Chapter 7. CRYPTOGRAPHY IN JAVA: SYMMETRIC AND
ASYMMETRIC ENCRYPTIONS, PASSWORD BASED KEY-
DERIVATIONS

The first subject of this section is understanding how encryption functions
work in Java. Compared to .NET encryption is done a bit differently but it is not at all
hard to do and more, there are external libraries, e.g., Bouncy Castle Crypto APIs, which
have extensive support for many encryption functions that are not available in .NET.
Moreover, the entire code is open source! For this reason you may prefer to work in
Java, while for simplicity you may choose .NET.

Another subject that we reach in this section is how to generate keys.
Password based key derivations and randomness are essential tools for generating
cryptographic keys. The security of any cryptosystem ultimately depends on the
randomness of the key, if the key is easy to guess, then the cryptosystem is trivially
broken. Both these primitives are also available in the .NET framework, as well as the
encryption primitives that we discussed in .NET have instances in Java.

7.1 SYMMETRIC AND ASYMMETRIC ENCRYPTION: AES, DES AND RSA

According to the Java SE (Standard Edition) documentation, see
http://docs.oracle.com/javase/, the following algorithms are supported by the Cipher
class:

e AES/CBC/NoPadding (128)

e AES/CBC/PKCS5Padding (128)

e AES/ECB/NoPadding (128)

e AES/ECB/PKCS5Padding (128)

¢ DES/CBC/NoPadding (56)

e DES/CBC/PKCS5Padding (56)

o DES/ECB/NoPadding (56)

e DES/ECB/PKCS5Padding (56)

e DESede/CBC/NoPadding (168)

e DESede/CBC/PKCS5Padding (168)
e DESede/ECB/NoPadding (168)

e DESede/ECB/PKCS5Padding (168)

78 Cryptography in Java. Symmetric and Asymmetric Encryptions - 7

e RSA/ECB/PKCS1Padding (1024, 2048)
e RSA/ECB/OAEPWithSHA-1AndMGF1Padding (1024, 2048)
e RSA/ECB/OAEPWithSHA-256AndMGF1Padding (1024, 2048)

Key sizes are available in parentheses, the mode of operation and padding are
also specified. This is not much more support when compared to the .NET framework,
we have the same DES, 3DES, AES and RSA suite. Fortunately, there are also many
public extensions of Java so there are many others cryptographic functions, modes of
operations or paddings supported by external implementations. One of the leading
packages is the Bouncy Castle Crypto package, see
https://bouncycastle.org/specifications.html , which has extensive support for many
other constructions, e.g., IDEA, Serpent, RC4, in its Cipher class. There is clearly much
more support for cryptography in Java than .NET, but it is also true that for regular
applications it is unlikely that you will need more than the standard AES, 3DES and RSA.

To perform encryption and decryptions you first need to add some imports
required for the objects that you are going to use as well as for the exceptions that are
going to be thrown. These are summarized in Table 1. Besides the Cipher class from
which all cryptosystems derive, you need to handle keys with Key, KeyPair and
KeyPairGenerator classes then to randomly generate them with the SecureRandom
class, please refer to the online documentation for more information.

import java.security.Key;

import java.security.KeyPair;

import java.security.KeyPairGenerator;
import java.security.Security;

import java.security.SecureRandom;

import javax.crypto.Cipher;

import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import javax.crypto.BadPaddingException;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;

import javax.crypto.ShortBufferException;

7.1 - Symmetric and Asymmetric Encryptions: AES, DES and RSA 79

import javax.crypto.spec.SecretKeySpec;

import javax.rmi.CORBA.Util;

Table 1. Some imports required in Java for the encryption

To perform encryption the paradigm is a bit different to that of .NET but not
necessarily harder while the result is the same. To initialize a cipher object with a
particular encryption scheme you will simply call a new instance with:

Cipher myAES = Cipher.getInstance("AES/ECB/NoPadding");

