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ABSTRACT Fingerprinting devices based on unique characteristics of their sensors is an important
research direction nowadays due to its immediate impact on non-interactive authentications and no less due
to privacy implications. In this work, we investigate smartphone fingerprints obtained from microphone data
based on recordings containing human speech, environmental sounds and several live recordings performed
outdoors. We record a total of 19,200 samples using distinct devices as well as identical microphones placed
on the same device in order to check the limits of the approach. To comply with real-world circumstances,
we also consider the presence of several types of noise that is specific to the scenarios which we address,
e.g., traffic and market noise at distinct volumes, and may reduce the reliability of the data. We analyze
several classification techniques based on traditional machine learning algorithms and more advanced deep
learning architectures that are put to test in recognizing devices from the recordings they made. The results
indicate that the classical Linear Discriminant classifier and a deep-learning Convolutional Neural Network
have comparable success rates while outperforming all the rest of the classifiers.

INDEX TERMS machine learning, microphone, smartphone fingerprinting

. INTRODUCTION AND MOTIVATION

In the recent years, due to the fast evolution of the IoT
(Internet of Things) and the stringent need for fast authentica-
tion mechanisms that do not call for user interaction, device
fingerprinting within the scope of authentication evolved into
an important research area that asked for urgent exploration.
Nonetheless, privacy related topics and forensic investiga-
tions provide complementary use cases of significant interest
for inimitable device characteristics.

Contemporary smartphones are equipped with numerous
sensors, i.e., microphones, accelerometers, gyroscopes, mag-
netometers, light sensors, cameras, etc., all of which can
be fingerprinted since each sensor has unique characteristics
due to chemical and physical imperfections resulting from
the fabrication process. The idea of circuit identification
based on physical properties was explored since the early
2000s [1]. Later, Physically Unclonable Functions (PUFs)
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were introduced for security applications such as device
authentication based on unique and unpredictable character-
istics [2]]. However, extracting unique sensor characteristics
is challenging because sensor characteristics are also influ-
enced by the environment, regardless of the sensor type,
e.g., accelerometer [3]], microphone [4], camera [5]], etc. In
this work, we analyze smartphone fingerprints provided by
microphone characteristics using the frequency domain rep-
resentation of the recorded sounds and machine learning clas-
sifiers. Concretely, we use several traditional machine learn-
ing algorithms, i.e., Linear Discriminant (LD), Ensemble-
Subspace Discriminant (ENS), Decision Tree (DT), Fine K-
Nearest Neighbor (KNN) and Linear Support Vector Ma-
chines (SVM), to which a deep-learning Convolutional Neu-
ral Network (CNN) is added as a comparison.

We are focusing on three distinct scenarios, as depicted
in Figure [T} as a result of various types of sounds and
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FIGURE 1. Overview of the scenarios and methodology steps in our work

environments. A specific area of application which concerns
us are the vehicular environments which recently become of
much interest due to the evolution of the automotive domain
towards interactions with smart devices that are carried by
users. The scenarios from which we collect and analyze data
are the following:

Scenario A. Fingerprinting smartphones from different
manufacturers and different models based on human speech:
for this scenario we use the existing MOBIPHONE dataset
[6] which is a public speech database containing 21 smart-
phones from distinct brands and models. For each smart-
phone the dataset contains 24 audio files from 12 female
and 12 male speakers. The speakers were chosen from the
TIMIT database [7]]. Each recording file contains 10 spoken
sentences, the first two are identical for each speaker while
the rest are different.

Scenario B. Fingerprinting identical smartphones on envi-
ronmental sound using prerecorded sounds: for this scenario
we built our own recordings with 16 microphones from the
same smartphone model (a Samsung Galaxy S6) which are
used to record in-vehicle and traffic noise replayed by a
high-end audio system. These experiments were performed
indoors since it is much easier to work with a batch of iden-
tical microphones which are connected to the same phone in
order to determine if the microphone alone (or the rest of the
circuits in the smartphone) influences the fingerprinting. To
generate environmental sounds, we use the SoundArchive{H

Uhttps://www.soundarchive.online/?s=police

database from which we use sounds corresponding to some
events that are commonly encountered in vehicular environ-
ments: (i) locomotive signaling departure, (ii) closing barriers
with bells jingling, (iii) car screeching tiers and (iv) the horn
sound of a car. In Figure 2] we depict the sounds which we
use from SoundArchive, played in the indoor experiments
(with identical microphones) in the time domain (left) as
well as their power spectrum, i.e., the frequency domain
representation (right). On each plot there are two signals
which correspond to the two channels of a stereo recording.

Scenario C. Fingerprinting smartphones from distinct
manufacturers and models based on live recordings: for this
scenario we built our own recordings outdoors and inside
a vehicle by using 16 distinct smartphones that record the
sound at the same time. Each smartphone records sounds in
three distinct sub-scenarios:

1) A car honking in an open space to avoid reflections from
the nearby obstacles (for these measurements we took
the car outside the city on an open area). In this scenario
we performed 400 measurements with each smartphone,
totaling 6400 measurements. The smartphones were
placed outside the car as would be expected in case of
bystanders’ incidental recordings.

2) Vehicle hazard lights since these are commonly trig-
gered inside cars in various circumstances related to
traffic conditions. For this scenario we did 300 mea-
surements for each smartphone, totaling 4800 measure-
ments.

3) Wipers noise as this is also commonly heard inside cars
(such a scenario generally occurs due to circumstances
caused by the environment). For this scenario we did
300 measurements for each smartphone, totaling 4800
measurements. In the last two settings, the smartphones
were placed inside the car.

