Chapter 1. THE UNIX PASSWORD BASED
AUTHENTICATION SYSTEM

This chapter is centred on a simple but relevant subject: password based
authentication (PBA). Regardless of the system, be it UNIX based, Windows, or even a
remote system requiring PBA, e.g., on-line networks such as Facebook, LinkedIn, the
paradigm is almost always the same: the users enters a password which is verified
against an encrypted version of the password that is stored locally on the system. This
encrypted version of the password is not always the result of applying an encryption
function on the password, but rather applying some cryptographic one-way function
(OWF). An OWF is a function that is easy to apply on the password but from which it is
computationally infeasible to find the password, i.e., computing from input to output
is easy while from output to input infeasible. Any cryptographic primitive can be used:
hash functions, encryption functions, etc., since all these cryptographic primitives are
OWFs. These functions will allow only for a random looking sequence to be stored in
the password file, from which it should not be easy (or hopefully impossible) to guess
the password of the user. Since usually hash functions (not encryption functions) are
used for this purpose, we will refer to this encrypted value of the password as hashed
password (note however that an encryption function such as DES or Blowfish can be
used for the same purpose, in fact these are ready to use alternatives in most Linux
distributions despite the more common use of MD5 or SHA2). If you are not yet familiar
with hash functions, all that you should know for the moment is that they are OWFs
that takes as input a string of any length and turns it into a value of fixed size, e.g., 128
bits in case of MD5, 160 bits in case of SHA1, 256 bits in case of SHA256, etc. that is
usually referred as tag or hash.

The necessity for encrypting the passwords before storing them comes from
the need of protecting one user from another (usually from admins or super-users) that
can snitch on the password file (this is usually the case for super-users). Indeed this
protection is not perfect, one can plant a key-logger and record all user input, install a
Trojan that records activity at login, etc. However, if we assume that the system is clean
from such malicious objects (and this is a reasonable assumption in many situations),
then the best one could do is to read the file in which the passwords are stored.
Consequently, encrypting the passwords is a good security decision.

1.1 — The Passwd and Shadow Files 9

password file (e.g., etc/shadow)

ubuntu_13_vm

username Hashed password

“ bob OWF(pwBob)
OWF(pwEve)

eve

Guest Session alice OWF(pwAlice)
ubuntu_13_vm |OWF(pw_ubuntu)

Remote Login

1 OWF

Figure 1. Password based authentication in Ubuntu

The way in which passwords are encrypted varies from one system to another,
here we focus on how this is done under UNIX (and in particular the Ubuntu OS which
we assume to be installed on your computer). The user authentication works in a
straight-forward way: when the user enters his password at the login screen, the
password is passed through a one-way function (the same which was used when it was
stored) and the output is verified against the value stored in this passwords file. If the
values are identical the users gains access, otherwise it is rejected (usually there is only
a limited number of attempts and there is some delay after entering a wrong password
in order to prevent attacks). This mechanism is suggested in Figure 1.

1.1 THE PASSWD AND SHADOW FILES

Traditionally, in UNIX based operating systems the hashed passwords were
stored in the file /etc/passwd (a text file). On almost all recent distributions (including
Ubuntu 13 which we assume to be deployed on your computer) the passwd file
contains only some user related information while the hashed passwords are not here
but in the /etc/shadow file (also a text file, but with limited access, e.g., it cannot be
accessed by regular users). This is done in order to increase security by disallowing
regular users from reading it. The passwd file can be accessed by all users in read mode,
however the shadow file is accessible only to super-users.

10 The Unix Password Based Authentication System - 1

Adding users and passwords. To play a bit with the password and shadow files
we first add some users, say tom, alice and bob. To add users use the command sudo
useradd —m username (-m creates the home directory of the user) then to set the
password use sudo passwd username (sudo allows you to run the usearadd and passwd
commands with super-user privileges). If you need help on any of this commands use
man useradd or man passwd.

ubuntu@ubuntu:~$ sudo useradd -m tom
ubuntu@ubuntu:~$ sudo passwd tom
Enter new UNIX password:

Retype new UNIX password:

Table 1. Creating a user named tom and setting his password

Accessing the shadow file. To access the shadow file you also need super-user
privileges, for this, in the terminal run sudo gedit and open the file from gedit. If you
successfully managed to create these accounts then the passwd and shadow files
should look similar to what you can see in Tables 2 and 3 (note the user names and
their hashed passwords).

ubuntu:x:1000:1000:ubuntu_13 vm,,,:/home/ubuntu:/bin/bash
tom:x:1001:1001::/home/tom:/bin/sh
alice:x:1002:1002::/home/alice:/bin/sh
bob:x:1003:1003::/home/bob:/bin/sh

