
Designing wireless automotive keys with rights sharing capabilities
on the MSP430 microcontroller

Bogdan Groza1, Tudor Andreica 1 and Pal-Stefan Murvay1
1 Faculty of Automatics and Computers, Politehnica University of Timisoara, Romania

{bogdan.groza, pal-stefan.murvay}@aut.upt.ro, andreica tudor@yahoo.com

Keywords: automotives, RF keys, MSP430

Abstract: We explore the ultra-low-power microcontroller MSP430 from Texas Instruments as potential platform for
developing vehicle keys. Radio frequency (RF) keys are still a relevant research subject as they are a common
target for adversaries while automotive manufacturers show an increased interest in adding new functionalities
to traditional keys while keeping them inexpensive. MSP430 is a low-cost, ultra-low-power, 16-bit capable
microcontroller which can handle some cryptographic primitives that can be further used for designing secure
authentication protocols. In this work we do explore the design and implementation options for a protocol
that can be deployed in a car-sharing scenario where multiple users can share or gain access rights to the same
vehicle. Due to inherent constraints of our platform, we keep the protocol simple and rely on inexpensive
symmetric key primitives while still providing advanced options, e.g., rights sharing capabilities.

1 Introduction and related work

Despite their apparent simplicity and a rather long
development history, car keys are still an interesting
research subject. This happens because of several
reasons. First, breaking car keys remains an attrac-
tive subject for hackers due to the inherent value of
cars and nonetheless of the personal belongings in-
side the car. As cars are frequently left unattended
in remote locations they are easily accessible to ad-
versaries. Second, while increasing security is always
possible by using more expensive technologies (e.g.,
SoA cryptographic designs, etc.) car manufacturers
are frequently trying to cut on production costs. Thus
one needs to achieve security at the lowest possible
price. Third, in the recent years there has been a spec-
tacular growth in functionalities that are present in-
side cars, due to the massive growth of technologies
that are helpful to the driver and also entertaining for
passengers. Remote controlling such functionalities
becomes an immediate necessity and the vehicle key
can be the link to these functionalities.

In this work we try to answer these necessities by
exploring the MSP430 platform from Texas Instru-
ments as potential platform for the development of RF
vehicle keys. The main motivation comes from the
fact that MSP430 is a low-cost, ultra-low power de-
vice that is widely available on the market. Nonethe-
less, it is a capable 16-bit controller with enough

memory to handle basic cryptographic primitives that
are mandatory for the design of a security protocol.

1.1 Targeted scenario

The targeted scenario is depicted in Figure 1. The
scenario that we target is a car sharing scheme where
a user obtains access to a vehicle from an authorized
car-sharing center and has the ability to delegate part
of his rights further. We consider that the car sharing
center can advertise the position of existing cars, i.e.,
their GPS coordinates, via a smart-phone based appli-
cation (car-sharing by smart-phone apps is a realistic
scenario and such schemes are already deployed in
practice as several third-party solutions can be found
on the web).

However, rather than relying on access via smart-
phones, which are not yet a perfect platform in terms
of security, we want to rely on microcontroller-based
RF keys which cannot be compromised by malicious
applications. That is, a user that already has a car-key
from the car-sharing center, can locate all available
cars, choose the one that is in his closest vicinity and
use it if he has the rights. Requests for the particular
vehicle can be made from the smart-phone applica-
tion, but further access is gained with the RF key.

Moreover, we want a key to express the ability
to delegate a subset of existing rights to another key
without involving the sharing center. Such a function-



User

R
ig

h
ts

 d
e

le
ga

ti
o

n

Physical car key 
(with MSP430 controller)

Key issuing

Authority building

Secondary 
User

Rights verification

Car-sharing center

Physical car key 
(with MSP430 controller)

Car

Rights claim

Rights claim

Figure 1: Car access-rights sharing scenario

ality may be useful in case when a group rents a num-
ber of cars and then at some point decides to change
cars between users or further keep a single car and
reconfigure all keys to work with the particular car.
To make access rights verifiable by neutral third par-
ties, e.g., authorities, that must be able to trace back
the key to the original user/issuer (for example in case
of misuse) we do store digitally signed access rights
on the key as soon as the user successfully claims his
rights over the first car.

