒆𝒑 ᇱ)) (27)𝑃௩௧ = 𝑊௩௧(𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑚௩− 𝑙𝑎𝑠𝑡𝑚𝑣, 𝑚௩௧, 𝑚௩௧௫, ′𝒔𝒕𝒆𝒑 ᇱ)) 
(28)

and finally: 
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𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑃௬ + 𝑃௩ + 𝑃௩௧ (29)

To calculate the reward value as a result of the MATLAB function block illustrated 
in Figure 9h, the following relationship between all three components—reward, cost, and 
penalty—is used: 

reward = −(Cost + Penalty) (30)

For the actual control application under research, the specifications of the RL DLNN 
environment were the following: 
• The observations reference signals (𝑌ଵ௦ and 𝑌ଶ௦), output variables (𝑇௪ and Level), 

and their integrals, were as shown in Figure 9j; 
• The 𝑇௪ and Level signals were normalized by multiplying with the gain [1/10 1/52]; 
• The action of 𝑈 and 𝑢ா was limited to between [0 1.1] for 𝑈and [0 1] for 𝑢ா; 
• The sample time and total simulation time were 𝑇௦ =  0.1 𝑠. In order to capture the 

full evolution of the dynamics for both plant outputs, the simulation time was set to 
Tsim = 60 s. 

The MATLAB Simulink simulations result is presented in Figure 9.  
The block parameters and the block diagram for simulation of reinforcement learning 

of the RL Agent using a Simulink model as a training and simulation environment are 
depicted in Figure 9f. The same block also generates the RL Agent greedy policy π0(.), as 
shown in Figure 9i. Figure 9h shows a screen capture of the MATLAB reward function, 
and Figure 9j presents a detail of the observation block that appears in Figure 9b,c. 

The RL agent chosen in the case study was a twin-delayed deep deterministic policy 
gradient (TD3) agent [20,21] that used two parametrized Q-value function approximators 
to estimate the value (that is, the expected cumulative long-term reward) of the policy, as 
shown in Figure 9f,i. To model the parametrized Q-value function, a neural network that 
was used had two inputs (the observation and action) and one output corresponding to 
the value of the policy 𝜋( ) when taking a given action from the state corresponding to a 
given observation, as shown in Figure 9i. Before training the RL Agent, each network path 
of the DLNN was defined as an array of layer objects, and names assigned to the input 
and output layers of each path in order to connect the paths. Thus, a layer graph object 
was created and layers aded to generate the criticNet, as is shown in Figure 10a. The critic 
function objects were created using a dedicated MATLAB rlQValueFunction command. To 
make sure the critics had different initial weights, each network was explicitly initialized 
before being used create critic 1 and critic 2 [20,21]. The TD3 agent learns a parametrized 
deterministic policy over continuous action spaces. The policy is learned by a continuous 
deterministic actor that takes the current observation as input and returns as output an 
action that is a deterministic function of the observation. The neural network that is used 
to model the parametrized policy within the actor has one input layer (which receives the 
content of the environment observation channel) and one output layer (which returns the 
action to the environment action channel) [20,21]. An actor network named actorNet is 
created; its layer graph is shown in Figure 10b. The deterministic actor function is gener-
ated for the purposes of modeling the policy of the RL Agent. A set of agent options is 
specified to train the agent from an experience buffer of maximum capacity 1 × 106 by 
randomly selecting mini-batches of size 256. It has been reported that a discount factor of 
0.995 favors long-term rewards [20,21]. The optimizer options are specified for the actor 
and critic functions: a learning rate of 1 × 10−3 and a gradient threshold of 1, as set out in 
[20,21]. During training, the agent explores the action space using a Gaussian noise model 
of action. The standard deviation and decay rate of the noise are set by using an Explora-
tionModel property, as is shown in [20,21]. The RL Agent was trained using train function, 
as depicted in Figure 9k; after 13 epochs, it is produced the best tracking performance for 
chilled water temperature inside the evaporator and for liquid refrigerant level within the 
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condenser. Figure 9l also illustrates the results of the training process after 262 epochs, 
when the tracking performance of the liquid refrigerant level in condenser was at its best, 
while that for the chilled water temperature inside the evaporator was slightly attenuated 
compared with the first result obtained, as shown in Figure 9k. A snapshot of the main 
steps of the MPC RL DLNN Algorithm 1 is presented in Appendix B1. 

The layer graphs of criticNet and actorNet are displayed in Figure 10a and Figure 
10b, respectively. 

  
(a) (b) 

Figure 10. Layer graphs for (a) criticNet; (b) actorNet. 

