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Abstract. Cryptographic puzzles are moderately difficult problems that can be
solved by investing non-trivial amounts of computation and/or storage. Devising
models for cryptographic puzzles has only recently started to receive attention
from the cryptographic community as a first step towards rigorous models and
proofs of security of applications that employ them (e.g. Denial-of-service (DoS)
resistance). Unfortunately, the subtle interaction between the complex scenarios
for which cryptographic puzzles are intended and typical difficulties associated
with defying concrete security easily leads to flaws in definitions and proofs.
Indeed, as a first contribution we exhibit shortcomings of the state-of-the-art def-
inition of security of cryptographic puzzles and point out some flaws in existing
security proofs. The main contribution of this paper are new security definitions
for puzzle difficulty. We distinguish and formalize two distinct flavors of puzzle
security (which we call optimal and ideal) and in addition properly define the re-
lation between solving one puzzle vs. solving multiple ones. We demonstrate the
applicability of our notions by analyzing the security of two popular puzzle con-
structions. In addition, we briefly investigate existing definitions for the related
notion of DoS security. We demonstrate that the only rigorous security notions
proposed to date is not sufficiently demanding (as it allows to prove secure pro-
tocols that are clearly not DoS resilient) and suggest an alternative definition.
Our results are not only of theoretical interest. We show that our better charac-
terization of hardness for puzzles and DoS resilience allows establishing formal
bounds on the effectiveness of client puzzles which confirm previous empirical
observations.

1 Introduction

Background. Cryptographic puzzles are moderately difficult problems that can be solved
by investing non-trivial amounts of computation and/or memory. A typical use for puz-
zles is to balance participants costs during the execution of some protocols. For ex-
amples, many papers addressed their use against resource depletion in SSL/TLS [7],
TCP/IP [14], general authentication protocols [3,10], spam combat [9], [8], [11]. The
use of puzzles reaches beyond balancing resources: they can be used as proof-of-work
in other applications (like timestamping) or through a clever application in encryption
into the future [17]. Puzzles are accounted under various names: cryptographic puzzles,



client puzzles, computational puzzles or proofs of work, we prefer the first one since
the puzzles that we study are intrinsically based on cryptographic functions.

Most of the puzzle-related literature concentrates on providing constructions, often
with additional, innovative properties. For example puzzles that are non-parallelizable
prevent an adversary from using distributed computations to solve them. Examples of
constructions include the well known time-lock puzzle [17], the constructions proposed
by Tritilanunt et al. in [21] and later by Jeckmans [12], Ghassan and Čapkun [15], Tang
and Jeckmans [20], Jerschow and Mauve [13]. All of these constructions can ensure that
a puzzle-solver spends computation cycles before a server engages in any expensive
computation. To alleviate computational disparities between solvers, Abadi et al. [1]
build puzzles that rely on memory usage rather than on CPU speed, this leading to a
more uniform behaviour between devices.

Given the wide-range of applications for puzzles and the number of proposed con-
structions it is probably surprising that devising formal security notions for puzzles has
received rather little attention so far, with only two notable exceptions. Chen et al. [6]
initiate the formal study of security properties for puzzles. They identify two such prop-
erties. Puzzle difficulty requires that no adversary can solve a single puzzle faster than
some prescribed bound, whereas puzzle unforgeability requires that no adversary can
produce a valid-looking puzzle. While this latter property is not required by all sce-
nario usages for puzzles, the former one is critical. In a recent paper, Stebila et al. [18]
notice that single-puzzle difficulty may not suffice to guarantee security when puzzles
are used in real applications, since here it may be needed that an adversary does not
solve multiple puzzles faster than some desired bound, and the relation between single-
puzzle difficulty and multi-puzzle difficulty is unclear at best, and completely inexistent
at worst.

To fix this, Stebila et al. [18] propose a notion of puzzle difficulty that accounts for
multiple puzzles being solved at once and prove that two existing constructions Hash-
Inversion (initially used by Juels and Brainard [14]) and HashTrail (initially used in
the hashcash system [4]) meet this notion. The main motivation for the work in this
paper is that the proposed security definition is problematic: the notion defined is in-
complete since it does not account for the tightness of the bounds and, strictly speaking,
it cannot be met by any existing scheme. This does not contradict the security proofs
mentioned above as the claims rely on faulty analysis: the difficulty bound provided for
the HashInversion puzzle is wrong while for HashTrail is largely overestimated.

Our results. The main contribution of our paper are new security notions for puzzle
difficulty. We distinguish between two different flavors of puzzle difficulty. The first
property demands that no adversary can solve the puzzle faster than by using the “pre-
scribed” algorithm (i.e. the puzzle-solving algorithm that is associated to the puzzle).
We call such puzzles optimal. We call a puzzle ideal if on the average the puzzle is
as hard to solve as in the worst case. These notions have already appeared in the lit-
erature but have never been formalized and previous work does not seem to make a
clear distinction between them. For example, [2] introduces informally the notion of
computation guarantee which requires that a malicious party cannot solve the puzzle
significantly faster than honest clients. This is what we call optimality. Other papers
[20] require that solving the puzzle be done via deterministic computation – this seems



to be what we call an ideal puzzle. The formulations for both of these notions are in the
multi-puzzle setting which, as correctly observed in [18], is the case relevant for most
practical applications. While it is not true in general that for a puzzle construction solv-
ing n puzzles takes n times the resources needed for solving one puzzle, this is clearly
a desirable property. We capture this intuition through a property that we call difficulty
preserving. Having fixed the definitions we move to the analysis of two popular puzzle
systems HashTrail and HashInversion. We prove that, in the random oracle model, these
puzzles are optimal and difficulty preserving for concrete difficulty bounds that we de-
rive. Finally, we look at existing work on using puzzles for provable DoS resistance.
Unfortunately, we discovered that the formal definition for DoS resilience proposed
by [18] is not strong enough as it allows for clear attacks against protocols that are
provably secure according to the definition. We then design and justify a new security
definition that does not suffer from the problems that we have identified.