1.2 Related work

Automotive RF keys were commonly analyzed by the
research community and there are numerous results
that showed them as insecure, e.g., [3, 12, 14, 10, 16].
Besides poor security, these classical car keys cannot
answer to the demands of our practical scenario. They
merely implement simplistic challenge-response pro-
tocols that are useless for right delegation and verifi-
cation by neutral parties. Recently, the use of smart-
phone-based technologies has been discussed [2],
[13], [5] and these approaches open road for com-
plex car sharing procedures. However, our work tries
to avoid the use of a secondary smart-device in order
to save costs, remove the need for carrying a mobile
phone and possibly increase security (as smartphones
are easier to compromise). Consequently, our proto-
col design relies on distinct cryptographic construc-
tions as we need to adapt to a platform with low com-
putational capabilities.

2 Protocol design

We begin by presenting the protocol design then
proceed to a discussion on the choice of the crypto-
graphic primitives.

2.1 Protocol details

The proposed protocol suite is summarized in Fig-
ure 3. Briefly, the role of the protocol components
is the following:

1. Key issuing is the procedure designated for
releasing a new car key. This happens at
the car sharing center ShCenter and we
assume that it happens in a secure environ-
ment. Therefore, no security measures are
needed on the channel. By this procedure,
each key receives an identifier IDRFKeyID

,
a secret key shared with the sharing center
KRFKey,ShCenter, the access rights rights =
{raccess, time, ltime, owner:ShCenter}
and the signature from the sharing cen-
ter over the key identifier and rights
sig rights = Sig

ShCenter
(IDRFKey, rights).

The sharing center also stores freshness related
information such as the time of registration and
the lifetime of the user access rights, i.e., time
and ltime . While the key cannot perform time-
synchronization with a remote server and cannot
keep a secure timer (the key is dependent on
battery which may be disabled by an adversary),
we also keep this freshness related information
on the key to be verified by third parties. Since
access to the vehicle is granted with the consent



of the sharing center, it is sufficient for the sharing
center to keep a secure timer and the car can
synchronize with it.

2. Rights claim key-to-car is the procedure in which
the user is claiming his rights over a car. First,
the car receives the identifier of the key IDRFKey,
the access rights rights along with their signa-
ture sig rights. If the signature is not authentic
or the lifetime of the key has expired, the proto-
col stops. A random value rndRFKey is further
used in the challenge-response protocol to ensure
freshness. The car needs to contact the sharing
center for establishing a shared cryptographic key
and further sends all the information that was re-
ceived from the key along with its own fresh ran-
dom value rndCar. We assume that the commu-
nication channel between the car and the shar-
ing center is secure. This is a natural hypothesis
since modern cars are equipped with 3G/4G com-
munication and SSL/TLS capabilities are already
present on automotive grade embedded devices.
Designing a security protocol for the communi-
cation channel between the car and the sharing
center would be out of scope for our work. The
sharing center verifies the access rights, note that
it may be that the key acquired the rights from the
sharing center or from another key as discussed
in the last procedure procedure. In the first case
the sharing center has to verify his own signature
by using the public key, in the second it has to
verify a mac with the secret key that is shared
with the initial owner of the access rights. The
car receives the shared key with the RF physi-
cal key which is computed by the sharing cen-
ter as KD (rndRFKey, rndCar,KRFKey,ShCenter).
Additionally, the car receives a signature over the
granted access rights and the new owner-car pair,
i.e., RFKey,Car. Whenever the access rights ex-
pire, the car will deny access to the user. Now
the car answers in a challenge response man-
ner with a MAC (Message Authentication Code)
computed over the participant identities, the ran-
dom values and the shared key KRFKey,Car.
The physical key can already compute this
shared key as it already is in possession of
KRFKey,ShCenter, then verify the response and an-
swer to the challenge with a MAC over the values
in reverse order, i.e., MACKRFKey,Car

(IDRFKey,
IDCar, rndRFKey, rndCar).