4.3.2. Reinforcement Learning Deep Learning Neural Network Control Strategy—Gener-
ate Reward Function from a Step Response Specifications of MIMO Centrifugal Chiller 
Simplified Model in State-Space Representation 

Both The digital PID and RL DLNN closed-loop control strategies are depicted in 
Figure 11a in a compact Simulink diagram architecture. A description in state space of 
MIMO CCS model is provided in Figure 11b. Figure 11c shows the block parameters of 
RL Agent1, and Figure 11d details the observations block as a component of the same 
compact Simulink diagram. The compact Simulink diagram also shows how to automat-
ically generate two reward functions—rewardfunctionVfb1 and rewardfunctionVfb2, 
shown in Figure 11e,g from the performance requirements defined in the Simulink Design 
Optimization model verification blocks provided in MATLAB R2024a Simulink Toolbox 
for evaporator temperature control (chosen as the first agent, RL Agent1) and condenser 
liquid refrigerant level control (the second agent, RL Agent2), respectively. Also in the 
compact Simulink diagram appear two Boolean logic termination blocks, which stop the 
training of the RL Agent1 and RL Agent2 when the evaporator temperature and the con-
denser level reach good accuracy performance, as shown in Figure 11f,h. The rewardfunc-
tionVfb1 and rewardfunctionVfb2 are used to train both reinforcement learning RL 
Agent1 and RL Agent2, following the stated steps and the MATLAB Reinforcement 
Learning subroutine procedure similar to those developed in [20,21] applied for MIMO 
plants. The training of both agents, RL Agent1 and RL Agent2, is performed similarly to 
the MPC RL DLNN procedure described above in Subsection 4.3.1. Compared with MPC 
RL DLNN, both RL agents are decentralized with two distinct paths. The untrained sim-
ulation results for evaporator temperature control and condenser liquid refrigerant level 
control are presented in Figure 11i,j, respectively. Figure 11k,l presents the training simu-
lation results for the evaporator temperature and liquid refrigerant level inside of the con-
denser after 200/200 epochs. As shown in Figure 11m, the training process of both RL 
Agent1 and RL Agent2 finishes after the agents reach the criteria to stop training set out 
in the training options MATLAB subroutine presented in the print screen snapshot of 
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Algorithm 2 from Annex B1. The penalty function weight is specified nonnegative and set 
to the value 2. To compute the penalty for violation of linear bound constraints, the same 
MATLAB functions were used as described in previous section for MPC strategy. The user 
can specify the penalty method as step or quadratic; the quadratic is typically preferred. 

The corresponding MATLAB code lines inside the MATLAB blocks built based on 
the step response specifications for each reward function are presented in the same Algo-
rithm 2 from Annex B1. The MATLAB Simulink simulations results are shown in Section 
6.2, below. 

(a) 

 

 

 

(b) (c) (d) 

 
(e) (f) 

 
(g) (h) 
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Figure 11. Reinforcement learning deep learning neural network Simulink diagram: (a) overall Sim-
ulink diagram of RL DLNN control architecture and MIMO CCS; (b) MIMO CCS state-space model; 
(c) RL Agent1 block; (d) observation block; (e) Reward Function Vfb1 block; (f) termination block 
for first RL Agent1; (g) Reward Function Vfb2 block; (h) termination block for first RL Agent2; (i) 
chilled water temperature within evaporator and step response block specifications-untrained RL1 
Agent; (j) liquid refrigerant level inside condenser and step response block specifications-untrained 
RL Agent2; (k) chilled water temperature within evaporator-trained RL1 Agent after 33/200 epochs; 
(l) liquid refrigerant level inside condenser-trained RL2 Agent after 33/200 epochs; (m) training pro-
cess ofRL1 and RL2 Agents. 

5. Traditional and Advanced Intelligent Closed-Loop Control Strategies—MATLAB 
Simulink Simulation Results 

This section presents the MATLAB Simulink simulation results of traditional closed-
loop control strategies. Subsection 5.1.1 discusses DTI control of the MIMO CCS, and in 
Subsection 5.1.2 is depicted the simulations result for a PID control of MIMO CCS ex-
tended nonlinear model with 39 states, inputs subjected to constraints, and under meas-
ured temperature disturbance. In Section 5.1.3 are shown the simulation results of an im-
proved version of PID control, more precisely, a digital PID control of a MIMO CCS AN-
FIS model. Model predictive control of the MIMO CCS model represented in state space 
with four states is discussed in Subsection 5.1.4. Also, the reinforcement learning MPC 
deep learning neural network (RL DLNN) control MIMO CCS model is compared versus 
MPC control in Subsection 5.2.1, and the RL DLNN control of MIMO CCS model in state-
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space representation versus the improved digital PID control of MIMO CCS ANFIS model 
is compared in Subsection 5.2.2. 

5.1. Traditional Closed-Loop Control Strategies 
5.1.1. DTI Closed-Loop Control 

The simulation results are presented in Figure A2 in Appendix A. Figure A2a shows 
the Simulink diagram of the DTI controller. Figure A2b depicts the DTI control of chilled 
water temperature control within the evaporator subsystem, and Figure A2c the liquid 
refrigerant level control inside the condenser subsystem. Figure A2d presents the com-
pressor and expansion valve opening actuator control efforts. 

5.1.2. PID Closed-Loop Control—Centrifugal Chiller Extended Model (39 States) 
The Simulink simulation result is depicted in Figure 12. Figure 12a presents the PID 

MIMO Centrifugal Chiller closed-loop temperature control inside the evaporator subsys-
tem; in Figure 12b, the results for PID control of the liquid refrigerant level in the conden-
ser subsystem are revealed. Figure 12c depicts the compressor actuator control effort and 
Figure 12d discloses the expansion valve opening actuator control effort. 