In real-life circumstances, additional noise may be present
in the environment. For this reason, we also analyze the influ-
ence of four types of noise on our fingerprinting procedure.
For outdoor recordings we consider overlaps with music, for
which we used several songs from the top 10 of the Spotify
list for 2021. For indoor recordings, we used two environ-
mental noises from the SoundArchive: (i) heavy traffic and
(ii) outdoor market sounds. In Figure [3|we graphically depict
the representation of these sounds from the SoundArchive
in the time domain (left) and frequency domain respectively
(right). Each plot contains two signals as the files from the
SoundArchive are two-channel, stereo recordings.

The rest of the work is organized as follows. In Section[I]
we analyze some related works. Section[[Tl|depicts the exper-
imental setup, devices and tools. In Section[[V] we attempt to
fingerprint microphones using the LD, ENS, DT, KNN and
SVM classifiers based on prerecorded sounds from indoor
experiments. In Section [V] we fingerprint microphones based
on live outdoor recordings using the LD classifier, which was
selected as the top performer based on the experiments from
the previous scenario, and we also add a more demanding

VOLUME 4, 2022



IEEE Access

Berdich et al.: Fingerprinting Smartphones From Human Speech and Environmental Recordings

Fres = 43.0769 Hz

Amplitude

02

0 05 1 15 2
Timels) Frequency (kHz)

Power Spectrum (dB)

(i) Barriers close with two bells jingling

1 o Fres = 43.0769 Hz

05 7 ' 7 m , H -50 14|‘N'*'tm'“'UmWM'»umMm m iy WIWJMW WHL

5 10 15 20
Times] Frequency (kHz)
(ii) Two tone horn of a Mercedes-Benz
1 —_ Fres = 43.0769 Hz

= 50”%%”&%

5 10 15 20
Time[s] Frequency (kHz)
(iii) Locomotive’s long toot signaling departure

1 Fres = 43.0769 Hz

-40
05
0
05

6ol
1

-80 B
2 %
8.120 |

0 2 4 6 8 10 0 5 10 15 20
. Time!s] . . . Frequencf\;‘(KHz) .
(iv) Car arrives in a hectic, snappy manner with screeching tire

dB;

Amplitude
°
|

Power Spectrum

o
3
o

Amplitude
=)
@ o
¥
Power Spectrum

o
3

0 1 2 3 4 5

o

Amplitude

FIGURE 2. Sounds played in our experiments in time domain (left) and power
spectrum (right)
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FIGURE 3. Noises used in our experiments in time domain (left) and power
spectrum (right)

deep learning CNN architecture. Section [VI] concludes our
work.

Il. RELATED WORK

Several lines of work have focused on fingerprinting smart-
phones based on their microphones and various types of
sounds and classification mechanisms were employed. We
survey these in what follows, Table |I| provides an overview.
Indeed, previous approaches differ not only in the algorithms
that they use, i.e., traditional machine learning or deep
learning, but also in the features employed for classifying
the samples. For example, while most works are using the
frequency spectrum extracted via the FFT transform, some
works that employed human speech have also been using
MFCC coefficients (which are commonly used for speech
recognition). We also note that for synthetic recordings,
SVM, KNN and CNN were the most used classifiers. Several
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details on these works follow.

In [8] smartphone microphones are identified based on
the recordings of a periodic tone at 1kHz with KNN, SVM
and CNNs and [9] uses a similar methodology. Noise pro-
duced by a pneumatic hammer and a gun are used in [10].
The microphone classification was realized based on the
frequency representation of the recorded sound with KNN,
SVM and CNN. Artificial neural networks are used in [12]]
for microphone identification based on the frequency re-
sponse for 80 tones ranging between 100Hz and 8kHz. In
[13]] the microphones are identified using the inter-class cross
correlation of the phase spectrum. The microphones were
used to record the ambient noise generated with a fan cooler
which is positioned at 0.7m from the microphones and runs
at the maximum speed.

Audio signal characteristics, e.g., mean, standard de-
viation, dynamic range D, the crest-factor Q and auto-
correlation time are analyzed in [24]] within the scope of
forensics applications. In [14]], one-class classification is used
based on noise collected from different locations, i.e., indoors
or outdoors, inside a park or on a busy street. Characteris-
tics extracted from FFT coefficients are used in [[15] along
with machine learning algorithms, i.e., Naive Bayes, multi
class SVM, decision trees and KNN. In [11]] mobile devices
are identified based on two approaches. In one approach,
the authors use the frequency response of the speaker and
microphone based on the minimum likelihood classification
of 13 tones with frequencies between 100Hz and 1300Hz.
The other approach is based on calibration errors of the
accelerometer sensors.

Also, human speech has been used by several papers
for smartphone microphone fingerprinting. In [[16] speech
recordings from 25 speakers are used for microphone identi-
fication with SVM, Gaussian Supervector (GSV) and Sparse
Representation-based Classifier (SRC). Speech recordings
are used in [[18] for microphone identification based on the
band energy difference descriptor. CNN classification based
on frequency domain representation of human speech is done
in [22]. In [19] the smartphone is identified using CNNs
based on the spectrogram extracted from speech recordings.
SVM-Recursive Feature Elimination (SVM-RFE) and vari-
ance threshold are used in [20] for smartphone microphone
identification based on speech recordings. Mel-frequency
cepstral coefficients (MFCCs) of speech recordings are used
in [[17]] for microphone identification. Audio source identifi-
cation in the scope of anti-forensics using SVM and MFFC is
proposed in [21]]. In [23]] the smartphone is identified based
on MFCC of audio recordings.