Before we move on, we note that getting the security definitions for puzzles and
DoS security right is quite important as more and more works in this direction have
appeared (a book chapter in [5] and also [16] and [19]) and all seem to have inherited
the weaknesses in the definition of [18].

2 Shortcomings of existing definitions and proofs

The first attempt to formalize puzzle properties, and in particular puzzle difficulty, was
by Chen et al. in [6]. Recently, Stebila et al. [18], motivated by the observation that
the security notion of [6] does not guarantee that solving n puzzles is n times harder
than solving one, introduced a new definition of puzzle difficulty. In brief, a puzzle is
deemed εk,d,n(·)-strongly difficult if the success probability of an adversary is less or
equal to εk,d,n(·) and εk,d,n(t) ≤ εk,d,1(t/n) (this later condition enforcing stronger
difficulty w.r.t. n puzzles). Here k is a security parameter, d is the difficulty level and n
denotes the number of solved puzzles.

Shortcomings of existing definitions. There are several weak points in the difficulty def-
inition outlined above. Perhaps the most problematic one is that the property of a puzzle
of being ”strongly” difficult is in fact a property of the function ε that upperbounds the
success of the adversary. However, ε is an upper bound on the hardness of the puzzle,
but not necessarily the tightest possible (for example if one sets εk,d,n = 1 any puzzle
is εk,d,n-strongly difficult). A natural question is then what if one can find a bound that
deems the puzzle strongly difficult, while for some other tighter bounds this property
does not hold anymore. Should we consider such a puzzle strongly difficult or not? Note
that in contrast, Chen et al. in [6] clearly state that any puzzle that is ε difficult is ε+ µ
difficult and the most accurate difficulty bound is the infimum of ε. The point is not that
one would find such a bound on purpose, but rather as security reductions are not trivial
one could find a good bound with respect to which the puzzle is strongly difficult, just
to turn out that the puzzle is not strongly difficult for a tighter bound.

To show that the tightness of the bound matters, take for example the case of the
time-lock puzzles. We skip the formalism as we want to keep this example as intuitive as
possible. Setm to be an RSA-like modulus (sufficiently large to rule out any insecurity)



and assume that solving one puzzle means given x ∈R [0..2k−1] to compute x2dmodm.
We assume the usual hypothesis that this computation cannot be done faster than d
squarings unless one knows the factorization of the modulus. Suppose the adversary
can get 1 or 2 fresh values x and has to compute x2dmodm for each of them with
no prior knowledge of the modulus. We can say that the success probability of the
adversary is upper bounded by εk,d,n(t) = t

n·d ,∀n ∈ {1, 2}. To check for correctness,
indeed, if n = 1 the probability to find the output for less than d steps (one step means
one squaring) is almost 0 assuming a sufficiently large modulus and 1 at d steps. While
for n = 2, for less than d steps the probability is 0, at d steps the adversary has solved
the first puzzle, while the probability that the second is also solved is 2−k due to the
possibility of colliding x1, x2, and 2−k is lower than 1/2 claimed by the upper bound.
Thus the bound holds and one can also verify that εk,d,1(t/2) = εk,d,2(t) so the puzzle
is εk,d,n(t)-strongly difficult. We set some artificially small parameters just to easily
exhibit some calculation. Let k = 16 and d = 216 (the bound holds for these values
as well). One would expect that solving the two puzzles requires 2 × 216 = 131072
steps. However, due to the possibility of colliding inputs the average number of steps
is actually 216 − 1 = 131071, that is, one step is missing. The numbers given here
are artificially small and the variation is not very relevant, but it has the sole purpose
to show that the criterion has some deficiencies. The problem here is that the bound is
not tight enough. More precise bounds that should have been used are: εk,d,1 = 0 if
t ∈ [0, d), εk,d,1 = 1 if t = d and εk,d,2 = 0 if t ∈ [0, d), εk,d,2 = 2−k if t ∈ [d, 2d) and
εk,d,2 = 1 if t = d. For these bounds indeed εk,d,1(t/2) ≤ εk,d,2(t) which shows that
in fact the puzzle is not strongly difficult. These bounds are also informal and we used
them just as an intuition, indeed for any t < d the adversary can still guess the solution
with negligible (but non-zero) probability.

We can prove, and we specify this in a remark that follows, that if the bound is
tight then the condition from [18] is sufficient to make a puzzle difficulty preserving.
But, one may further ask if this condition is really necessary. The answer is negative.
In fact, quite surprisingly, the HashTrail puzzle does not satisfy it and neither does the
HashInversion puzzle (while both of them can be proved to be difficulty preserving).
We call HashInversion the generic puzzle which consists in the partial inversion of
a hash function, that is given x′′, H(x′||x′′) find x′. Also, we refer HashTrail as the
generic puzzle which consists in finding an input to H(r||·) such that the result has a
fixed number of trailing zeros. Both these constructions are frequently used in many
proposals. The first one is used by Jules and Brainard in [14] and the second by Back
in the Hashcash system [4]. We prefer the generic names HashInversion and HashTrail
as these suggest better what means to solve the puzzle as well as we are not interested
in the specific details for the construction of the puzzles used in [4], [14].