  
(a) (b) 

  
(c) (d) 

Figure 12. MATLAB Simulink simulation results: (a) PID evaporator subsystem temperature con-
trol; (b) PID liquid refrigerant level control in condenser subsystem; (c) compressor relative speed 
actuator control effort; (d) expansion valve opening actuator control effort. 
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5.1.3. Digital PID Control of MIMO Centrifugal Chiller ANFIS Model 
The MATLAB Simulink simulations results are revealed in Figures 13 and 14, and 

also in Figures A4–A7 in Appendix A. The MATLAB Simulink simulation results for the 
digital PID control CCS ANFIS model without changes in temperature and level setpoints 
are depicted in Figure 13a and Figure 13b, respectively. The actuators’ control efforts for 
the compressor and expansion valve opening are shown in Figure 14a,b. On simple visual 
inspection of both figures, it seems that the fast digital PID control had a fast step re-
sponse, reaching zero steady-state for a settling time of 50 s with a 9% overshoot for chilled 
water inside the evaporator and 2% for liquid refrigerant level within the condenser. 

 
(a) (b) 

Figure 13. MATLAB Simulink simulation results without changes in temperature and level set-
points: (a) PID ANFIS discrete-time control of Tchw-sp in evaporator; (b) PID ANFIS discrete-time 
control of liquid refrigerant level in condenser. 

 
(a) (b) 

Figure 14. PID ANFIS discrete-time control—MATLAB Simulink simulation results of actuator con-
trol efforts: (a) compressor relative speed; (b) expansion valve opening. 

The ability of the digital PID controller to overcome the effects of temperature dis-
turbance is revealed in Figure A4a for temperature and in Figure A4b for liquid refrigerant 
level, respectively. Figure A5a shows the impact of temperature disturbance on the com-
pressor actuator control effort, and Figure A5b on expansion valve opening actuator ef-
fort, respectively. Figure A6a shows the evolution of the chilled water temperature inside 
the evaporator subsystem, and Figure A6b shows the evolution of the liquid refrigerant 
level in the condenser subsystem with changes in setpoint values for temperature and 
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level, respectively. The impact of these setpoint changes on the compressor and expansion 
valve opening actuator control efforts are shown in Figure A7a and Figure A7b, respec-
tively. 

5.1.4. Model Predictive Control of MIMO Centrifugal Chiller Nonlinear Extended Model 
in State-Space Representation (39 States) with Input Constraints 

The MPC simulation results are described in Figure 15a–d. The control effects of both 
actuators, compressor relative speed and expansion valve opening, are represented in Fig-
ure 15a. Figure 15b reveals the chilled water temperature disturbance, Trr. Figure 15c 
shows the MPC of chilled water temperature (OV1) inside the evaporator in degrees Cel-
sius, and Figure 15d displays the liquid refrigerant level (OV2) within the condenser with 
a change in temperature disturbance Trr from 48 [degF] to 54 [degF] applied at time in-
stant t = 40 [s].  

  
(a) (b) 

  
(c) (d) 

Figure 15. MPC MATLAB Simulink simulations resulted in a closed loop for input (u1=Ucom, 
u2=uEXV, u3=Trr) and output (y1=Tch-sp, y2=Level) responses against internal plant using 
mpcDesigner application based on the input–output measurement dataset for the MIMO CCS ex-
tended state model: (a) actuator control effort; (b) temperature disturbance; (c) chilled water tem-
perature in evaporator; (d) liquid refrigerant level in condenser; 

5.2. Advanced Reinforcement Learning Using Deep Learning Neural Network Control Strategies 
This subsection presents the simulation results of the advanced reinforcement learn-

ing deep learning neural networks (RL DLNNs) developed in Section 4, conducted on the 
MATLAB Simulink R2024 software programming platform. 
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The Section .2.1 refers to the Simulink simulation results for the RL DLNN that gen-
erated the reward function from an MPC dataset extracted from the MIMO CCS simpli-
fied model represented in state-space, given in Equation (7). Section 5.2.2 presents the 
simulations result for the RL DLNN that generated the reward function from two step 
responses’ block specifications for the same MIMO CCS simplified model in state-space 
representation. 

5.2.1. Reinforcement Learning Deep Learning Neural Network Control Strategies–Gen-
erate Reward Function from MPC of MIMO Centrifugal Chiller Simplified Model in 
State-Space Representation 

The Simulink simulations results are shown in Figure 16a–c. Results for the RL 
DLNN control of evaporator chilled water temperature are displayed in Figure 16a, and 
Figure 16b represents the liquid refrigerant level in the condenser, both versus their cor-
responding MPC step responses on the same graphs. The Figure 16c illustrates the sepa-
rate RL DLL MPC control efforts. 

 
(a) (b) 

 

 

(c)  

Figure 16. RL DLNN—Generate reward function based on MPC specifications: (a) RL DLNN MPC 
evaporator temperature control versus MPC; (b) RL DLNN MPC condenser level control versus 
MPC; (c) RL DLNN MPC actuator efforts. 