An open-set classification algorithm is proposed in [25]
for microphone identification. Microphone and environment
classification using Naive Bayes is done in [26]. Distinct
audio signals were used, i.e., distinct music styles, noises,
speech and instrumental. Electrical network frequency (ENF)
and SVM are used in [27]. Mobile device identification
using deep learning algorithms, i.e., softmax regression and
multilayer perceptron (MLP) based on audio recording data,

3
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TABLE 1. Overview of various works which is proposed fingerprinting smartphones based on their microphone

Paper Type of sound Classifiers Devices Sound
18] 1kHz and 2kHz tone SVM, KNN, CNN 32 smartphones
91 1kHz tone SVM, KNN, CNN 34 smartphones
[10] 1kHz tone, pneumatic hammer, gunshot SVM, KNN, CNN 34 smartphones
[11) 13 tones in the range of 100Hz-1300Hz maximum-likelihood 16 smartphones
classification synthetic sound
[12] 80 tones in the range of 100Hz-8kHz artificial neural networks 6 commercial microphones
[13] ambient noise generated with a fan cooler inter-class cross correlation 8 commercial microphones
114] noise: indoor, park, street one-class classification 5 commercial microphones
[15] music, (metal, pop, techno), MLS noise, sine, naive bayes, multi class 7 commercial microphones
white noise, digital silence, SQAM instrumental SVM, decision trees and
KNN
[16] 25 speakers SVM, GSV and SRC 4 commercial microphones
[17] 40 speakers MFCC + GMM 16 commercial microphones
[18] 4 speakers band energy difference 31 + 141 smartphones
descriptor
119] number not mentioned CNN 20 smartphones
[20] 12 + 160 speakers (SVM-RFE) and variance 24 smartphones h .
uman speech
threshold
121] 160 + 12 MEFCC + SVM + CNN 16 smartphones
122] 24 speakers (mobiphone [|6]) + 3 speakers (own)) CNN 20(mobiphone [6]) + 19 smartphones
23] 24 speakers (mobiphone [|6]) MFCC + GMM 21 smartphones (mobiphone [6])
this paper human speech (mobiphone [6]]) + environment LD, ENS, SVM, DT, KNN 16 + 16 smartphones (in addition to the human speech +

sound from horns, tyres, barrier (new dataset) +
real sound from horn (new dataset)

mobiphone dataset) synthetic sound (affected

by environment noise)

is proposed in [28]].

Other papers have used the loudspeaker instead of the
microphone for smartphone identification. In [29] and [30]
the smartphone loudspeaker is identified based on natural
sounds, i.e., instrumental, song and human speech using
distinct audio features, i.e., RMS (root-mean-square), ZCR
(zero crossings), Low-Energy-Rate, Spectral Centroid, Spec-
tral Entropy, etc. In [31], the Euclidean distance is used for
the smartphones loudspeaker identification based on cosine
tones between 14kHz and 21kHz with 100Hz increment.
SVM, Random Forest (RF), CNN and Recurrent Neural
Network-Long Short-Term Memory Neural Network (RNN-
BLSTM) based on MFCC and SSF sketches of spectral
features extracted from human speech are used in [32] for
smartphone loudspeaker identification. In a previous work,
we have used a convolutional neural network (CNN) and a
Bidirectional Long Short-Term Memory network (BiLSTM)
to fingerprint smartphones based on the loudspeaker response
to a sweep signal [33]]. Interestingly, the BiLSTM network
from our previous work [33]] performed very poor on micro-
phone data and the CNN required significant modifications
for this task. This suggests microphone data to be more
challenging for fingerprinting.

Mobile devices identification based on 20 features in time
and frequency domain, extracted from accelerometer data is
proposed in [34]. A more rarely employed sensor for fin-
gerprinting is the magnetometer. In [35]] the mobile devices
are identified based on magnetometer fingerprints extracted
from 18 features in the time and frequency domains. Multiple
features extracted from distinct sensors, i.e., microphone,
accelerometer, gyroscope and magnetometer are used in [36]]
for smartphone identification.

Other fingerprinting attempts have used camera sensors. In

[37] a method for fast camera identification and verification
in forensics investigations based on Photo-Response Non-
Uniformity (PRNU) is proposed. Smartphone identification
using camera fingerprints extracted based on hybrid green
channel PRNU is proposed in [38].

In addition to smartphone fingerprinting, authentication
and secure communication protocols are proposed by other
works based on fingerprints extracted from speakers, mi-
crophones or other sensors. Wireless device authentication
based on fingerprints extracted in the frequency domain from
speakers and microphones is proposed in [[39]]. In [40] and
[41]] a secure communication system based on ambient audio
is proposed. Also, [42] proposes a system for secure mobile
devices pairing based on audio fingerprints extracted from the
recorded audio data. An acoustic communication mechanism
for smartphones based on jamming signals is proposed in
[43]]. In [44] a two factor authentication system is proposed
which works at high frequencies, i.e., between 18kHz and
20kHz. Also, SVM is used to analyze the similarity between
the recorded audio data in the time and frequency domains.

lll. SETUP AND METHODOLOGY

In this section we give an overview of the devices used in
the experiments, the environment configuration and software
platforms.