Table 2. Example of passwd file with 4 users: ubuntu, tom, alice and bob

ubuntu:1js9ai3VXSiFbR5uTfv3JMmFCladdcn1:16459:0:99999:7:::
tom:$6SvIkXOyrzSCMiFB8meMfTANianaS7z5f8yMfplk/TtncZs/7b0es65XZSlyz3k
aiSWN/61sBdrPhT9BORulJ9tWENnE7kpJC/:16470:0:99999:7:::
alice:6gp0JXcSySAVrdUKBASM8NIGmrbexoyetS2LhRgg3gkaTbZdMh4mj.Yps3
UxlkrtGDQfEGA.yNDhIIPG3m1hupX3b0I0Vs3.:16470:0:99999:7:::
bob:$6$5IPGO00ASI6rZ74NUpCVX9C2mpesKKrOiBjkHNCxz8lo3aPj5W6mwVKKv
nhWIbqOH91T9bDcWmDE3/6Ageoa3olcVe2nKY0:16470:0:99999:7:::

Table 3. Example of shadow file with 4 users: ubuntu, tom, alice and bob

Structure of the passwd and shadow files. In the passwd file, the first field is
the user name, while the x indicates that the passwords are not here but in the shadow

1.2 — Verifying Passwords Programmatically 11

file. Subsequently you can see the user identifier, group identifier, the user full name
(and other potential information such as phone number, contact details, etc.), the
home directory and the program that is started at login. The shadow file contains the
information that is more relevant to us. Note the “$” sign in this file. Following the user
name, in the shadow file, we have a SidS field which identifies the particular algorithm
used to encrypt/hash the passwords. The following options are supported in your
Ubuntu distribution:

e 51§ - aversion based on MD5 which is a hash function with 128 bit output that
is no longer cryptographically secure (more details available in the lectures) but
can still be somewhat safely used for this purpose,

e S2aS - Blowfish, a symmetric encryption algorithm, but not a usual option for
this purpose,

e S55-SHA-256 a hash function with 256 bit output,

e S$6S - SHA-512 a hash function with 512 bit output which should give the
maximum level of security.

After the algorithm identifier a random value $salts follows. This value is called
salt and is a randomly generated value, non-secret, that is used to prevent pre-
computed attacks, i.e., you cannot compute the hash over a dictionary of passwords in
an off-line manner since you do not know the salt and all your off-line computations
will be of no use for a distinct salt value (it also prevents two users with the same
password from having the same hash value in the shadow file). Finally, the Shash$ value
is the actual hash of the password. Other fields follow but not of much importance for
this work: days since last change, days until change allow, days before change required,
days warning for expiration, days before account inactive, days since epoch when
account expires.

1.2 VERIFYING PASSWORDS PROGRAMMATICALLY

To generate the hash of a password, the crypt() function must be used. This
function takes the password and the salt as character arrays, i.e., char *, and returns a
character array which is the hash of the password. The id in the salt dictates the
particular algorithm that is to be used. This function can be called from any C/C++
program, but usually you will have to include crypt.h in order to work.

12 The Unix Password Based Authentication System - 1

char *crypt(const char *key, const char *salt);

Table 4. The UNIX crypt function

Programs that use this function must be linked with the —/crypt option, the
sequence for compiling and running the program is in Table 5. Note that we assume
the program test.cpp to be in the current directory and we specify the output file as
test then run this file with ./test.

ubuntu@ubuntu:/mnt/hgfs/VM_SharedS g++ -o test test.cpp —lcrypt
ubuntu@ubuntu:/mnt/hgfs/VM_Shareds ./test

Table 5. Compiling and running the program

1.3 EXHAUSTIVE SEARCH, A TRIVIAL ATTEMPT

Various programs for cracking passwords exist, but the purpose of this
assignment is to help you in building your own. The program in Table 6 performs an
exhaustive search for passwords of length at most MAX_LEN where the characters are
chosen from a predefined set char* charset. How the code works should easily follow
from the comments. The main idea is that we test each password that is generated by
passing it through crypt, see int check_password(char* pw, char* salt, char* hash). To
generate all possible passwords from the predefined character set, i.e., charset, we
take passwords of 1 character at the beginning and gradually apply to them each
possible character, etc. All this is done inside char* exhaustive_search(char* charset,
char* salt, char* target).