Moreover, and this is another weakness for the definition of [18], the criterion
εk,d,n(t) ≤ εk,d,1(t/n), can never hold in general. The reason is that in the game that de-
fines security of multiple puzzle it is possible with some (negligible) probability that the
challenge puzzles contain two identical puzzles. In this case solving n puzzles should
always require less effort than n times the effort required to solve a single puzzle, at
least up to negligible factors. The definition should therefore allow for this kind of slack,
i.e. it should require that |εk,d,n(t)−εk,d,1(t/n)| ≤ k−ω(1). The time-lock puzzle seems



to satisfy such a criterion, but note that this is certainly not the case for the hash-based
puzzles above which are the most commonly employed solution in practice.

Flaws in existing proofs. In light of the above comments, it is natural to ask how tight
are the bounds obtained in [18]. By inspecting the security proofs it turns out that beside
the conceptual shortcoming in judging the hardness of n puzzle instances, the bound
used for the HashTrail puzzle is extremely loose while the bound for the HashInversion
puzzle is wrong (these puzzles are difficulty preserving as we show later in the paper,
but unfortunately the proofs provided in [18] are wrong). Figure 1 depicts the loose
bound in (i) and the wrong bound in (ii) for the case of n = 3 puzzles of difficulty
d = 8 bits. Note that in (ii) the adversary advantage is well underestimated.

We give a short numerical example to illustrate this. Informally, the HashInver-
sion puzzle requires that given H(x′||x′′), x′′ find random x′ ∈R [0..2d). The dif-
ficulty bound claimed for this puzzle is εd,k,n = ( q+n

n·2d )n and the puzzle is deemed
strongly difficult with respect to this bound. Just to show that this bound is wrong
consider the trivial case of n = 2, d = 3, i.e., the case of solving 2 puzzles each
having 3 bits. Consider an adversary running at most 11 steps. According to the afore-
mentioned bound, one would expect that the advantage of the adversary is less than
( 11+2

2·23 )2 = ( 13
16 )2 ≈ 0.66. Consider the naive (yet the best) algorithm that successively

walks trough the set {0, 1, 2, ..., 7} in order to solve each puzzle. The success proba-
bility of this algorithm is actually bigger than 0.66 as one can easily show. The naive
algorithm can solve two puzzles in 11 steps if, given x′1 and x′2 the two solutions, it
holds that x′1 + x′2 ≤ 9. That is, there exists 1 solutions for 2 steps (the pair {(0, 0)} ),
2 solutions for 3 steps (the pairs {(0, 1), (1, 0)}) and so on, k − 1 solutions for k steps
up to k = 9 steps. From there on, one can note that for 10 steps given the set of pairs
{(0, 8), (1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1), (8, 0)} one must discard the first
and the last pair (since 8 is not a valid value for the 3 bit guess) while for 11 steps one
must discard the first 2 and the last 2 pairs. Summing up, the naive algorithm succeeded
in 1 + 2 + 3 + ...+ 8 + 7 + 6 = 36 + 13 = 49 out of the obvious 23× 23 variants which
gives a success probability of 49

64 ≈ 0.76. Thus the naive algorithm does better than the
success probability of the adversary considered in [18] and the discrepancy is due to the
flawed security proof. The difference is not big in this example, but obviously it gets
significant when one increases the values of n and d.
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Fig. 1. Adversary advantage at n = 3, d = 8 for HashTrail (i) and HashInversion (ii) puzzles
according to Stebila et al. (dotted line) and in this paper (continuous line)



3 Puzzle Difficulty

To formalize puzzle difficulty and related notions we proceed as follows. First we de-
fine the usual game of solving multiple puzzles and bound the adversary advantage by
εk,d,n(t). Then, we define puzzle optimality which means that, up to some negligible
factor, there is no adversary that can solve one or more puzzles with better advantage
than the solving algorithm that comes with the puzzle. This property was generally ig-
nored, we consider it to be the most relevant, since if an adversary can solve puzzles
in less steps than the puzzle solving algorithm, then such a construction may have no
use at all. Further, if the puzzle is optimal, assuming the usual way of solving more
puzzles by running the solving algorithm on each of the puzzles, the puzzle is difficulty
preserving and solving n puzzles is n times as hard as solving one. For completeness,
we also define ideal puzzles as puzzles that can not be solved faster than the average
number of steps, this again up to some negligible factor.

3.1 Syntax for Cryptographic Puzzles

Our definition of a puzzle system follows in spirit the definition from [6], with several
differences. One is that we do not consider arbitrary strings as inputs together with
keys to the puzzle generation, but instead we group these in what we call the attribute
space. This ensures a more general setting, since strings and long term secrets are part of
puzzles that assure additional properties, such as unforgeability, etc. Thus in the simpler
case where one does not want to ensure any additional property, the attributes can be
set to null. We use the symbol⊥ to indicate the null attribute. The attributes can also be
used to simulate secret keys, if these are used in the construction of the protocol.

Definition 1 (Cryptographic puzzle). Let dSpace denote the space of difficulty levels,
pSpace the puzzle space, sSpace the solution space and aSpace the attribute space. A
cryptographic puzzle, or alternatively client puzzle, CPuz is a quadruple of algorithms,
(Setup,Gen,Find,Ver), with the following descriptions:

• Setup(1k) is the setup algorithm that takes as input a security parameter 1k and
outputs dSpace, pSpace, sSpace and aSpace,

• Gen(d , atr) is the puzzle generation algorithm, it takes as input the difficulty of the
puzzle to be created d ∈ dSpace and a list of attributes atr ∈ aSpace then outputs a
puzzle instance puz ∈ pSpace,

• Find(puz, t) is the solving algorithm that takes as input a puzzle puz ∈ pSpace and
the maximum number of steps t that is allowed to perform, then outputs a solution
sol ∈ sSpace ∪ {⊥} (where ⊥ is for the case when a solution could not be found in t
steps),

• Ver(puz, sol′) is the verification algorithm that takes as input a potential solution
sol′ ∈ sSpace and a puzzle puz ∈ pSpace and outputs 1 if and only if sol′ is a correct
solution for puzzle puz and 0 otherwise.