Then you will have to initialize this to work either in encryption or decryption
mode as follows:

myAES.init(Cipher.ENCRYPT_MODE, myKey);
myAES. init(Cipher.DECRYPT_MODE, myKey);

Encryption and decryption work by simply updating the input with the
plaintext (or ciphertext in case of decryption) and then calling the doFinal method for
the remaining blocks (if any). The doFinal method returns the number of bytes stored
in the buffer and the same is done by the update method. This is all summarized in
Table 2.

byte[] keyBytes = new byte[16];

// declare secure PRNG

SecureRandom myPRNG = new SecureRandom();
// seed the key

myPRNG. nextBytes (keyBytes);

// build the key from random key bytes

SecretKeySpec myKey = new SecretKeySpec(keyBytes, "AES");

80 Cryptography in Java. Symmetric and Asymmetric Encryptions - 7

// instantiate AES object for ECB with no padding
Cipher myAES = Cipher.getInstance("AES/ECB/NoPadding");
// initialize AES objecy to encrypt mode
myAES.init(Cipher.ENCRYPT_MODE, myKey);

// initialize plaintext

byte[] plaintext = new byte[16];

//initialize ciphertext

byte[] ciphertext = new byte[16];

// update cipher with the plaintext

int cLength = myAES.update(plaintext, ©, plaintext.length, ciphertext,
0);

// process remaining blocks of plaintext
cLength += myAES.doFinal(ciphertext, cLength);
// print plaintext and ciphertext

System.out.println("plaintext: +
javax.xml.bind.DatatypeConverter.printHexBinary(plaintext));
System.out.println("ciphertext: " +

javax.xml.bind.DatatypeConverter.printHexBinary(ciphertext));
// initialize AES for decryption
myAES.init(Cipher .DECRYPT_MODE, myKey);
// initialize a new array of bytes to place the decryption
byte[] dec_plaintext = new byte[16];

cLength = myAES.update(ciphertext, ©, ciphertext.length, dec_plaintext,
0);

// process remaining blocks of ciphertext
cLength += myAES.doFinal(dec_plaintext, cLength);
// print the new plaintext (hopefully identical to the initial one)

n

System.out.println("decrypted:
javax.xml.bind.DatatypeConverter.printHexBinary(dec_plaintext));

Table 2. Example of AES encryption and decryption in Java

For asymmetric encryption or decryption the procedure is similar. The only
distinction is that you now have to deal with two keys: a public and private one. For this

7.1 - Symmetric and Asymmetric Encryptions: AES, DES and RSA 81

reason you now have a KeyPair object to store the pair of keys, you Key objects to store
individually the private or public key (when needed for wither decryption or
encryption) and of course the KeyPairGenerator object to generate these keys. Table
3 summarizes the source code for the procedures.

// get a Cipher instance for RSA with PKCS1 padding
Cipher myRSA = Cipher.getInstance("RSA/ECB/PKCS1Padding");
// get an instance for the Key Generator

KeyPairGenerator myRSAKeyGen = KeyPairGenerator.getInstance("RSA");
// generate an 1024 bit key

myRSAKeyGen.initialize(1024, myPRNG);

KeyPair myRSAKeyPair= myRSAKeyGen.generateKeyPair();

// store the public and private key individually

Key pbKey = myRSAKeyPair.getPublic();

Key pvKey = myRSAKeyPair.getPrivate();

// init cipher for encryption
myRSA.init(Cipher.ENCRYPT_MODE, pbKey, myPRNG);

// encrypt, as expected we encrypt a symmetric key with RSA rather than
a file or some longer stream which should be encrypted with AES

ciphertext = myRSA.doFinal(keyBytes);
// init cipher for decryption
myRSA.init(Cipher .DECRYPT_MODE, pvKey);

// decrypt
plaintext = myRSA.doFinal(ciphertext);

System.out.println("plaintext:
javax.xml.bind.DatatypeConverter.printHexBinary(plaintext));

System.out.println("ciphertext:
javax.xml.bind.DatatypeConverter.printHexBinary(ciphertext));