5.2.2. Reinforcement Learning Deep Learning Neural Network Control Strategies—Gen-
erate Reward Function from Step Response Specifications of a MIMO Centrifugal Chiller 
Simplified Model in State-Space Representation 

The simulation results for RL DLNN control of evaporator chilled water temperature 
are depicted in Figure 17a, and Figure 17b illustrated the liquid refrigerant levels versus 
digital PID control of MIMO ANFIS model responses. 
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(a) (b) 

 
(c) (d) 

  
(e) (f) 

Figure 17. MATLAB Simulink simulation results of RL DLNN versus digital PID MIMO ANFIS 
model generate reward function from the step response specifications of the MIMO Centrifugal 
Chiller simplified model in state-space representation. (a) RL DLNN of chilled water temperature 
inside the evaporator versus digital PID controller using ANFIS CCS models; (b) RL DLNN control 
of liquid refrigerant level within the condenser versus digital PID controller using ANFIS CCS mod-
els; (c) compressor actuator control effort, RL DLNN; (d) expansion valve opening actuator control 
effort, RL DLNN; (e) compressor actuator control effort, digital PID CCS ANFIS model; (f) expan-
sion valve opening actuator control effort, digital PID CCS ANFIS model. 
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The RL DLNN actuators control efforts for the compressor and for the expansion 
valve opening is illustrated in Figure 17c and Figure 17d, respectively, while the control 
efforts of digital PID control CCS ANFIS models are shown in Figure 17e for the compres-
sor actuator and Figure 17f for expansion valve opening actuator. 

6. Discussion 
6.1. Conventional Control Strategies 

In this section, a rigorous performance analysis is presented based on the statistical 
data and stability performance error indicators extracted from step responses and the 
standard structures used to calculate these indicators, such as ISE, ITSE, IE, IAE, and 
ITAE. 

6.1.1. DTI Controllers 
For the discrete-time integrator (DTI) controller developed in Section 3.1, through a 

simple inspection of both the step responses represented in Figure A2a,b and the statistics 
extracted for the same step responses for evaporator temperature, depicted in Figure 18a, 
and liquid refrigerant level inside the condenser, reported in Figure 18b, the following 
performances during transient and steady state regimes were calculated: acceptable time 
responses (settling time, Ts) and rise time (Tr) for temperature Ts = 40, Tr = 5.5 s and for 
liquid refrigerant level Ts = 20, Tr = 1.7 s, an overshoot of σ_max = 45.27% for temperature, 
and a larger number of maximum amplitude oscillations, of about 10%, both reaching zero 
steady-state errors, therefore showing high tracking accuracy. 

  
(a) (b) 

Figure 18. Statistical data extracted from the time responses: (a) TDI evaporator temperature control; 
(b) TDI condenser liquid refrigerant level control. 

Mean = 7.071 and standard deviation (std) = 1.708 for DTI temperature control can be 
extracted from Figure 18a, while mean = 44.43 and std = 7.759 for DTI liquid refrigerant 
level control is given in Figure 18b. It is also worth noting the strong control effort of the 
oscillating compressor and the almost smooth opening of the expansion valve. 

6.1.2. PID Control MIMO Centrifugal Chiller System Extended Model with 39 States 
The step responses shown in Figure 12a,b reveal a very long Ts = 10,000 s, Tr = 10,000 

s, no overshoot, zero steady-state error, smooth compressor control effort for PID temper-
ature control, and a very long Ts = 6000, Tr = 6000 s, no overshoot, zero steady-state error, 
and smooth expansion valve opening control effort for PID level control. The main issues 
encountered for this closed-loop control strategy were a very slow time response and the 
need for accurate tuning of the parameter values. Also, mean = 7.405 and std = 0.9972 for 
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PID temperature control are revealed in Figure 19a, and mean = 45.03 and std = 0.7477 for 
PID level control are shown in Figure 19b. 

  
(a) (b) 

Figure 19. Statistical data extracted from the time responses: (a) PID evaporator temperature control; 
(b) PID condenser liquid refrigerant level control. 

6.1.3. Model Predictive Control of MIMO Centrifugal Chiller Simplified Model in State-
Space Representation 

The rigorous performance analysis of step responses depicted in Figure 15c for the 
evaporator temperature subsystem and in Figure 15d for the liquid refrigerant level in the 
condenser subsystem revealed the following features: 
• settling time Ts = 24.6 s, rising time Tr = 7.6 s, an overshoot of σ_max = 6.75%, zero 

steady-state error, and an excellent disturbance rejection for evaporator temperature 
control; 

• settling time Ts = 7.2 s, rising time Tr = 7.2 s, no overshoot, a high tracking perfor-
mance accuracy, and significant disturbance rejection for the liquid refrigerant level 
inside the condenser subsystem. 

These results recommend the MPC closed-loop strategy as among the most suitable con-
ventional control strategies. It performs very well, and neither the compressor relative 
speed and nor the expansion valve opening input violated the linear bound constraints. 
The MPC adopted in the first RL DLNN closed-loop control strategy was developed in 
Section 4.3.1 to generate the reward function from the MPC specifications of the MIMO 
Centrifugal Chiller System model proposed in the case study. 