For soundness, we require that puz is the input necessary and sufficient to run the
Find algorithm and that for any sol that is output of Find the verification holds. By this,



we force that one cannot produce a puzzle construction that is impossible to solve either
because the information is not sufficient or the puzzle has no solution.
Remark 1. In [18] Ver also takes the secret master key s and is also responsible for veri-
fying if the solution is authentic, also embedding the functionality of VerAuth from [6].
Here we choose to keep the puzzle description close to that from [6], thus Ver is re-
sponsible just for verifying the correctness of the solution, and not the authenticity of
the puzzle.
Remark 2. The puzzle is generic and can be further augmented with other algorithms
to ensure additional properties. For example one can add the Auth algorithm to verify
authenticity for the case of unforgeable puzzles as in [6], etc.
Remark 3. On purpose, we did not specify any detail on the runtime of Gen, Find and
Ver algorithms. This is because we wanted to keep the definition as generic as possible
as it addresses puzzle in general. For practical purposes, one can request that all four
algorithms work in probabilistic polynomial time.

3.2 Optimal, ideal, and difficulty preserving puzzles

We formalize puzzle difficulty using a game in which the adversary A is allowed to
get as many puzzles and their solutions from the challenger C and later needs to find
solutions for one or more puzzles generated by the challenger.

PUZZLE SOLVING GAME. We define the puzzle game ExecCPuz,kA,d,n (t) as the following
four stage game between challenger C and adversary A:

1. challenger C runs Setup on input 1k to get dSpace, pSpace, sSpace, aSpace and
sets d ∈ dSpace as the difficulty level of the game,

2. adversary A is allowed to make qGen queries to GenSolvePuz which returns each
time a puzzle and its corresponding solution, i.e., {puz, sol}, and n queries to a Test
oracle which on each invocation generates and returns a target puzzle puz♦,

3. after t steps adversary A outputs the solutions {sol♦1 , sol
♦
2 , ..., sol

♦
n } for puzzles

{puz♦1 , puz
♦
2 , ..., puz

♦
n } that were returned by Test,

4. challenger C queries Ver on all puzzles and solutions output from adversary A and
returns 1 if all solutions are correct else returns 0.

The winning event, denoted by WinCPuz,kA,d,n (t), is the event in which the adversary
outputs a correct solution for the puzzles and the game returns 1, i.e.,

WinCPuz,kA,d,n (qGen, t) = Pr
[
ExecCPuz,kA,d,n (qGen, t) = 1

]
.Remark 4. We did not stress whether the adversary A runs GenSolvePuz on its own
or these are simulated by the challenger C as we did not make distinction between in-
teractive and non-interactive puzzles (puzzles that are generated by the solver or the
challenger). We defer such specific details for the security proof of each particular puz-
zle that we analyze.
Remark 5. In addition to previous hardness definitions we allow collision in the gener-
ation algorithm, that is, we did not exclude that the same puzzle can be outputted more



than once. Generally, collisions appear as a negligible factor in the hardness bound, but
this factor is relevant as the examples from the previous section showed.
Remark 6. In ExecCPuz,kA,d,n (t) we assumed puzzles of the same difficulty level. But it is
easy to extend this definition to puzzles of various difficulty levels as well. Such an
extension to puzzles of multiple difficulty levels does not appear to be possible with the
definition from related work [18] since multiple puzzle difficulty is linked inextricably
to single puzzle difficulty, but for precisely the same difficulty parameter d.

Definition 2 (Difficulty bound). For εk,d : N→ [0, 1] a family of functions indexed by
parameters k, d and n, we say that εk,d(·) is a difficulty bound for puzzle system CPuz

if: WinCPuz,kA,d,n (qGen, t) ≤ εk,d,n(qGen, t).

Before formally defining the different properties for puzzles, we need to introduce
the average and the maximum solving time that one should expect from an honest client,
that is a client who simply executes the Find algorithm that defines the puzzle. Below,
we write ExecCPuz,kFind,d,n(t) for the random variable obtained by executing the experiment
defined above with a “benign” adversary who for each puzzle that it obtains as challenge
it solves it using the Find algorithm. The following definitions captures the average
probability of solving n puzzles of difficulty d in time t.

Definition 3 (Find bound). For a given CPuz we denote by ζk,d,n(t) the probability

that Find correctly finishes in at most t steps, i.e., ζk,d,n(t) = Pr
[
ExecCPuz,kFind,d,n(t) = 1

]
.

For a puzzle system, the next definition identifies the maximum number of steps
needed by the Find algorithm to solve n puzzles with probability 1.

Definition 4 (Maximum solving time). For a given CPuz the maximum solving time
of CPuz is tmax if tmax is the minimum number of steps at which ζk,d,n(t) is 1, i.e.,
ζk,d,n(tmax) = 1, ζk,d,n(t′max) < 1,∀t′max < tmax.

Definition 5 (Average solving time). For a given CPuz we define the average solving
time as the average number of steps required by Find, i.e., tavr(k, d, n) =

∑
i=1,tmax

i ·
[ζk,d,n(i)− ζk,d,n(i− 1)].