Devices. Our experiments focus on the classification of
both distinct and identical smartphones based on their micro-
phones. To make the experiments convincing and account for
differences between identical microphones, we dissembled
a Samsung Galaxy S6 smartphone and bought 16 identi-
cal (original) flex cables with microphones. The Samsung
Galaxy S6 microphone is placed on the same board, also
referred as the flex cable, with the micro USB charging port,
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Samsung Galaxy S6

Charging port dock conector USB port + mic
flex cable for Samsung Galaxy S6 SM-G920F

FIGURE 4. Samsung Galaxy S6 dissembled with two flex cables
with microphone and charging USB port dock connector

FIGURE 5. 16 flex cables with microphone and charging USB port
dock connector for Samsung Galaxy S6

jack connector, navigation key and capacitive keys. For an
easier replacement of the flex cables we cut out the capacitive
keys from the board (as the capacitive keys are glued to the
display they are difficult to insert in another case and are
of no interest for our experiments). In Figure ] we present
both sides of a dissembled Samsung Galaxy S6 smartphone
along with a flex cable nearby. In Figure[5] we present the 16
identical microphones from the Samsung Galaxy S6 on their
flex cables. In Table[2] we give a summary of the devices and
measurementﬂ We have fingerprinted a total of 32 devices
out of which 16 are identical microphones from Samsung
Galaxy S6 smartphone which were placed in the same case.
The remaining 16 devices are distinct smartphones from
various brands as shown in the table.

Tools and environments. For the analysis of the recorded
data we used Matlalﬂ which is a numerical computation
environment commonly used for data analysis, algorithms
and model development. In the initial analysis of the recorded
data we used the Signal Analyzer application from Matlab
2021a. For the initial analysis of the classification algorithms

2the performed measurements are publicly available to serve for future
investigations at https://github.com/ABerdich/Microphone-Fingerprint
3https://nl.mathworks.com/products/matlab.html
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FIGURE 6. Suggestive depiction of our indoor experimental setup
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FIGURE 7. Frequency response of the audio system used in our experiments
tested with miniDSP UMIK-1 microphone (left) and with a smartphone (right)

we used the Classification Learner application from Matlab.
Also, for the initial setup calibration we have used Room EQ
Wizarcﬂ (REW), which is a free room acoustic software.

Experimental settings overview. For scenario A we used
existing measurements from MOBIPHONE dataset [6].

For the experiments in scenario B, where we fingerprint
microphones for the same Samsung Galaxy S6 smartphone
based on environmental noise, we carried indoor measure-
ments with already recorded noises since rewiring is nec-
essary, i.e., to replace the microphone of the smartphone,
which is difficult to perform outdoors. Moreover, recordings
with distinct microphones on the same phone cannot be done
at the same time, since each of them has to be separately
plugged to the phone, and thus environmental conditions will
be dissimilar. Figure[6|gives a graphic depiction of our indoor
experimental setup. Since we want to reproduce a large fre-
quency spectrum and low cost speakers cannot cope with this
and introduce higher distortions, in our experiments we used
a high-quality audio system which was able to reproduce
sounds with a more linear response. The audio system used
in our experiments contains two professional loudspeakers
which can produce a more accurate low-frequency response.
Each loudspeaker contains two drivers, one for mid-bass
response and another one for high-frequency response. The

“http://roomeqwizard.com/
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TABLE 2. Summary of devices and associated measurements

Phones [ Label No. Mic. Meas. Total
1. Samsung Galaxy S6 AtoP 16 1 200 3200
2. Samsung Galaxy S6 (other) S6 and S6 2 1 1000 2000
3. Allview V1 Viper I AV 1 1 1000 1000
4. Samsung Galaxy J5 J5,15" and J5" 3 1 1000 3000
5. One Plus 7 Pro (0) 1 2 1000 1000
6. Samsung Galaxy Tab S7 S7t 1 2 1000 1000
7. Leagoo Z10 LE and LE’ 2 1 1000 2000
8. Samsung Galaxy A21s A2ls 1 2 1000 1000
9. Samsung Galaxy S7 S7 1 1 1000 1000
10. Samsung Galaxy A3 A3 1 2 1000 1000
11.  Motorola E6 plus MT 1 1 1000 1000
12. Google Nexus 7 N7 1 2 1000 1000
13. LG Optimus P700 LG 1 1 1000 1000

Total [ 32 19200

amplifier that we used is a class A amplifier which is known
to have low distortions. Also, the speakers placement and the
audio room/environment is very important to obtain a good
quality reproduction. The speakers were placed at 150cm dis-
tance one from another, with an interior angle of 60°, forming
an equilateral triangle with the recorder (as recommended for
stereo reproductionsﬂ The distance between the speakers
and the back wall was 50cm. To avoid sound reflections
and reverberations, we added an acoustic absorbing material
on the side walls at mirror points, on the front and back
wall and on the floor. Also, we isolated the corners of the
roonﬂ In Figure [7| we depict the frequency response of the
audio system used in our experiments as tested in REW with
a linear sweep signal generated between OHz and 20kHZ
and recorded with the calibrated microphone UMIK-1 omni-
directional USB from miniDSP. Note that the response is
sufficiently linear in the order of +/-5db. For scenario B, we
played in a loop each MP3 file with in-vehicle and traffic
noises from SoundArchive: (i) a locomotive’s long toot sig-
naling departure, (ii) barriers closing with two bells jingling,
(iii) a car arriving in a hectic, snappy manner with screeching
tiers and (iv) the two tone horn of a Mercedes-Benz. On each
of the smartphones, we run an Android application which
records and saves the sounds as a PCM and WAV file for
analysis. The recordings were done at a sampling rate of
48kHz and 16-bit resolution.