6.2. Advanced Intelligent Closed-Loop Neural Control Strategies 
Digital PID Control MIMO CCS MISO ANFIS Models 

The MATLAB Simulink simulation results of the digital PID control CCS ANFIS 
model without changes in temperature and level setpoints, depicted in Figure 13a and 
Figure 13b, respectively, show a fast time response Ts = 50 s from the evaporator temper-
ature control subsystem, with zero steady-state error and a 9% temperature of chilled wa-
ter overshoot, compared with the liquid refrigerant level control inside the condenser sub-
system which had Ts = 64 s, steady-state error, and 2% overshoot of the liquid refrigerant 
level in the condenser. Moreover, the actuator control efforts for the compressor and ex-
pansion valve opening, correspondingly shown in Figure 14a and Figure 14b, are sharp at 
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the beginning and smooth later. The Simulink simulation results depicted in Figure A4a 
and Figure A4b reveals that the effects of changes in disturbance temperature load Trr 
from 48 to 54 degrees Fahrenheit applied at time t = 70 s were completely overcome via 
the chilled temperature control inside the evaporator, as were those in the level of liquid 
refrigerant within the condenser, almost within 40 s. Also, the figures indicate that the 
steady state for each controlled output was very close to zero, and the settling times of the 
step responses were fast enough for both digital PID controllers, which can be interpreted 
as excellent performance using the improved digital PID control strategy, outperforming 
the previous control PID control strategy based on the extended model developed in Sec-
tion 3.2. For this reason, the digital PID with the proposed tuning procedure for the pa-
rameters’ values was used for performance comparison with the second RL DLNN control 
structure. 

6.3. Advanced Reinforcement Learning Deep Learning Neural Networks Control Strategies 
For a rigorous analysis of tracking performance, it is essential to minimize errors in 

any closed-loop feedback control system. In order to keep track of errors at all time, from 
zero to infinity, and to minimize them continuously, performance measures were calcu-
lated including integral time absolute error (ITAE), integral square error (ISE), integral 
time square error (ITSE), and integral absolute error (IAE), as previously defined [15] and 
given by Equations (18)–(22). 

An effective tracking performance measure uses data statistics such as min, max, 
mean, median, mode, standard deviation (std), and range, which are included in Figure 
A8a–d and Figure A10a–d. As discussed elsewhere [15], the integral time indicators de-
fined by Equations (18)–(21) are so-called fitness functions. Their values are calculated by 
the standard hardware structures shown in Figures A9a–d and A11a–d, defined as fol-
lows: 𝐼𝑆𝐸 = න 𝑒(𝑡)ଶ 𝑑𝑡 (18)

𝐼𝑇𝑆𝐸 = න 𝑡[𝑒(𝑡)ଶ] 𝑑𝑡 (19)

𝐼𝐴𝐸 = න |𝑒(𝑡)|𝑑𝑡 (20)

𝐼𝑇𝐴𝐸 = න 𝑡|𝑒(𝑡)|𝑑𝑡 (21)

𝐼𝐸 = න 𝑒(𝑡)𝑑𝑡 (22)

Specifically, all of these time integral criteria are generic and comprehensive tools to 
evaluate the performance of a control system. Hence, a system may have a good rise time 
but a poor settling time, or vice versa, while other basic criteria for evaluating the step 
response tracking performance of a closed-loop feedback system include the overshoot 
and the steady-state error extracted from the statistical data, although all these statistics 
describe only one characteristic. The time integral criteria are generic and comprehensive; 
they allow comparison between different controller designs or even differently structured 
controllers. The fitness functions are not actually limited to the above equations. Engineers 
can provide custom fitness functions depending on the target design and control system. 
The overall performance (convergence speed and optimization accuracy) of an interesting 
evolutionary algorithm previously developed [15] for optimal tuning of the PID parame-
ter values depends on the fitness functions. Note that integral time absolute error (ITAE) 
is widely used in control processing since it is simple to implement and to define the en-
ergy of signals which demonstrate symmetry and differentiability. 
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6.3.1. Reinforcement Learning Deep Learning Neural Network Control Strategies—Gen-
erating a Reward Function from the MPC of MIMO Centrifugal Chiller Simplified 
Model in State-Space Representation  

The statistical data tables for the RL DLNN temperature and level control algorithms 
versus MPC of evaporator temperature and condenser refrigerant level are shown in the 
Figure A8a–d. Figure A8a presents the statistical data for the MPC for evaporator temper-
ature control, Figure A8b for the RL DLNN temperature control, Figure A8c visualizes the 
data for the condenser refrigerant level, and Figure A8d includes the RL DLNN refriger-
ant level control data. The performance error indicator values extracted from the hard-
ware structures are given in Figure A9a–d; precisely, for MPC evaporator temperature in 
Figure A9a, RL DLNN MPC evaporator temperature in Figure A9b, MPC condenser re-
frigerant level in Figure A9c, and finally, RL DLNN MPC condenser refrigerant in Figure 
A9d.  

Attentive performance analysis based on the data statistics for the MPC RL DLNN 
evaporator temperature control subsystem revealed a slight superiority compared with 
MPC based on the corresponding data statistics and vice versa for the condenser liquid 
level control subsystem. Regarding the final fitness function values after 60 iterations, the 
Simulink simulations results indicated a slight superiority on the part of the MPC RL 
DLNN evaporator temperature control subsystem compared with the MPC, and vice 
versa for the condenser liquid level control subsystem. The MPC RL DLNN performed 
better for temperature control and similarly for liquid refrigerant level control. After many 
other repetitions of the parameter values tuning procedure, which was a so-called “trial 
and error” procedure, the performance of MPC RL DLNN simulation results was ob-
served to change significantly, such that it was finally able to outperform the conventional 
MPC for control of both temperature and liquid refrigerant level. Our investigations will 
continue to improve the performance io the MPC RL DLNN controller in future work. 