#include <iostream>
#include <list>
#include <cstring>
#include <crypt.h>

using namespace std;

//this is an example line from the shadow file:

1.3 — Exhaustive Search, a Trivial Attempt 13

//565ly/hHRfMSgC.FW7CbqG.Qc9p9X59Tmo5uEHCFOZAKCsPZuiYUKcejrsGu
ZtES1VQiusSTenONRUPYNOv1z76PwX2G2.v111:15001:0:99999:7:::
// the salt and password values are extracted as

string target_salt = "$6Sly/hHRfMS";

string target_pw_hash =
"$6Sly/hHRfMSgC.FWw7ChqG.Qc9p9X59Tmo5SuEHCFOZAKCsPZui
YUKcejrsGuZtES1VQiusSTenONRUPYNOv1z76PwX2G2.v1I1";

// define a null string which is returned in case of failure to find the password
char null[] = {"\0'};

// define the maximum length for the password to be searched
#define MAX_LEN 6

list<char*> pwlist;

// check if the pw and salt are matching the hash

int check_password(char* pw, char* salt, char* hash)
{

char* res = crypt(pw, salt);

cout << "password " << pw << "\n";

cout << "hashes to " << res << "\n";

for (int i = 0; i<strlen(hash); i++)

if (res[i]!=hash[i]) return 0;

cout << "match !!!" << "\n";

return 1;

}

// builds passwords from the given character set

// and verifies if they match the target

char* exhaustive_search(char* charset, char* salt, char* target)
{

char* current_password;

char* new_password;

int i, current_len;

// begin by adding each character as a potential 1 character password
for (i = 0; i<strlen(charset); i++){

new_password = new char[2];
new_password[0] = charset[i];

14 The Unix Password Based Authentication System - 1

new_password[1] = "\0';
pwlist.push_back(new_password);

}
while(true){

// test if queue is not empty and return null if so
if (pwlist.empty()) return null;

// get the current current_password from queue
current_password = pwlist.front();
current_len = strlen(current_password);

// check if current password is the target password, if yes return the
current_password
if (check_password(current_password, salt, target)) return
current_password;

// else generates new passwords from the current one by appending each

character from the charlist

// only if the current length is less than the maxlength

if(current_len < MAX_LEN){

for (i = 0; i < strlen(charset); i++){
new_password = new char[current_len + 2];
memcpy(new_password, current_password, current_len);
new_password[current_len] = charset[i];
new_password[current_len+1] = '\0';
pwlist.push_back(new_password);

}

}

// now remove the front element as it didn't match the password
pwlist.pop_front();

}

}

main()

{

char* salt;

char* target;

char* password;

// define the character set from which the password will be built

1.3 — Exhaustive Search, a Trivial Attempt 15

char charset[] = {'b', '0', 'g', 'd", 'a’, 'n', \0'};

//convert the salt from string to char*

salt = new char[target_salt.length()+1];

copy(target_salt.begin(), target_salt.end(), salt);

//convert the hash from string to char*

target = new char[target_pw_hash.length()+1];
copy(target_pw_hash.begin(), target_pw_hash.end(), target);

//start the search

password = exhaustive_search(charset, salt, target);

if (strlen(password)!= 0) cout << "Password successfuly recovered: " <<
password <<" \n";

else cout << "Failure to find password, try distinct character set of size \n";

}

Table 5. An exhaustive search algorithm for finding the password.

1.4 EXERCISES

1. Consider passwords of 20 characters and that they are hashed through MD5
which outputs 128 bits. How many passwords of 20 characters are there for a
single 128 bit output? How many users should be expected until a collision
occurs with probability % ? (note that since hash functions are collision
resistant, it is actually computationally infeasible to find such passwords, but it
is good to understand that they do exist)

2. Find the password that corresponds to the following shadows entry, having in
mind that the charactersetis{a, b, c, 1, 2, |, @, #} and the non-alphanumerical
symbols occur only at the end of the password

tom:S65SvT3dVpNSIwb3GViLl0JOntNk5BAWe2 WikbjSBMXtSkDCtZUkVhVPiz5
X37WfIWL4k3ZUusdoyh7I0UISXE1jUHxIrg29p.:16471:0:99999:7:::

3. Consider a 14 character password that ranges over all possible ASCIl symbols.
On your current computer, how much time will you need to break such a
password?

16 The Unix Password Based Authentication System - 1

4. Consider the same context as previously, but this time we are concerned with
memory usage. Could you provide a rough estimation of the amount of
memory that is used to break the password in the previous example? Can you
implement a solution that improves on this amount?