3. Car access is the basic procedure in which a
user asks for a particular functionality to the
car, e.g., open doors, windows, start the en-
gine, etc. A challenge-response protocol with
the shared key is used to prove the identity

of each participant. The key simply asks the
functionalities that it wants to perform func and
the car responds with some random material
rndCar. Then the key replies to the challenge
with a MAC computed via the secret shared key
over the identities, functionalities, its own ran-
dom material and the received random value, i.e.,
MACKRFKey,Car

(IDRFKey, IDCar, func, rndRFKey

, rndCar) .
4. Rights delegation key-to-key is the procedure

in which the owner of one key, can desig-
nate a subset of his rights to another key.
First, the key sends a request message with
its own ID. The users have to verbally agree
and check on the display of their keys that the
key IDs are correctly set. The second key re-
sponds with the granted access rights raccess ′

and a MAC over them denoted as sig rights =
MACKRFKey,ShCenter

(
RFKey2, rights

′) . Finally,
the requester confirms that the requested access
rights have been received. For practical reasons,
considering a rather classical interface for the key,
the requester can simply push the buttons of the
key corresponding to the access rights and these
are to be confirmed by the other party. While the
physical design of the key is out of scope for our
work, for clarity, we do suggest it in Figure 2.
We consider that the insecure RF channel of this
step is protected by the visual channel between
the user and the key. Since there is no secretly
shared value between the two keys, relying on
user’s feedback is the only alternative.

5. Verification by neutral third parties, e.g., authori-
ties, is not presented as a distinct protocol compo-
nent as this procedure is straight-forward from the
certification chain. The neutral third party needs
to be in possession of the public-key certificate of
the sharing center and the RF key must external-
ize the signed access rights by the sharing center.
This can be straight-forwardly achieved.

2.2 Choice of cryptographic primitives

Given the limited amount of memory, i.e., 1KB of
RAM and 32KB of Flash (part of which is also needed
for other non-security related tasks) and the absence
of cryptographic hardware, symmetric key cryptog-
raphy seems to be the only alternative. Symmetric
primitives can be efficiently performed on MSP430
as will be detailed in the next section. The protocol
relies only on simple hash functions and immediate
derivatives: MACs and key-derivation functions.

More flexibility can be achieved by the use of
public-key primitives, but these are for the moment



Figure 2: Suggestive depiction of the envisioned RF key
from our work

Table 1: Summary of notations

RFKey an radio-frequency vehicle access key
Car the vehicle to which access is requested

ShCenter the vehicle sharing center
ID id associated to an RF key or car

raccess access rights to the vehicle
func functionalities (requested from vehicle)
rnd random value
Sig digital signature
KD key-derivation process
H hash function
MAC message authentication code

too expensive for our setup. We give here only a brief
discussion on this alternative. Asymmetric primitives,
such as the RSA or DSA, do not appear to be an op-
tion due to technical limitations. This scenario may
be interesting for reviving a cryptographic construc-
tion that today is somewhat out-of-focus: one-time
signature schemes. While several limitations exists
we briefly discuss here the possibility to use them.
Such schemes were proposed in the ’80s specifically
for highly constrained devices. While there are also
several more recent proposals, none of them shows
dramatic improvements in performance compared to
the simplest construction which is the genuine Merkle
digital signature scheme [7]. The main drawback of
Merkle-like signatures is that they require significant
storage for each of the signed bits.