6.3.2. Reinforcement Learning Deep Learning Neural Network Control  
Strategies—Generating Reward Function from a Step Response Specifications of MIMO 
Centrifugal Chiller Simplified Model in State Space Representation  

Similarly, the statistical data tables for the RL DLNN temperature and level control 
algorithms versus the digital PID control–CCS ANFIS model of evaporator temperature 
and condenser refrigerant level are shown in Figure A10a–d. The Figure A10a presents 
the statistical data for RL DLNN evaporator temperature control, Figure A10b for The 
digital PID temperature control CCS ANFIS model, Figure A10c visualizes the statistics 
for RL DLNN condenser refrigerant level, and Figure A10d illustrates the digital PID re-
frigerant level control CCS ANFIS model results. The performance indicator values were 
extracted from the hardware structures illustrated in Figure A11a–d: for RL DLNN evap-
orator temperature in Figure A11a, the digital PID evaporator temperature control CSS 
ANFIS model in Figure A11b, RL DLNN condenser refrigerant level in Figure A11c, and 
finally the digital PID condenser refrigerant level control CCS ANFIS model in Figure 
A11d. Similar to MPC RL DLNN, rigorous performance analysis conducted for the RL 
DLNN based on the statistical data and fitness functions’ final values after 60 iterations 
indicated a slight superiority of the improved digital PID controller connected in the same 
forward-path closed loop architecture with the MISO ANFIS CCS models, compared with 
the RL DLNN’s performance, with both these controllers outperformed the standard PID 
controller. Furthermore, by increasing the number of “trial-and-error” procedures for tun-
ing parameter values, it seems certain that the performance of RL DLNN results can im-
prove significantly, until it can finally outperform the improved digital PID control struc-
ture for control of both temperature and liquid refrigerant level. Our investigations in fu-
ture work will continue in this direction. 
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6.4. Considerations Regarding the RL DLNN Control Strategies’ Applicability 
The proposed RL DLNN control strategies are well suited for handling the complex-

ities of real-world centrifugal chiller systems, due to the abilities of the RL agents to cope 
with dynamic environments (e.g., varying cooling loads, weather conditions, or equip-
ment performance) and to detect and compensate for system faults or degradation. More-
over, with the rapid advancements in edge computing and hardware acceleration, RL con-
trollers can perform real-time optimization, making them practical for real-world appli-
cations. Moreover, RL DLNN controllers can be effectively scaled for centrifugal chiller 
systems due to a combination of attributes, including their modularity, ease of transfer 
learning (i.e., pre-trained RL models can be fine-tuned for different chiller systems or op-
erating conditions, reducing the need for extensive retraining), and distributed control 
capabilities (i.e., RL agents can be deployed in a distributed manner, controlling multiple 
chillers in a plant or across different locations, and coordinated to achieve global objec-
tives). 

From another point of view, the applicability of the proposed RL DLNN control strat-
egies in real-life scenarios can be affected by three important factors: (a) the customized 
reward function design based on step response specifications may not cover all opera-
tional constraints, such as energy efficiency, or the long-term stability of the MIMO Cen-
trifugal Chiller control system, requiring fine-tuning for each specific HVAC application; 
(b) safety and stability concerns resulting from possibly damaging actions the RL agents 
explore during training; and, (c) high computational cost, since the RL DLNN models can 
be computationally expensive to train and deploy, demanding significant hardware re-
sources. These limitations may be mitigated by employing carefully pre-trained RL agents 
deployed on real-time and low-cost embedded systems. 

7. Conclusions 
This study explored the development and implementation of two intelligent neural 

reinforcement learning control algorithms utilizing deep learning neural network frame-
works in the specific case of a complex HVAC centrifugal chiller system characterized by 
high dimensionality and nonlinearity, strict constraints, and significant impact of meas-
ured disturbances. For this, two simplified MIMO models of the CCS were generated, and 
a comprehensive series of simulations were conducted to showcase the efficacy of both 
RL DLNN control algorithm implementations when compared to two traditional control 
methods. The two data-driven advanced neural control algorithms this paper proposes 
have demonstrated their viability and adaptability to various kinds of nonlinearities, sin-
gularities, and uncertainties. In future work, we intend to take a further step by imple-
menting our control strategies in real-life scenarios. 
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Abbreviations 
The following abbreviations are used in this manuscript: 
PID Proportional integral derivative 
DTI Discrete time integrator 
HVAC Heating Ventilation Air Conditioning 
CCS Centrifugal Chiller System 
MIMO Multi-input multi-output 
SISO Single-input single-output 
MISO Multi-input single-output 
ARMAX Autoregressive moving average with exogenous input 
ANFIS Adaptive Neural Fuzzy Inference System 
IAE Integral absolute error 
ITAE Integral time absolute error  
ISE Integral square error 
ITSE Integral time-weighted square error 

Appendix A 
Appendix A.1. Figures 

 
Figure A1. Simulink diagram of discrete-time transfer function of the MIMO Centrifugal Chiller 
plant. 
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(b) (c) 
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Figure A2. DTI control—MIMO Centrifugal Chiller system extended model and Simulink simula-
tions: (a) DTI control Simulink diagram; (b) chilled water temperature in evaporator; (c) liquid re-
frigerant level in condenser; (d) compressor and expansion valve-opening actuator control efforts. 