System.out.println("keybytes:
javax.xml.bind.DatatypeConverter.printHexBinary(keyBytes));

Table 3. Example of RSA encryption and decryption in Java

82 Cryptography in Java. Symmetric and Asymmetric Encryptions - 7

7.2 GENERATING KEYS: PASSWORD BASED KEY DERIVATION

Humans are not at all efficient in remembering, e.g., storing in mind,
cryptographic random keys. But it happens that humans are better in remembering
passwords or even longer sentences if these have some sense, i.e., passphrases. The
issue with these is that they are generally incompatible with the format required for a
cryptographic key. For example, an AES key has exactly 128 bit, but imagine that
password can have 18 characters which require 144 bits for storing. The 18 character
passwords have little chances in having 128 bits of entropy, i.e., being more secure than
128 bits picked at random, but is clearly easier to remember. If we truncate the 18
character password to 16 characters it will fit the 128 bits of the ley but it is a pity to
lose the additional bits of entropy. Password based key derivation (PBKD) is here to
help.

The main idea behind PBKD is to use a hash function in order to get an output of
fixed size. But besides this hash function there are two more ingredients which you
already met in the section dedicated to the UNIX password authentication system:

i) Salts, which and are used to prevent off-line guessing attacks,
ii) Iterations, which are used to make testing for each password more
intensive and to hinder the adversary.

Both the salt and the iterations value are public and they not need to be kept
secret.

The example provided in Table 1 shows how to generate a 128 bit key for AES by
using a fixed password, a randomly generated salt and a fixed number of iterations. The
number of iteration makes the key harder to crack by an adversary. The point is that a
user will generate this key rarely, e.g., for each login, so waiting 10.000 iterations can
take milliseconds which go unnoticeable. For an adversary however, the same
procedure must be repeated for each password it tries, thus hindering the exhaustive
search.

char[] password = "short_password".toCharArray();
byte[] salt = new byte[16];

int iteration_count = 10000;

7.3 —Exercises 83

int key_size = 128;
// set salt values to random

myPRNG. nextBytes(salt);

// initialize key factory for HMAC-SHA1l derivation

SecretKeyFactory keyFactory =
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");

// set key specification

PBEKeySpec pbekSpec = new PBEKeySpec(password, salt, iteration_count,
key _size);

// generate the key

SecretKey myAESPBKey = new SecretKeySpec(
keyFactory.generateSecret(pbekSpec).getEncoded(), "AES");

// print the key

System.out.println("AES key: +
javax.xml.bind.DatatypeConverter.printHexBinary(myAESPBKey.getEnc
oded()));

Table 3. Example of password based key derivation for 128 bit AES with HMAC-
SHA1 from password, random salt and 10000 iterations

7.3 EXERCISES

1. Write a program that performs encryption in CBC mode then in OFB and CFB by
using a key that is generated from a user’s password. Please remember to correctly set
the IVs.

2. Write a program that derives keys from passwords and displays the computational
time required for generating the password and the computational time required by an
adversary to break the password by considering | iterations for password generation
and passwords of k bit entropy.

FURTHER REFERENCES

You may find it useful to consult the following references for cryptography in .NET
and Java:

[1] David Hook, Beginning Cryptography with Java, Wiley Publishing, ISBN-13: 978-
0764596339, ISBN-10: 0764596330, 2005

[2] Peter Thorsteinson, G. Gnana Arun Ganesh, .NET Security and Cryptography,
Prentice Hall, ISBN-13: 007-6092021490, ISBN-10: 013100851X, 2003.

[3] Jason R. Weiss, Java Cryptography Extensions: Practical Guide for Programmers,
Morgan Kaufmann, ISBN-13: 978-0127427515, ISBN-10: 0127427511, 2004.

[4] ***** Microsoft Developer Network (MSDN), https://msdn.microsoft.com

[5] ***** ORACLE Java Documentation , http://docs.oracle.com/javase/8/