One improvement of the Merkle scheme (see Note
11.95 from [6]) offers a time-memory trade-off that
requires roughly 2λdk/ log2 λe computations and a
signature of size 2dk/ log2 λe hash outputs for sign-
ing k bits. Considering that the signature is per-
formed over a hash (i.e., the traditional hash-then-sign

paradigm) and that for short-term use 80 bits of secu-
rity are sufficient, we try to get some rough compu-
tational estimates. For example, by setting λ = 16
the 80 bit output to be signed leads to a signature of
2 ∗ 80/ log2 16 ∗ 80 = 2 ∗ 20 ∗ 80 = 3200 bits. The
number of computations is 2 ∗ 16 ∗ 80/ log2 16 =
2 ∗ 16 ∗ 20 = 640 hash function computations. By
using in advance some of the computational results
from the following section, the computational time is
under 1 second. Consequently, using one-time signa-
tures may be a possible alternative.

The only limitation is the one-time nature of such
signatures. Since the aforementioned signature will
require a key of 3200 bits and the controller has a
memory of 32KB, assuming that at most half of the
memory is used by the application data (a realistic as-
sumption), 4 such keys can be stored in memory. By
the use of Merkle trees these can be efficiently linked
to an original key, thus signing multiple times is possi-
ble. While theoretically Merkle trees can be extended
indefinitely, this will not be possible since storing the
entire path of a signature will require too much mem-
ory. Thus, in case of one-time signatures, the sharing
capabilities will be restricted to several sharing op-
erations with the controllers of our setup. While we
do rely on the simpler MAC-based protocol, one-time
signatures may considered for further extensions.

3 Technical details and experimental
results

We first clarify the computational capabilities be-
hind MSP430 microcontrollers, then we proceed to
some details on the proposed network setup and pro-
vide results on energy consumption which are rele-
vant for a RF key that relies on a small battery.

3.1 Computational capabilities behind
MSP430

The 16-bit MSP430 family of microcontrollers fea-
tures a multitude of configurations for a wide range
of applications which require low power consump-
tion including automotive products and wireless sen-
sor networks. The computational efficiency of vari-
ous cryptographic primitives running on this platform
was presented in several works. Some computational
results on running SHA1 and SHA2 on an MSP430
are given in [9] while [1] presents speed and energy
efficiency measurements for several versions of AES
and Speck. A number of papers [4], [11], [15] focus
on the implementation and evaluation of elliptic curve



Key issuing (secure environment at car-sharing center)

1. ShCenter 99K RFKey: IDRFKey,KRFKey,ShCenter = KD(Kmaster, IDRFKey),
rights = {raccess, time, ltime, owner:ShCenter}, sig rights = Sig

ShCenter
(IDRFKey, rights)

Rights claim key-to-car (insecure environment)

1. RFKey→ Car: IDRFKey, IDCar, rndRFKey, rights, sig rights
2. Car 99K ShCenter: IDCar, IDRFKey, rndRFKey, rndCar, rights, sig rights
3. ShCenter 99K Car: KRFKey,Car = KD (rndRFKey, rndCar,KRFKey,ShCenter) ,

Sig
ShCenter

(IDRFKey, IDCar, rights)
4. Car→ RFKey: IDCar, IDRFKey, rndCar,MACKRFKey,Car

(IDCar, IDRFKey, rndCar, rndRFKey) ,
sig car rights = Sig

ShCenter
(IDRFKey, IDCar, rights)

5. RFKey→ Car: IDRFKey, IDCar,MACKRFKey,Car (IDRFKey, IDCar, rndRFKey, rndCar)

Car access (insecure environment)

1. RFKey→ Car: IDRFKey, IDCar, func, rndRFKey

2. Car→ ShCenter: IDCar, IDRFKey, rndCar

3. RFKey→ Car: IDRFKey, IDCar,MACKRFKey,Car
(IDRFKey, IDCar, func, rndRFKey, rndCar)

Rights delegation key-to-key (insecure environment a)

1. RFKey2 → RFKey1: IDRFKey2
, rightsRequest

2. RFKey1 → RFKey2: IDRFKey1
, IDRFKey2

, rights′ = {raccess ′, time ′, ltime ′, owner:RFKey1},
sig rights =MACKRFKey,ShCenter