Algorithms 2025, 18, 170 41 of 53 
 

 

 
(a) 
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(c) 

Figure A3. Simulink model of PID closed-loop control strategies for the MIMO Centrifugal Chiller 
nonlinear extended model (39 states): (a) overall diagram; (b) components of the Simulink block 
diagram (MATLAB function of the extended model and MATLAB function visualization block); (c) 
MATLAB function visualization block. 
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(a) (b) 

Figure A4. PID ANFIS discrete-time simulation results, rejection temperature disturbance Tchw_rr: 
(a) chilled water temperature inside evaporator; (b) liquid refrigerant level within condenser. 

  
(a) (b) 

Figure A5. PID ANFIS discrete-time control MATLAB Simulink simulation results of actuator con-
trol effort: (a) compressor relative speed; (b) expansion valve opening. 

  
(a) (b) 

Figure A6. PID ANFIS discrete-time control MATLAB Simulink simulation results: (a) chilled water 
temperature within evaporator; (b) liquid refrigerant level inside condenser. 
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(a) (b) 

Figure A7. PID ANFIS discrete-time control—MATLAB Simulink simulation results of actuator con-
trol effort: (a) compressor relative speed; (b) expansion valve opening. 

  
(a) (b) 

  
(c) (d) 

Figure A8. Statistical data tables: (a) MPC evaporator temperature control; (b) RL DLNN evaporator 
temperature control; (c) MPC condenser refrigerant level control; (d) RL DLNN MPC condenser 
refrigerant level control. 
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(c) (d) 

Figure A9. Performance error indicators: (a) MPC evaporator temperature control; (b) RL DLNN 
evaporator temperature control; (c) MPC condenser refrigerant level control; (d) RL DLNN MPC 
condenser refrigerant level control. 

 

  
(a) (b) 
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(c) (d) 

Figure A10. Statistical data tables: (a) RL DLNN evaporator temperature control; (b) digital PID 
evaporator temperature control—CCS ANFIS model; (c) RL DLNN MPC condenser refrigerant level 
control; (d) digital PID condenser refrigerant level control—CCS ANFIS model. 

  
(a) (b) 

  
(c) (d) 

Figure A11. Performance control error indicators: (a) RL DLNN evaporator temperature control; (b) 
digital PID evaporator temperature control—CCS ANFIS model; (c) RL DLNN condenser refriger-
ant level control; (d) digital PID condenser refrigerant level control—CCS ANFIS model. 
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Appendix B 
Appendix B.1. Algorithms 

Algorithm A1. Generate Reward Function Based on MPC Specifications for a MIMO Centrifugal Chiller System-MPC 
RL DLNN 
Step 1. Plant Dynamics (State Space): 

Step 2: Create an MPC object: 

 
Step 2.1.Specify the sampling time (Ts), prediction horizon (p) and control horizon (m): 

 
Step 2.2. Create the MPC object 

Step 2.3. Open the Simulink model of the plant and MPC controller: 

 
Step 2.4. Specify the minimum and maximum values for manipulated variables (MVs): 

 
Step 2.5. Nominate precise values for outputs: 

 
Step 2.6. Nominate precise values for all inputs: 

 
Step 2.6. Specify output tuning weights: 

 
Step 2.7. Define the MPC object using structure format for output variables, tuning weights, and manipulated output 
variables: 

 
Step 3. Generate the reward function: 
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Step 3.1. Open the reward function in the Simulink model and append a new MATLAB function 
r = rewardFunctionMPC (y,refy,mv,refmv,lastmv): 

Step 4: Create an RL environment (Ts, Tsim, observations and actions specifications): 

 

 

 
Step 5: Create a RL agent (random seed for reproducibility, layer graph object—connect and define network path, 
plot criticNet): 

Step 6. Define actorNet, plot it and create a deterministic actor function: 

Step 7. Specify the agent, critic optimizer, and actor optimizer options: 

Step 8. Create the TD3 agent: 

Step 9. Train the TD3 agent (options, evaluation, random seed, training function): 
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Step 10. Validate the closed-loop controller: 

 
Algorithm A2. Generate Reward Function from a Step Response Block for a MIMO Centrifugal Chiller System—RL 
DLNN 
Step 1. MIMO ARMAX Centrifugal Chiller model dynamics (state space): 

Step 1.1 Initialize the model: 

Step 1.2 Open the Simulink model: 

 
Step2. Open BLk1 and BLk2 step response blocks: 

Step 3. Generate the reward functions Vfb1 and Vfb2: 

Step 4. Combine observations and actions specifications: 

 
Step 5. Create an RL environment: 

Step 6. Create a Simulink environment interface: 
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Step 7. Create a learning environment: 

Step 8. Create the reinforcement learning environment for RL Agent1 and RL Agent2 (TDR3s): 
Step 8.1. Set the random reproducibility seed: 