For the experiments in scenario C, we performed outdoor
experiments with 16 smartphones from distinct brands which
recorded the following:

1) A car honking live for 400 times. This experiment was
done in an open space. The car engine was stopped,
the smartphones were placed on a board located on the
front-right of the car at a distance of 3 meters from the
car as we depict in Figure 8] In the recorded files as the
car honks some background noise could be also heard.
This scenario is more challenging because the honks are
not identical, some being shorter and others longer since
the honk was triggered by hand for 400 times.

Shttps://theproaudiofiles.com/better-acoustics-in-your-home-studio/
Shttp://nzacoustics.com/PolyesterPanelsColoured.htm

FIGURE 8. Suggestive depiction of our outdoor and in-vehicle experimental
setup

2) In-vehicle hazard lights blinking for 300 times. This ex-
periment was done inside the vehicle, the car was parked
in the front of the house near a street without traffic, the
engine was running at idle speed. The smartphones were
placed on the rear seat next to each other as we depict in
Figure[§]

Vehicle wipers were running at low speed 300 times.
This experiment was done inside the vehicle, the car was
parked in the front of the house near a street without
traffic, the engine was running at idle speed and the
windshield was artificially watered with the help of a
garden hose. Again, the smartphones were placed on the
rear seat next to each other as we depict in Figure[§]

3)

Again, on the smartphones we run an Android application
which records and saves the sounds as a PCM and WAV file
for subsequent analysis.

IV. FINGERPRINTING MICROPHONES BASED ON
PRERECORDED SOUNDS

In this section we analyze microphone characteristics ex-
tracted from the power spectrum of the recorded signal using
traditional machine learning algorithms: LD, ENS, DT, KNN
and SVM classifiers to identify the microphones. Regarding
these classifiers, the following settings have been used. The
linear discriminant LD was used with no regularization, i.e.,
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gamma set to 0. For KNN we used the fine KNN version
which uses a single neighbor with the Euclidean distance
as a metric. For DT we used Gini’s diversity index as slip
criterion and the maximum number of splits was set to 100
which corresponds to the Fine Tree classifier type. SVM was
used with a linear kernel function and the default heuristic
procedure to select the kernel scale. The Ensemble classifier
had a subspace dimension of 2048 (equal with the number of
samples of the power spectrum), 30 learning cycles and used
the discriminant learner.

A. PROCEDURE OVERVIEW

For each signal we extract the power spectrum which is used
as input for the classifiers. The power spectrum is an array
with 4096 elements, so for each audio signal the input for the
classifiers will consist in the 4096 features.

Further, for each dataset we analyze the impact of distinct
types of ambient noise in our fingerprinting procedure. That
is, to the original signal we add noise at distinct SNR levels,
ie.,

SigWithNoise = Sig + NoiseAmp.

Here, SigWithNoise is the signal with noise, Sig is the
original signal (recorded with the tested microphones in the
time domain) and NoiseAmp consists in traffic or market
noise as retrieved from SoundArchive. The NoiseAmp is ac-
tually the noise amplified by a specific SNR factor computed
by us as

MaxNoise
MaxSig
Here, Noise is the noise signal from SoundArchive in the
time domain, MaxNoise is the maximum absolute value of
the noise, MaxSig is the maximum absolute value of the
recorded signal and Fac is the scalar amplification factor. The
SNR is computed as:

NoiseAmp = Noise x Fac x

OrigBandPower

Where OrigBandPower is the average power of the orig-
inal signal (the signal recorded by the microphones) and
NoiseBandPower is the average power of the noise (market
or traffic noise from the MP3 file on SoundArchive).

NoiseBandPower

B. FINGERPRINTING MICROPHONES BASED ON
HUMAN SPEECH
For fingerprinting smartphones based on human speech we
used the MOBIPHONE dataset [[6] which contains 21 smart-
phones from distinct brands and models. For each smart-
phone there are 24 audio files from 24 speakers, 12 males
and 12 females. For each audio file we compute the power
spectrum, i.e., the frequency response, which is used as input
for the machine learning classifiers.

Since the primary application scenario that we target is
device identification, we evaluate the classifier’s performance
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e

MOBIPHONE dataset:
e speech from 12 males and 12 females
e 10 sentences / person

Human speech I

21 smartphones from distinct
brands and models

MOBIPHONE dataset:
1) Train 10 males

Test 14 persons: 2 males and 12 females
2) Train 10 females

Test 14 persons: 12 males and 2 females

-

FIGURE 9. Overview of the method for smartphone recognition based on
human speech (Mobiphone Dataset)

TABLE 3. Precision, recall and accuracy for five classifiers (MOBIPHONE
dataset)

training [ mewics [ LD ENS DT KNN SVM
precision 098 096 0.69 0.83 0.81
recall 098 096 076 085 0.84
accuracy 098 097 074 0.76 0.79
precision | 0.96 095 0.72 0.91 0.87
females) recall 097 096 074 092 0.90
i accuracy 099 099 0.64 0.86 0.79

mobiphone (10
males)

mobiphone (10

in what follows in terms of False Acceptance Rate (FAR)
and False Rejection Rate (FRR). FAR is the probability of
an unauthorized microphone to be accepted as legitimate and
FRR is the probability of an authorized microphone to be
rejected. The FAR and FRR coefficients are computed as
follows:

FP FN
TN + FP’ FRE = TP + FN'

Here T'P are the true positives, T'N the true negatives, F'P
the false negatives and F'P the false positives.