Remark 7. In Definition 1 we assumed that Find can solve at most one puzzle at a time,
thus whenever Find is used to solve more than one puzzle we consider the usual way in
which one repeatedly uses Find for each of the puzzles. In the case when Find behaves
differently on more than one puzzle, one can extend the input and output of Find to a
vector of puzzle instances and solutions.
Remark 8. There are puzzles for which tmax is infinite while tavr is finite. Consider for
example the trivial HashTrail puzzle, which we analyze in the next section, that consists
in finding an input for a hash function such that the output ends with d consecutive zeros.
Obviously, if one considers the hash function simulated by a random oracle, we have
tmax =∞ and tavr = 2d.

Definition 6 (Optimal puzzle). We say that CPuz is optimal if at any number of steps
and any number of puzzles the success probability of the adversary is upper bounded by
the success probability of the solving algorithm of the puzzle plus some negligible factor
in the difficulty level and security parameter, i.e., ∀t, n, εk,d,n(t) ≤ ζk,d,n(t)+νn(k, d).



Definition 7 (Difficulty preserving puzzle). We say that an optimal CPuz is diffi-
culty preserving if the average solving time for n puzzles of difficulty d equals n times
the average solving time of a puzzle of difficulty 1 up to some negligible factor, i.e.,
∀n, d, |tavr(k, d, n)− n · tavr(k, d, 1)| ≤ νn(k, d).

Remark 9. The optimality condition εk,d,n(t) ≤ ζk,d,n(t) + νn(k, d) ensures that the
bound from the puzzle solving game, i.e., εk,d,n(t), is νn(k, d) tight.
Remark 10. The condition εk,d,n(t) ≤ εk,d,1(t/n) is enough to assure that an optimal
puzzle, i.e., a puzzle for which ∀n, d, |εk,d,n(t)−ζk,d,n(t)| ≤ νn(k, d), is difficulty pre-
serving. This is trivial to prove, but it seems that the condition εk,d,n(t) ≤ εk,d,1(t/n)
is not so trivial since none of the puzzles that we analyze next satisfies it (one could
easily plot the difficulty bounds to verify this).
Remark 11. To assure that a puzzle is difficulty preserving for puzzles of various diffi-
culty levels, one must enforce that tavr(k, d, n) is the sum of the difficulty levels, i.e.,
tavr(k, d, n) = tavr(k, d1, 1) + tavr(k, d2, 1) + ... + tavr(k, dn, 1). Here d denotes an
array of the difficulty levels.

Definition 8 (Ideal puzzle). We say that an optimal puzzle CPuz is ideal if the average
solving time equals the maximum solving time up to some negligible value in the the
security parameter k and difficulty level d, i.e., ∀n, d, |tavr(k, d, n) − tmax(k, d, n)| ≤
νn(k, d). Alternatively, having an optimal puzzle, i.e., εk,d,n(t) ≤ ζk,d,n(t)+νn(k, d),
∀n, d, the puzzle is ideal if εk,d,n(t) = νn(k, d),∀n, d,∀t < tmax.

4 New difficulty bounds for HashTrail and HashInversion

We now examine the HashInversion and HashTrail puzzles and establish tight security
bounds for each of them.

HASHTRAIL PUZZLE. Let H : {0, 1}∗ → {0, 1}k be a publicly known hash function.
The HashTrail puzzle is a quadruple of algorithms:
• Setup(1k) is the setup algorithm that on input 1k outputs dSpace = [1, k], pSpace =
{0, 1}∗ × {0, 1}k, sSpace = {0, 1}∗,

• Gen(d) is the generation algorithm which on input d randomly chooses r ∈ {0, 1}k
and outputs puzzle instance puz = {d , r},

• Find(puz, t) is the solving algorithm that on input puz and the number of steps t
iteratively samples sol ∈ [0, t) untilH(r||sol)1..d = 0,

• Ver(puz, sol) is the algorithm that takes puz, sol as input and returns 1 ifH(r||sol)1..d =
0 and 0 otherwise.

Theorem 1. In the random oracle model, the HashTrail puzzle is optimal and diffi-
culty preserving with tavr(k, d, 1) = 2d, tmax(k, d, 1) = ∞ and solving and difficulty
bounds: ζHT

k,d,n(t) =
∑

i=n,t

(
i−1
n−1

)
· 1

2nd
·
(
1− 1

2d

)i−n
, εHT

k,d,n(t) ≤ ζHT
k,d,n(t) +

1
2d−1

+
q2Gen
2k+1 .

Remark 12. For HashTrail, in [18] the advantage is upper bounded by q+n
n·2d using Markov

inequality - obviously, q
2d

is a bound for the probability to solve 1 puzzle in q queries



and dividing it with n gives a bound of the probability for n instances. While such a
bound is easy to prove, Figure 1 shows how loose this is compared to the advantage
from the previous theorem for a small numerical example. In section 2 we showed that
loose bounds cannot say much about the difficulty of solving multiple puzzles.

HASHINVERSION PUZZLE. Let H : {0, 1}∗ → {0, 1}k be a publicly known hash
function. The HashInv puzzle is the quadruple of algorithms:
• Setup(1k) is the setup algorithm that on input 1k outputs dSpace = [1, k], pSpace =
{0, 1}∗ × {0, 1}k, sSpace = {0, 1}∗,

• Gen(d) is the puzzle generation algorithm which on input d randomly chooses x ∈
{0, 1}k, computes H(x), sets x′ as the first d bits of x and x′′ as the remaining bits
and outputs puzzle instance puz = {d , x′′,H(x)},

• Find(puz) is the solving algorithm that on input puz and the number of steps t itera-
tively samples at most t values sol ∈ {0, 1}d untilH(sol||x′′) = H(x),

• Ver(puz, sol) be the algorithm that takes puz, sol as input and returns 1 ifH(sol||x′′) =
H(x) and 0 otherwise.