(
RFKey2, rights

′)
3. RFKey2 → RFKey1: IDRFKey2

, IDRFKey1
, rights′

ausers will have to check and confirm on the visual display of the physical key that rights are shared between the correct
identities RFKey1 and RFKey2

Figure 3: Components of the proposed protocol suite: key issuing, rights claim, car access and rights delegation

UART

RF

Key

MSP430
MSP430

S12

Figure 4: Expected network connectivity

cryptography on MSP430 family members proving
the feasibility and limits of such approaches on this
group of constraint devices.

We selected the MSP430F2274, a member of the
MSP430F2X/4X subfamily, as a candidate platform
for implementing the proposed wireless access sys-

tem. Versions of the MSP430F227 are available with
aerospace qualifications which are even more strict
than the ones in the automotive domain. With its 1KB
of RAM, 32KB of Flash and a maximum operating
frequency of 16MHz our choice fits the device cate-
gory used for automotive key applications.



Table 2: Execution speed (milliseconds) on MSP430 at
16MHz of some hash functions based on previous work [8]

Input size Cryptographic primitive (block size)

(bytes) MD5 SHA1 SHA2 Blake2
128 160 256 256

8 0.427 3.642 3.691 2.263
64 0.709 7.304 7.117 2.270

576 2.985 36.74 34.50 16.85
1536 7.253 91.95 85.85 44.19
4096 18.63 239.2 222.8 117.1

In previous work [8] we evaluated the capabilities
of this device for executing cryptographic primitives.
The test results showed that the MSP430 core can
successfully handle symmetric cryptographic primi-
tives as proved by measurements illustrated Table 2
which presents the execution speed for several hash
functions 1 when executed for various input sizes at
an operating frequency of 16MHz. Note that here we
refer to the performance of the core since the results
are only dependent on the operating frequency and are
indicative on the computational capabilities of the en-
tire MSP430 family when the same frequency is em-
ployed.

Code size for each hash function implementation
is provided in Table 3 along with the Flash memory
occupation percentage relative to the MSP430F2274
memory size. The evaluated primitives occupy less
than 20% of the Flash memory area when no opti-
mizations are applied leaving sufficient space for im-
plementing the communication protocol and other ap-
plication features. If needed, occupied space could be
decreased by applying code size optimizations.

Table 3: Flash memory consumption of primitive imple-
mentations on MSP430 based on previous work [8]

MD5 SHA1 SHA2 Blake2
128 160 256 256

bytes % bytes % bytes % bytes %
6394 19.98 1338 4.18 2610 8.16 4046 12.64

Since the available RAM memory is not sufficient
both for program execution and for storing crypto-
graphic keys the Flash memory remains the only stor-
age alternative in the absence of an EEPROM. The
amount of Flash memory available for key storage is
limited by the space required for storing the actual
program object code and by the foreseen number of
required re-writes of the key storage space during the
lifetime of the product. The MSP430 Flash is guaran-

1MD5 and SHA1 are known to be insecure and we keep
them just as a bottom line for performance

teed for 10.000 erase cycles. If more re-write cycles
are required this can be achieved by EEPROM em-
ulation at the cost of a significantly reduced storage
space depending on the key storage structure.

Our experimental setup consists of two MSP430
Wireless Development Tools(EZ430-RF2500) made
by Texas Instruments and a NXP ZK-S12-B Kit. The
two MSP430 boards are used both for wireless com-
munication as well as for the proposed protocol im-
plementation. One of them is integrated in the car key,
while the other one is connected to the car’s BCM.
The S12 board contains a MC9S12C128 microcon-
troller and is used to stand for the BCM.