FAR =

1) Fingerprinting microphones based on human speech
(clean recordings)

In order to fingerprint distinct smartphones based on hu-
man speech from MOBIPHONE dataset, we use the five
classifiers previously mentioned. To make the identification
process more challenging we consider two cases. First we use
as training the power spectrum from the speech of 10 male
speakers and as test the speech of 12 females and the rest
of 2 male speakers. Secondly, we use as training the power
spectrum from the speech of 10 female speakers and as test
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A B ¢ D E F G H 1 J K L M N O P Q R S T U
LD [ 5 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 006 0 0135 0066 0135 0.176 0.
ENS ENS 0. 0. 0. 0. 0 0125 0. 007% 0. 0. 0 0 0 0 0066 0. 0176 0. 0125 0176 0.
or [N | W | DT [0133 0187 0.642 0333 0.142 0153 0647 0250 0294 0.111 0222 0333 0066 0200 0076 0. 0352 0517 0444 0.142 0.
KNN | | KNN [0066 0. 0. 0. 0133 0285 0. 0312 0. 0133 0. 0. 0. 0 0 008 0333 0. 0133 0.125 0.066
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FGHI JKLMNOPQRSTU

E
(ii) FRR S ror 10 females used as training (MOBIPHONE dataset)

FIGURE 10. FARs (up) and FRRs (down) as heatmap (left) and numerical values (right) for the LD, ENS, DT, KNN and SVM classifiers for 10 females used as

training (MOBIPHONE dataset)

LD A B C D E F G H 1 J K L M N o P Q R S T U
ENS LD 0. 0. 0. 0. 0. 0.010 0. 0. 0. 0.003 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.003
DT ENS | 0. 0.003 0. 0. 0.007 0. 0. 0. 0. 0. 0. 0.003 0. 0. 0. 0.003 0.003 0. 0. 0. 0.007

KNN DT 0.003 0.003 0.019 0.007 0.017 0.034 0.024 0.024 0.014 0.017 0.021 0.024 0.010 0.014 0.003 0.007 0.014 0.021 0.017 0.014 0.
SVM KNN [0.003 0.021 0.010 0.007 0. 0.014 0.010 0.003 0.003 0.003 0.007 0.007 0. 0.003 0.010 0.007 0.014 0. 0.007 0.017 0.017
SVM | 0. 0.021 0.021 0.010 0.017 0.007 0. 0. 0. 0.007 0.010 0.007 0. 0. 0.010 0.014 0.017 0. 0.014 0.024 0.007

ABCDEFGHI JKLMNOPQRSTU
(i) FAR’s for 10 males used as training (MOBIPHONE dataset)

A B C D E F G H 1 J K L M N [¢] P Q R S T U

LD 0. 0. 0. 0. 0. 0. 0.125  0.066 0. 0. 0. 0. 0. 0. 0. 0.066 0.066 0. 0. 0. 0.

ENS | 0. 0. 0. 0. 0. 0.125  0.066 0. 0.066 0. 0. 0. 0. 0.066 0. 0.133 0. 0. 0. 0.066 0.
DT 0. 0.350 0.709 0.368 0. 0333 0416 0461 0. 0.357 0. 0222 0. 0.230 0. 0.500 0.523 0.111 0.181 0.090 0.176
KNN| | KNN [0.235 0.200 0.083 0. 0.066 0.230 0.388 0.277 0.071 0.235 0368 0.142 0. 0.071 0. 0.200 0.230 0. 0.200 0. 0.100

SVM SVM [0.176 0272 0.272 0. 0. 0.368 0.300 0.481 0.066 0.250 0.312 0. 0. 0. 0. 0.230 0307 0. 0.166 0. 0.

D EFGHI JKLMN

3
(ii) FRR S (or 10 males used as training (MOBIPHONE dala&cl)

FIGURE 11. FARs (up) and FRRs (down) as heatmap (left) and numerical values (right) for the LD, ENS, DT, KNN and SVM classifiers for 10 males used as

training (MOBIPHONE dataset)
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FIGURE 12. Precision (left), recall (middle) and accuracy (right) obtained with linear discriminant classifier with noise between -80dB to 20dB with 5dB increment

the speech of 12 male and the rest of 2 female speakers. In
Figure [9] we depict the flowchart of these scenarios. Table [3]
shows the mean precision, mean recall and accuracy for each
classifier for the both cases from this scenario. It is obvious
that the LD classifier has the best results, followed closely by
the ENS, while the KNN and SVM have much poor results
and the worst results are obtained with DT classifier likely
due to its tendency for over-fitting. As an additional metric
for performance, more specifically focused on the authen-
tication/impersonation success rate, in Figure [TI0] we depict
the FAR (False Acceptance Rate) and FRR (False Rejection
Rate) as heatmaps (left) and as numerical values (right) for
each classifier and microphone for the 10 females used as
training samples. It is again obvious that the DT classifier
has the worst results followed by KNN, while the best results
are obtained with LD and ENS classifiers. However, the FAR
is very low for all classifiers, the maximum value is 3.7% for
the DT classifier on microphone P. The FRR however reaches
64% for the DT classifier on microphones C and G which is
too high. For the LD classifier, the maximum value for FAR
is only 0.7% on microphones C, H and J and the maximum
value for FRR is only 17% on microphone T. In Figure[TT|we
depict the FAR (up) and FRR (down) as heatmap (left) and
numerical values (right) for each classifier and microphone

for the 10 males used as training. Again, it is obvious that the
DT classifier gives the worst results followed by KNN, while
the best results are obtained with the LD and ENS classifiers.
However, overall the FAR is very low for all classifiers, the
maximum values is 3.4% for the DT classifier on microphone
F. The FRR reaches 70% for the DT classifier on microphone
C. For the LD classifier, the maximum value for FAR is 1%
on microphone F and the maximum value for FRR is 12.5%
on microphone G.