Theorem 2. Let [zi]P (z) denote the coefficient of zi in the expansion of polynomial
P (z). In the random oracle model, the HashInversion puzzle is optimal and difficulty
preserving with tavr(k, d, 1) = 2d−1, tmax(k, d, 1) = 2d and solving and difficulty

bounds: ζHI
k,d,n(t) =

∑
i=n,t[z

i]
(
z · 1−z2d

1−z

)n
· 1

2nd
, εHI

k,d,n(t) ≤ ζHI
k,d,n(t) + n

2d
+

q2Gen
2k−d+1 .

The proof of Theorem 1 can be found in Appendix A.1, due to space limitations we
defer a proof of Theorem 2 for the extended version of this paper.
Remark 13. In [18] the advantage of HashInversion is upper bounded by

(
q+n
n·2d

)n
. As

Figure 1 shows for a small numerical example, the advantage of the solving algorithm
from the previous theorem is much bigger, thus the bound in [18] is wrong.

5 DoS Resilience

Defining resilience against resource exhaustion DoS is a non-trivial task that requires
subtle analysis of the costs incurred by the steps done on the server side. In practice,
choosing the right amount of work that needs to be done in order to gain access to a
particular resource on the server side is a matter of protocol engineering, rather than
cryptography. Notably, as the server resources are always limited, when the number of
honest clients exceeds the total amount of resources, resource exhaustion is unavoid-
able. Thus from the protocol design, the best one could do is to hinder an adversary
from claiming resources in the name of potentially many honest participants - this is
were proof-of-work comes into action.

AN ATTACK ON THE APPROACH OF STEBILA ET AL. The security definition for DoS
resilience of Stebila et al. [18] builds directly on the difficulty of puzzle systems of [18]
and, essentially, requires that an adversary cannot claim more resources than the number
of puzzles he is able to solve in the running time of the adversary. The problem with



this definition is that it disregards an important aspect of puzzle defense against DoS,
namely puzzle management. Puzzles used for DoS resilience come with an expiration
time to avoid what we call a next day attack where an adversary first spends large
amounts of resources to solve a large amount of puzzles and later it uses these puzzles
with solutions to claim the corresponding resources in a much shorter interval. The
definition of [18] allows for next day attacks as the execution that is considered looks
directly at how many puzzles an adversary can solve in time t (and this amount is
bounded by puzzle difficulty), but does not account for the possibility that the puzzles
sent to claim resources could have been solved earlier.

OUR APPROACH. To prevent such attacks we take two measures: first we introduce a
fixed lifetime for the puzzles, then we define resilience as a condition that must hold in
any time interval [t2, t1] and not just for an adversary having runtime t. By Πtpuz (CPuz)
we denote a protocol Π that is protected by puzzles generated by CPuz and with lifetime
tpuz , i.e., the protocol deems as invalid any solution received later than tpuz after the
generation of the puzzle. We stress that we do not consider the detailed cost of running
the server program, etc., and we consider as a premise that puzzles of difficulty d from
CPuz are enough to protect the server.

PROTOCOL ATTACK GAME. We define the attack game Exec
Πtpuz (CPuzkd,n)

Adv based on a
two stage adversary. First adversary Adv1 is allowed to interact with the server and
honest clients via: (1) RequestPuz(str) on which the server answers with a new fresh
instance puz, (2) SolvePuz(puz) on which any client answers with a solution sol.

Then Adv1 outputs state information stateAdv1
to Adv2 which is allowed to do

the same actions subject only to one restriction: t1 marks the time at which Adv1 has
send its state information and at t2 + tpuz he must output the solutions to n puzzles
created no sooner than t1. The game returns 1 if the adversary has returned correct
solutions for all n puzzles, i.e.,

Win
Πtpuz (CPuzkd,n)

Adv (t2 − t1, n) = Pr

[
Exec

Πtpuz (CPuzkd,n)

Adv = 1

]
Definition 9 (DoS Resilience). Let CPuzkd,n be an unforgeable, difficulty preserving
puzzle. Protocol Πd,tpuz (CPuz

k
d,n) is εkd,n-DoS resilient if for any t1, t2 ∈ [0, tΠ] with

t1 < t2, having an adversary Adv that can perform at most tAdv : t2 − t1 + tpuz
computations in time t2 − t1 + tpuz it holds:

Pr

[
Win

Πtpuz (CPuzkd,n)

Adv (t2 − t1, n)

]
≤ εkd,n(tAdv : t2 − t1 + tpuz ) + ν(k)

PRACTICAL APPLICABILITY. We sketch the practical applicability of our security no-
tions. The next theorem links the efficacy of a puzzle-based DoS defense system with
the parameters of the underlying puzzle. Informally, the theorem states that a puzzle
scheme can protect a protocol only when the ratio between the computational power of
the adversary and that of the client does not exceed service time (note that paradoxically
this is independent on the hardness of the puzzle, an aspect that to best of our knowledge



is overlooked in previous work on client puzzles). In practice, DoS is usually analyzed
by means of queuing theory and the main parameter is service time θservice which gives
the maximum input rate that can be handled by the system. For example, if service time
is θservice = 10ms then the server can handle a maximum input rate λ = 100 con-
nections each second and beyond this the systems gets saturated (leading to a waiting
queue than can grow without bound). While previous definition is of theoretical inter-
est, it can be easily translated to practical systems where resource exhaustion occurs as
soon as the requests of an adversary exceed the inverse of the service time. In the proof
of the following theorem, note that the lifetime of the puzzle tpuz from the εkd,n-DoS
resilience is used to derive a practical bound that depends strictly on the computational
resources and maximum acceptable load of the server θ−1

service .