3.2 Details on connectivity

It is relevant to point out that designing the key alone
is not sufficient without the corresponding counter-
part inside the vehicle. Thus, the network design that
we consider consists in a secondary MSP430 con-
troller that is placed inside the car and communi-
cates with the BCM (Body Control Module) of the
car, a unit which is responsible to all functionali-
ties related to the body (windows, doors, trunk, etc.).
For illustration purposes we choose a board equipped
with a Freescale S12 core, a controller that is used
in real-world BCMs. We find that the communi-
cation between the two devices can be easily done
by using the UART (Universal Asynchronous Re-
ceiver/Transmitter) interface. For our experimental
setup we chose to use a baud-rate of 4.8 kBaud, but
the baud-rate can be configured anywhere in a range
between 1.2 and 38.4 kBaud. This setup is suggested
in Figure 4.

A second detail on connectivity is that traditional
vehicle RF keys operate in the Ultra high frequency
(UHF) at 433 MHz. Microcontrollers from the MSP
family do posses sub-1GHz communication capabil-
ities. Our MSP430 experimental devices do commu-
nicate in the 2400-2483.5 MHz band. Using this fre-
quency band is not an issue in general as it is already
used in the automotive domain, e.g., for car alarms.
Moreover, all of the present results will hold on any
other MSP core that has a sub-1GHz transceiver.

3.3 Energy consumption

Figures 5 and 6 depict the energy consumption, ac-
quired by the use of an Agilent oscilloscope, as
the MSP430 microcontroller transits between several
states including a hash function computation state for
SHA1 in the former figure and SHA256 in the latter.

The voltage scale is at 50mV per division while
the time scale was set to 1s per division. The inten-



tion is to highlight the power consumption for cryp-
tographic functions in contrast to other functionali-
ties. In the first state (1), the microcontroller is in
low-power mode, then in the second state (2) the con-
troller is in normal mode and runs no tasks in the
background. This is followed by a third state in which
an LED is lit (3) and the fourth state in which it ex-
ecutes the corresponding hash function (4). Then in
the last state (5) several messages are sent via RF. It
is easy to see that the energy consumption for exe-
cuting the cryptographic primitive is very low com-
pared to the RF transmission or even lighting a 2mA
rated LED. Consequently, the cryptographic function-
alities will not have a more significant contribution
to the battery depletion rate than regular tasks, e.g.,
reading a button or making an LED blink. There is
no noticeable difference between the power consump-
tion recorded during the computations of the two hash
functions. The two plots look very similar although
they represent execution cycles involving two differ-
ent hash functions. This is caused by the similar ex-
ecution times of SHA1 and SHA256 on the MSP430
platform (e.g. a hash execution on an 8 byte input
takes 455µs for SHA1 and 461µs for SHA256).

Figure 5: Energy consumption during SHA1 computations
(4) compared with the consumption obtained for periods
of low-power mode, normal mode without tasks, turned-on
LED and during the RF transmissions

4 Conclusion

Our work sets the first steps in the use of the
MSP430 platform from Texas Instruments for ve-
hicle RF keys. So far the results prove that ba-
sic security functionalities (e.g., symmetric functions,
challenge-response protocols) are straight-forward to
deploy while more advanced security functionalities
(e.g., digital signatures) are also within reach. The
main scope of our work was to clarify some of the

Figure 6: Energy consumption during SHA256 compu-
tations (4) compared with the consumption obtained for
periods of low-power mode, normal mode without tasks,
turned-on LED and during the RF transmissions

technical constraints on MSP430 raised by the pro-
posed scenario. A full-scale implementation, security
proofs for the presented schemes, as well as their re-
design in case of flaws, is a relevant subject for future
work in case that the ideas prove promising for further
investigations.

Acknowledgement. This work was supported by
a grant of the Romanian National Authority for Sci-
entific Research and Innovation, CNCS-UEFISCDI,
project number PN-II-RU-TE-2014-4-1501 (2015-
2017).