2) Fingerprinting microphones based on human speech with
market noise

To make the fingerprinting process more challenging and
comparable to a real-life scenario in which ambient noise
is present, we add market noise to the signals at different
SNRs, i.e., from -80dB to 20dB with an increment step of
5dB. In order to obtain different SNRs, we simply amplified
the amplitude of the noise in the prerecorded signal. Since
the noise comes from external recordings, e.g., indoors and
outdoors noise, we needed a gradual analysis of the noise
impact, for which amplifying the amplitude was the only op-
tion. For this scenario we use only the LD classifier because
for this classifier we obtained the best results and nonetheless
because it is faster than the others, i.e., ~ 87 samples/second
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4 types of sounds: barrier,
locomotive, horn and car tiers

v

16 identical microphones
(ours)

2 types of ambiental noises:
market and traffic noises

FIGURE 13. Overview of the method for smartphone recognition based on
environmental noise

prediction speed with 18.364 seconds training time. The
training and the test dataset have the same SNR level. In
Figure [I12] we plot the mean precision (left), mean recall
(middle) and accuracy (right) for different levels of noise. At
a SNR lower than -50dB the identification no longer works
while at a SNR between -50 and 0dB the precision, recall and
accuracy are increasing from -0.2 to 0.9 and finally at a SNR
greater than OdB the precision, recall and accuracy are close
to 1.

C. FINGERPRINTING IDENTICAL MICROPHONES
BASED ON ENVIRONMENTAL NOISE (INDOOR
EXPERIMENTS)

The dataset which we build contains 16 microphones from
the same smartphone model. We use four prerecorded en-
vironmental noises from the SoundArchive: (i) a locomo-
tive signaling departure, (ii) barriers closing with two bells
jingling, (iii) car arriving with screeching tiers and the (iv)
two tone horn sound of a Mercedes-Benz. With each sound
played in the background we did 50 measurements on each
microphone, i.e., resulting in 800 measurements for each
sound and a total of 3200 measurements. Again, to get closer
to a real-life scenario, we add the two previous types of noise,
i.e., market and traffic, at distinct levels. In Figure IEI we
depict the flowchart of this test scenario.

1) Fingerprinting microphones based on environment
sounds (clean recordings)

We use 20 measurements for training and 30 measurements
for testing. In Table ] we depict the mean precision, mean
recall and accuracy for each classifier on each type of sound.
It is obvious that the LD and ENS classifiers have the best
results, followed closely by the SVM. The KNN has poor
results and as expected the worst results are again obtained
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TABLE 4. Precision, recall and accuracy for five classifiers
(this paper dataset)

sound type ‘ metrics ‘ LD ENS DT KNN SVM
precision 1.00 1.00 0.79 0.99 0.99
locomotive recall 1.00 1.00 0.79 0.99 0.99
accuracy 1.00 1.00 0.91 0.98 0.99
precision 1.00 1.00 0.89 0.89 0.98
barrier recall 1.00 1.00 0.90 0.90 0.98

accuracy 1.00 1.00 0.91 0.92 0.98
precision 1.00 1.00 0.79 0.88 0.99
car recall 1.00 1.00 0.82 0.88 0.99
accuracy 1.00 0.99 0.89 0.83 0.98
precision 1.00 1.00 0.82 0.98 0.99

horn recall 1.00 1.00 0.83 0.98 0.99
accuracy 1.00 1.00 0.90 0.96 1.00
with the DT classifier.

In Figures [[4] [T3] [T6] and [T7] we depict the FAR and
FRR for each classifier and microphone on the four testing
sounds as heatmaps and numerical values. In Figure [I4] we
depict the FAR (up) and FRR (down) for the locomotive
sound and the overall FAR is very low for all classifiers,
while the maximum values is 4.5% for the DT classifier for
microphone H. The FRR reaches 62% for the DT classifier on
microphone E. For the LD and ENS classifiers the FAR and
FRR are zero for all microphones. In Figure [I3] we depict
the FAR (up) and FRR (down) for the barrier sound. Again,
the overall FAR is very low for all classifiers, the maximum
values is 2.6% for the DT classifier on microphone F. The
FRR reaches 36% for the DT classifier on microphone O.
Again, the LD and ENS classifiers have a FAR and FRR
equal to zero for all microphones. In Figure [T6] we depict
the FAR (up) and FRR (down) for the car tiers sound. The
FAR is very low for all classifiers with a maximum value of
4.2% for the DT classifier on microphone P. The FRR reaches
48% for the KNN classifier on microphone H. For the LD
and ENS classifiers the FAR and FRR are again zero for all
microphones. In Figure [I7] we depict the FAR (up) and FRR
(down) for the car horn sound. The maximum value for the
FAR is 4% for the DT classifier on microphone C, the FRR
reaches 45% for the DT classifier on microphone F. For the
LD and ENS classifiers the FAR and FRR are again zero for
all microphones.

Overall, as can be seen from these results, the LD and
ENS classifiers have the FAR and FRR equal to zero on all
microphones. For the other classifiers, the barrier and horn
sounds resulted in the highest values for the FAR and FRR,
i.e., worst identification rates, than the locomotive and car
tiers sounds.