Step 8.2. Define network path: 

Step 8.3. Create a layer graph object for criticNet: 

Step 8.4. Connect all network layers: 

Step 9. Plot the critic network structure: 
Step 9.1. Convert network to dlnetwork: 

Step 9.2. Convert the critic functions for TD3 agents: 

Step 9.3. Define actorNet: 

 
Step 9.4. Plot the actorNet: 

Step 9.5. Create a deterministic actor function: 

 
Step 9.6. Specify the agent options: 

 

 
Step 10. Create the TD3 agents: 
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Step 11. Train the TD3 agents 

Step 12. Closed-loop simulation: 

Appendix B.2 
Appendix B.2.1. DLNN Table for Reinforcement Learning Based on MPC Specifications 

Table A1. Simulation Parameters: Reinforcement Learning Actor Critic and actorNet. 

Parameter Name Value/Description 

RL Algorithm 

TD3 RL agent 
Description: TD3 agents parametrize Q-value function  
NN architecture: NN with two inputs (one for observation and the second one 
for action-see the layer graphs for both actors) to model the parametrized Q-
value function within both critics  
Metrics:  
• cumulative long-term reward (expected) 
• Average reward: −65.7446 at epoch 150 when the training process is fin-

ished after the agent reaches the stop training criteria (when evaluation 
statistic is −0.2); 

• Episode reward: −0.1929; 
• Episode Q0: −51.1876; 
• Evaluation statistic: −0.1929. 
* See the episode information from RL Training Monitor: 

 
DNN Architecture 1. DLNN for actorCritic:  
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One Input layer of size 24 (number of observations), one input layer of size 2
(number of actions), three fully connected layers on the main path of output
sizes 128, 64, and 1; 

One concatenation layer (1,2) and two RELU layers; 
One fully connected layer of size 8 on the action path.  
* See the layer graphs for Actor Critic and Actornet  
2. DLNN for actorNet: 
One input layer of size 24 (number of observations or features); 
Three fully connected layers of sizes 128, 64, and 2 (number of actions); 
Two RELU layers 

Reward Function Derived from MPC model verification block  
Training episodes  1000 
Test Episodes  1 
Maximum Steps per Episode  600 (Tsim/Ts = 60/0.1) 
Stop training criteria  Evaluation statistic: −0.2 
Score Averaging Window length  20 
Number Episodes for Evaluator 1 
Evaluation frequency 50 episodes 
Discount factor (𝛾) 0.995 

Exploration model property Noise: std = 100, exponential decay rate = 1 × 10−5, minimum value reached of 1 
× 10−3.  

Learning rate 0.001 
Batch size 256 
Replay Buffer Size 1 × 106 

Appendix B.2.2. DLNN Table for Reinforcement Learning Based on Step Responses 
Specifications 

Table A2. Simulation Parameters: Reinforcement Learning Actor Critic and actorNet. 

Parameter Name Value/Description 

RL Algorithm 

 

Two TD3 agents for RL Agent1 (evaporator temperature) and RL Agent2 
(condenser level).  
Description: two parametrized Q-value function approximators to estimate 
the value of the policy (expected cumulative long-term reward as metric). 
NN architecture: two NNs with two inputs for each agent (observation and 
action-see the layer graphs for Actor Critic and actorNet) that model the par-
ametrized Q-value function within both critics.  
A critic function object is created to encapsulate the critic by wrapping 
around the critic deep neural network. To make sure the critics have differ-
ent initial weights, each network is initialized before using them to create 
the critics. 
Metrics: 
• Cumulative long-term reward (expected metric); 
• Average reward: [0–50] at epoch 200 when the training process ends af-

ter the maximum number of episodes, even if both RL agents do not 
reach the training stop criteria (when average reward is set for both RL 
agents [1 1]); 

• Episode reward: [0–50]; 
• Episode Q0: [-1.493065–457.5267]. 
* See the episode information from RL Training Monitor. 
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DNN Architecture 

DLNN for each Actor Critic:  
One input layer of size 6 (number of observations), one input layer of size 1 
(number of actions), three fully connected layers on the main path with out-
put sizes 128, 64, and 1; 
One concatenation layer (1,2) and two RELU layers; 
One fully connected layer of size 8 on the action path.  
* See the layer graphs for Actor Critic and actorNet.  
DLNN for actorNet: 
One input layer of size 6 (number of observations or features); 
Three fully connected layers of sizes 128, 64, and 1 (number of actions); 
Two RELU layers. 

Reward Function 
Two reward functions that derive from step responses of two model verifi-
cation blocks, one for evaporator temperature, other one for condenser level 
blocks. 

Training episodes  200 
Test Episodes  1 
Maximum Steps per Episode  200 (Tsim/Ts = 20/0.1) 
Stop training criteria  Average Reward: [1 1] 
Score Averaging Window length  20 
Number Episodes for Evaluator 1 
Evaluation frequency 10 episodes 
Discount factor (𝛾) 0.995 

Exploration model property Noise: std = 100, exponential decay rate = 1 × 10−5, minimum decay rate value 
reached = 1 × 10−3. 

Learning rate 0.001 
Batch size 256 
Replay Buffer Size 1 × 106 
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