REFERENCES

[1] B. Buhrow, P. Riemer, M. Shea, B. Gilbert,
and E. Daniel. Block cipher speed and en-
ergy efficiency records on the MSP430: System
design trade-offs for 16-bit embedded applica-
tions. In International Conference on Cryptol-
ogy and Information Security in Latin America,
pages 104–123. Springer, 2014.

[2] C. Busold, A. Taha, C. Wachsmann,
A. Dmitrienko, H. Seudié, M. Sobhani,
and A.-R. Sadeghi. Smart keys for cyber-cars:
Secure smartphone-based NFC-enabled car
immobilizer. In 3rd ACM Conference on Data
and Application Security and Privacy, pages
233–242. ACM, 2013.

[3] A. Francillon, B. Danev, S. Capkun, S. Capkun,
and S. Capkun. Relay attacks on passive keyless
entry and start systems in modern cars. In NDSS,
2011.



[4] G. Hinterwälder, A. Moradi, M. Hutter,
P. Schwabe, and C. Paar. Full-size high-security
ECC implementation on MSP430 microcon-
trollers. In International Conference on Cryptol-
ogy and Information Security in Latin America,
pages 31–47. Springer, 2014.

[5] J. Hong, J. Shin, and D. Lee. Strategic man-
agement of next-generation connected life: Fo-
cusing on smart key and car–home connectivity.
Technological Forecasting and Social Change,
103:11–20, 2016.

[6] A. J. Menezes, P. C. Van Oorschot, and S. A.
Vanstone. Handbook of applied cryptography.
CRC press, 1996.

[7] R. C. Merkle. A digital signature based on a
conventional encryption function. In A Confer-
ence on the Theory and Applications of Crypto-
graphic Techniques on Advances in Cryptology,
CRYPTO ’87, pages 369–378, London, UK,
1988. Springer-Verlag.

[8] P.-S. Murvay, A. Matei, C. Solomon, and
B. Groza. Development of an AUTOSAR Com-
pliant Cryptographic Library on State-of-the-
Art Automotive Grade Controllers. In Pro-
ceedings of the 11th International Conference
on Availability, Reliability and Security, ARES,
2016.

[9] R. Romann and R. Salomon. Salted hashes for
message authentication-proof of concept on tiny
embedded systems. In Intelligent Embedded
Systems (IES), 2014 IEEE Symposium on, pages
42–46. IEEE, 2014.

[10] Y. Shoukry, P. Martin, P. Tabuada, and M. Sri-
vastava. Non-invasive spoofing attacks for anti-
lock braking systems. In Cryptographic Hard-
ware and Embedded Systems-CHES 2013, pages
55–72. Springer, 2013.

[11] P. Szczechowiak, L. B. Oliveira, M. Scott,
M. Collier, and R. Dahab. NanoECC: Test-
ing the Limits of Elliptic Curve Cryptography
in Sensor Networks, pages 305–320. Springer
Berlin Heidelberg, 2008.

[12] S. Tillich and M. Wójcik. Security analysis of an
open car immobilizer protocol stack. In Trusted
Systems, pages 83–94. Springer, 2012.

[13] J. Timpner, D. Schürmann, and L. Wolf. Secure
smartphone-based registration and key deploy-
ment for vehicle-to-cloud communications. In
Proceedings of the 2013 ACM Workshop on Se-
curity, Privacy and Dependability for CyberVe-
hicles, pages 31–36. ACM, 2013.

[14] R. Verdult, F. D. Garcia, and J. Balasch. Gone in
360 seconds: Hijacking with hitag2. In Proceed-
ings of the 21st USENIX conference on Security
symposium, pages 37–37. USENIX Association,
2012.

[15] E. Wenger and M. Werner. Evaluating 16-bit
processors for elliptic curve cryptography. In
International Conference on Smart Card Re-
search and Advanced Applications, pages 166–
181. Springer, 2011.

[16] J. Wetzels. Broken keys to the kingdom: Secu-
rity and privacy aspects of rfid-based car keys.
arXiv preprint arXiv:1405.7424, 2014.