Theorem 3. Consider protocol Πd,tpuz (CPuz
k
d,n) runs on a server side with service

time θservice for each connection and the computational resources of the adversary
and clients are πA and πC respectively. Protocol Πd,tpuz (CPuz

k
d,n) can provide DoS

protection only if πA < πC · θ−1
service and the maximum level of protection is reached at

d = πA.

This bound seems to justify existing empirical results. Dean and Stubblefield [7]
provided the first positive results for protecting SSL/TLS by using client puzzles. In the
performance related section, the authors of [7] note that 20-bit puzzles seem to offer
the optimal level of protection. While this observation is only empirical, it is supported
by the result of Theorem 3 which shows d = πA as the maximum difficulty level and
indeed in practice the computational power of an adversary is the order of 220 hashes
per second. For distributed DoS attacks these values must be scaled up with the size of
the bot-net that the adversary controls.

6 Conclusion

We refined difficulty notions for puzzles, making a clear distinction between optimal,
difficulty preserving, and ideal puzzles. Also we provided new difficulty bounds for two
hash based puzzles. We showed that these bounds are tight enough to ensure optimality
and that the puzzles are difficulty preserving. Finally, we introduced a stronger defini-
tion for DoS resilience motivated by the observation that previous definitions may still
allow an adversary to mount a successful attack. As this is the third paper proposing
rigorous difficulty notions for client puzzles and showing that previous definitions fail,
it is clear that formalizing puzzles properties is not as easy as it may appear on first
sight. Our definition opens the avenue of studying puzzles and their use in DoS defense
in more detail than was possible in the past (e.g., by introducing new security notions
and including an explicit puzzle management mechanism in the puzzle protocol). Previ-
ously, choosing puzzle difficulty in practice was only based on empirical observations,
here we provided a clear upper bound for this as well as a bound on the usefulness of
client puzzles against DoS. Namely, puzzles will work only if πA < πC · θ−1

service which
places the computational power of the adversary and clients in a clear, crisp relation
with network service time.
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A Proofs

A.1 Proof of Theorem 1

Suppose that Find finishes at exactly the t-th query and let t = t1 + t2 + ...+ tn where
ti denotes the number of queries made to H to solve the ith puzzle. The probability to
solve the ith puzzle at exactly the ti query is obviously (1− 1

2d
)ti−1 · 1

2d
. Since solving

each puzzle is an independent event, the probability to solve the puzzles at exactly
t1, t2, ..., tn steps for each puzzle is

∏
i=1,n(1− 1

2d
)ti−1 · 1

2d
= (1− 1

2d
)t−n · 1

2nd
. But

there are exactly
(
t−1
n−1

)
ways of writing t as a sum of exactly n integers from which the

probability to solve the puzzle follows as: ζHT
k,d,n(t) =

∑
i=n,t

(
i−1
n−1

)
· 1
2nd
·
(
1− 1

2d

)i−n
.

We prove the adversary advantage in the random oracle model. For this, challenger
C simulatesH by flipping coins and playing the following game G0 with adversary A:

(1) The challenger C runs Setup on input 1k then it will flip coins to answer to the
adversary A,

(2) The adversary A is allowed to ask GenSolvePuz, Test, ComputeHash which C
answers as follows: (2.1) on GenSolvePuz, challenger C picks r ∈ {0, 1}k checks
if r is present on its tape and stores it if not then randomly chooses a solution sol
and returns the pair {r, sol}, (2.2) on Test, challenger C queries itself GenSolvePuz
but marks its answers and solutions as {(r♦1 , sol

♦
1 ), (r♦2 , sol

♦
2 ), ..., (r♦n , sol

♦
n )} and

returns just {r♦1 , r
♦
2 , ..., r♦n }, (2.3) on ComputeHash, challenger C simulates H to

the adversary A, that is, he receives r, sol from adversary A, check if r, sol was not
already queried and if not he flips coins to get y and stores stores the triple {r, sol, y}
on its tape then returns y to A,

(3) At any point the adversary A can stop the game by sending C a set of pairs {(r♦1 ,
sol♦1 ), (r♦2 , sol

♦
2 ), ..., (r♦n , sol

♦
n )},

(4) When challenger C receives {(r♦1 , sol
♦
1 ), (r♦2 , sol

♦
2 ), ..., (r♦n , sol

♦
n )} he checks that

each {r♦1 , r
♦
2 , ..., r♦n } are stored on its tape and for each solution it checks that the

last d bits of y in {r, sol, y} are zero. If a triple {r, sol, y} such that the last d bits of
y are zero is not present on the tape, then challenger C flips coins one more time to



get a new y and accepts the solution if y ends with d zeros (note that these values
are not stored on the tape). If all these hold then challenger C outputs 1, otherwise it
outputs 0.

Remark 14. For correct simulation of GenSolvePuz the length l of the correct answer
should be chosen according to the probability distribution of the lengths for a particular
difficulty level, i.e., Pr[l] = (1− (1− 2−d)2l)(1− 2−d)2l−1

.
Let G1 be the same as G0 with the following difference: on GenSolvePuz, chal-

lenger C picks r ∈ {0, 1}k checks if r is present on its tape and aborts if so, other-
wise it continues as in G0 by storing the values then sending them to A. We have:∣∣∣Pr
[
A wins G0

]
− Pr

[
A wins G1

]∣∣∣ ≤ q2Gen
2k+1 .