5. The following shadow entry was generated by a password formed by an
arbitrary arrangement of the following words: red, green, blue, orange, pink.
Find the password.

tom:S$659kfonWC759zqmM9xD7V3zzZDo.3Fb5mAdMOGbIR2DYTtjYpcGkXVWat
TCOpa/XVvKTXLb1ZPONG9cinGRZF7gPLdhJsHDM/:16471:0:99999:7:::

6. Now a more demanding exercise. All of the following passwords start with
)):@S$*!:((and the rules defined below for each user apply only for the
predefined character set:

Alpha={a,b,c..,x, y, 2 }*
Num ={0, 1, 2, ..., 9}
Sym = {"I @I#ISI%/A/&I *I I)}

a. tom_easy has a password from all characters in Alpha, Num and Sym, which
gives a total of: 26 letters, 10 numbers and 10 symbols, summing up to 46
characters. The password contains at most 4 such characters, i.e., 46"4 =
4,477,456. 2

b. tom_harder has a password constructed from the same set Alpha x Num x
Sym except that after the starting characters “)):@S$*!:((” it has an additional
number from 1..10. Suggestion: to solve this, you may consider running 10
instances of the previous program with passwords starting with

“N:@$*L((17, “):@$*1:((27, “):@5*1:((3”, “):@$*L:((4” and “)):@$*!:((5”,

1 Note that there are no upper-case letters
2 You should be able to crack this in ~12 hours (assuming that your computer can perform
5x1076 passwords/day, check the exact running time with the time command)

1.4 — Exercises 17

etc. Since only the first solver gets the points, you may consider running
these on distinct computers.

c. tom_split — has the first 4 characters from Alpha and the last 2 from Num &
Sym. Suggestion, you should search separately for the first 4 and last 2 chars.

d. tom_wordy — has a concatenation in some random order of the following 8
words {the, big, brown, fox, or, small, grey, elephant}. Words may repeat
but there are only 8 words.

e. tom_wordy_harder — has a concatenation in some random order of the
following 10 words {the, big, brown, fox, or, small, gray, elephant,
yesterday, today}. Words do not repeat.

f. tom_math — has a password of the form “)):@5$*!:((N1N2NsNs“ where Niis a
number generated N; = Ni.; + seed mod 255 where Noand seed are random
values in {0, 255}. The numbers are written as characters, i.e., if N1 = 234
then password is “)):@$*!:((234 ... “

g. tom_more_math — same as previously but the operation is performed
modulo 4096, as well as the seed and Noand seed are random values in {0,
4096}

Note: remember passwords start with:)):@5$*!:((

tom_easy:$651cQryNT4SNydvd9w9kpwwkTTU93uMulS9noTyiLmheUnyNrVaNoVjA
yyFAAXAXP1.EePMdYlohOyVAxcuplfZMQD7VixY7/:16497:0:99999:7:::

tom_hard:56Stamx8UvrStMfa8QsdrinDa6n40tVVy7kRaFbbgevr4rFz/rFENDTmaUcKn
ZiiBSGVkO/uS1/M513Z0BVuBELrhDrwr9EJRY0:16497:0:99999:7:::

tom_split:S65Z9VFBmUGSMhG7XIzZnBxdgRjDf1utb7f)ZSc8hvzPJhCjcBd.IN.HoMvsG
T1.wnOACI.AydYq50Vw9uFCTtpH400als/bT1:16497:0:99999:7:::

tom_wordy:565GHuikUus$ST8/C1Ed6QLBKkHhMWJB/nFPgY/tujpMagkpy8tmG.ovijy96
OHrWSkPQWU8h062SuR/NIDIJhCbszMlycdILr7p1:16497:0:99999:7:::

tom_wordy_harder:$65p0sCvjGGSZH9..sdjHFaWux9lgVWm44USpVawFheB8I14PJcA
7ep9nj6lSwcCbO7/SvuTS9LdreyMO./zFPKyE06zR5G/Bw1:16497:0:99999:7:::

18 The Unix Password Based Authentication System - 1

tom_math:$6SSMF7niTSSHuLhIRyIAnhLhNRtqqd/OSkye3fEsnd9i2trxx53Miji/hYZQS8
ywnliUMa6hgSax/SOeCYTootE6497zblt4Fq1:16497:0:99999:7:::

tom_math_harder:565/agnX0gaSkYOEejluThPUH/DeTYJZIAPzxMA3WXYZjHOF/YKQ
a6jEMIIHNAKtIfRyVWGntpG/BPH3sZCZkKmFCHx112X8k0:16497:0:99999:7:::

Remarks. To view memory usage use the command free —m, the free command
displays the amount of free and used memory, -m displays this in megabytes. If you
want to repeat it each second use watch —n 1 free —m, the watch command executes
periodically what follows, in this case —n means that repetition time is given in seconds.
To get the running time of a program use the time command, e.g., time ./test.