We now bound the adversary advantage in G1. At the end of the game, challenger
C inspects his tape and sets t as the number of queries made to ComputeHash that have
an r♦i ,∀i ∈ {1, n} as input. Let Ei denote the event that for i of the puzzles a pair
{r♦, sol♦, y} where y ends with d zeros is not present on the tape. Obviously, there
n + 1 possible outcomes of G1: E0, E1, ..., En. In each Ei let Pr

[
A wins Ei

]
be the

probability that the adversary has the correct answers for n − i of the puzzles and he
guessed the output of i of them which happens with probability 2−id since the adversary
never queriedH to get a correct output. We have:
Pr
[
A wins G1

]
= Pr

[
A wins E0

]
+

1

2d
· Pr
[
A wins E1

]
+

1

22d
· Pr
[
A wins E2

]
+

... +
1

2nd
· Pr
[
A wins En

]
= ζk,d,n(t) +

1

2d
· Pr
[
A wins E1

]
+

+
1

22d
· Pr
[
A wins E2

]
+ ...+

1

2nd
· Pr
[
A wins En

]
<

< ζHT
k,d,n(t) +

1

2d
+

1

22d
+ ...+

1

2nd
< ζHT

k,d,n(t) +
1

2d − 1

By elementary calculations it follows that: WinHashTrail,kA,d,n (qGen, t) ≤
∣∣∣Pr
[
A wins G0

]
−

Pr
[
A wins G1

]∣∣∣+ Pr
[
A wins G1

]
= ζHT

k,d,n(t) + 1
2d−1

+
q2Gen
2k+1 .

The puzzle follows as optimal since εHT
k,d,n(t) ≤ ζHT

k,d,n(t)+ 1
2d−1

+
q2Gen
2k+1 and 1

2d−1
+

q2Gen
2k+1 is negligible in d and k respectively.

Now we prove that the puzzle is difficulty preserving which is trivial to do. For
d = 1 it is easy to prove that tavr(k, 1, d) = 2d. This is straight forward since:

tavr(k, 1, d) =
∑

i=1,∞
i · 1

2d
·
(

1− 1

2d

)i−1

=
1

2d
·
∑

i=1,∞
i ·
(

1− 1

2d

)i−1

=

=
1

2d
· lim
i→∞

i ·
(
1− 1

2d

)i−1 ·
(
− 1

2d

)
−
(
1− 1

2d

)i
+ 1

1
22d

= 2d

We now want to show that n · tavr(k, d, 1) = tavr(k, d, n). By definition we have
ζHT
k,d,n(t) =

∑
i=n,t

(
i−1
n−1

)
· 1

2nd
·
(
1− 1

2d

)i−n
. Thus it follows:

tavr(k, d, n) =
∑

i=n,∞
i·(ζHT

k,d,n(t)−ζHT
k,d,n(t−1)) =

∑
i=n,∞

i·
(
i− 1

n− 1

)
· 1

2nd
·
(

1− 1

2d

)i−n



Recall that
(
i
j

)
=
(
i−1
j−1

)
+
(
i−1
j

)
and write

tavr(k, d, n) =
∑

i=n,∞
i ·
[(

i− 2

n− 2

)
+

(
i− 2

n− 1

)]
· 1

2nd
·
(

1− 1

2d

)i−n

=

=
1

2d
·
∑

i=n,∞
i ·
(
i− 2

n− 2

)
· 1

2(n−1)d
·
(

1− 1

2d

)i−n

︸ ︷︷ ︸
tavr(k,d,n−1)+

∑
i=n,∞

(
i− 2

n− 2

)
· 1

2(n−1)d
·
(

1− 1

2d

)i−n

︸ ︷︷ ︸
εk,d,n−1(∞)=1

+

(
1− 1

2d

)
·
∑

i=n,∞
i ·
(
i− 2

n− 1

)
· 1

2nd
·
(

1− 1

2d

)i−n−1

︸ ︷︷ ︸
tavr(k,d,n)+

∑
i=n,∞

(
i− 2

n− 2

)
· 1

2(n−1)d
·
(

1− 1

2d

)i−n

︸ ︷︷ ︸
εk,d,n(∞)=1

Multiply with 2d to get tavr(k, d, n) = tavr(k, d, n− 1) + 2d from which by recur-
rence we have tavr(k, d, n) = n · tavr(k, d, 1) which completes the proof.

A.2 Proof of Theorem 3

Let R denote the number of resources takeover by the adversary and λ the number of
requests to the server. We have λ ∈ [0, λA] where λA is the maximum rate at which an
adversary can request connections (limited by network parameters only). Obviously a
DoS takes place if λ > θ−1

service since the server can handle at most θ−1
service connections

each second. But by using client puzzle the number of requests is also bounded by the
computational power of the adversary. A misleading bound on the adversary request rate
is λmax =

πA
d

. By careful inspection of Definition 9 the difficulty bound includes the

puzzle lifetime tpuz and the correct bound is λmax =
πA + tpuzπA

d
(since all puzzle

computed during tpuz can be used as well to gain resources). But puzzle lifetime tpuz
must be bigger than the time a client needs to solve the puzzle, i.e., tpuz > dπ−1

C , since
otherwise clients are unable to solve the puzzles and cannot get resources anyway. Thus

λmax >
πA
d

+
πA
πC

. It follows:R(λ) = λ, if λ ∈
[
0,
πA
d

+
πA
πC

]
. Which means that the

number of resources drops with the increase in the difficulty of the puzzle but it never
drops below

πA
πC

since: limd→+∞R(λ) =
πA
πC

. Accordingly, the adversary can always

get at least πA · π−1
C resources, regardless of the puzzle difficulty level, and the DoS

condition is met when πA ·π−1
C ≥ θ

−1
service . Obviously πA ·π−1

C is the minimum amount
of resources gained on the side of the adversary and this met as soon as d > πA.
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