2) Fingerprinting microphones based on environment
sounds with ambient noise

Since in real-life scenarios ambient noise is present, we
again add two types of noise (traffic and market noise) at
distinct SNR, i.e., from -80dB to 20dB with a increment
step of 5dB, to the clean signals. For this scenario we use
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A B [ D E F G H 1 ] K L M N [ P
Lo D 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0.
ENS ENS 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
oT DT 0002 0. 0019 0. 0042 0002 0041 0045 0031 0 0008 0006 0. 0011 0002  0.004
KNN KNN 0. 0. 0. 0. 0004 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0.
sVM SVM  |o. 0. 0. 0. 0. 0002 0. 0. 0. 0 0. 0. 0. 0. 0. 0.002
A B CDE F G M N O P
(i) FAR’s for 16 identical microphones for locomotive sound (our dataset)
I A B [¢] D E F G H 1 J K L M N o) P
ENS LD 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
ot il N aEy m B o 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
KN DT 0. 0. 0222 0032 0620 0033 0352 0357 0578 0230 033 0228 0. 0038 038 0.
s KNN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0062 0.
sVM  |o. 0. 0. 0. 0. 0. 0. 0. 0032 0. 0. 0. 0. 0. 0032 0.

A B CDEF G I L MNOFP
(i) FRR’s for 16 identical microphones for locomotive sound (our dataset)

FIGURE 14. FAR (up) and FRR (down) as heatmap (left) and
for locomotive sound (our dataset)

A B [¢ D E F G H I J K L M N o P
o D 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0 0.
ENS ENS 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0. 0. 0 0.
ot DT 0002 0011 0002 0008 0002 0026 0013 0006 0. 0. 0, 0021 0002 0015 0 0.002
KNN KNN |0, 0006 0002 0002 0004 0002 0013 0024 0004 O 0006 0015 0002 0008 0002 0015
SVM SsVM o 0002 0002 0004 0. 0002 0002 0. 0002 0. 0, 0. 0002 0002 O 0.
A B C D E F G H I J K L MNOUP
(i) FAR’s for 16 identical microphones for barrier sound (our dataset)
A B [¢ D E F G H 1 ] K L M N o P
Lo D 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0 0.
ENS| | ENS |0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0 0.
ot || ] DT 0292 0038 0. 0. 0033 0100 0040 0. 0062 0117 0062 0090 0 0115 0361  0.147
KNN KNN |0 0. 0. 0. 0151 0. 0225 0406 0066 0166 0270 0 0 0037 0 0.206
svm svM o 0033 0. 0. 0. 0. 0033 0062 0033 0. 0032 0 0 0064 0 0.032
FGHI JKLMNOFP

A B C E
(i) FRR’s for 16 identical microphones for barrier sound (our dataset)

FIGURE 15. FAR (up) and FRR (down) as heatmap (left) and numerical values (right) for the LD, ENS, DT, KNN and SVM classifiers for 16 identical microphones

for barrier sound (our dataset)

A B c D E F G H 1 J K L M N o) P
Lo LD 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
ENS ENS |0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
ot DT 0. 0019 0017 0. 0028 0004 0004 0004 0011 0. 0. 0033 0002 0008 0036 0042
KNN KNN {0004 0004 0013 0. 0035 0004 0006 0024 0008 0. 0011 0004 0. 0.006 0. 0.002
SVM SVM  [0.002 0. 0. 0. 0002 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
A B C D F GH 1l JKLMNDOTP
(i) FAR’s for 16 identical microphones for car tiers sound (our dataset)
A B c D E F G H 1 J K L M N o P
E;z LD 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0.
ENS |0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
or F | BN or 0. 0. 0120 0032 0190 0517 0200 0243 0375 0032 0210 0464 0. 0071 0.187  0.166
KNN \ KNN  [0066 009 0172 0. 0416 0066  0.156 048  0.103 0. 0.166  0.066 0. 0. 0. 0.064
SVM SVM | o. 0032 0. 0. 0. 0. 0. 0032 0. 0. 0. 0. 0. 0. 0. 0.
DEF GH I J

A B C P
(i) FRR’s for 16 identical microphones for car tiers sound (our dataset)

FIGURE 16. FAR (up) and FRR (down) as heatmap (left) and numerical values (right) for the LD, ENS, DT, KNN and SVM classifiers for 16 identical microphones

for car tiers sound (our dataset)

A B [ D E F G H 1 J K L M N @) P

Lo D 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0 0.
ENS ENS |o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

o7 DT 0002 0013 0040 0002 0. 0009 0015 0022 0006 0013 0004 0021 0002 0004 0011 0013
KNN KNN |0, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0004 0. 0004 0002 0.002
SWM sVM  |o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0004 0002 0002 0.

A B CDETFGH I JKLMNDOTP
(i) FAR’s for 16 identical microphones for car horn sound (our dataset)
A B c D E F G H 1 J K L M N o P

LD D 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
ENS ENS 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

ot | 1 br 0033 0076 0266 0. 0032 0458 0233 0310 0205 0294 009 0166 0. 0096 0074 0250
KNN KNN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0062 0032 0066 0. 0034 0. 0.
SVM SVM  |o. 0. 0. 0062 0. 0. 0032 0. 0. 0032 0. 0. 0. 0. 0. 0.

DEFGHI JKLMNOTP

A B C
(i) FRR’s for 16 identical microphones for car horn sound (our dataset)

FIGURE 17. FAR (up) and FRR (down) as heatmap (left) and numerical values (right) for the LD, ENS, DT, KNN and SVM classifiers for 16 identical microphones

for car horn sound (our dataset)

only the LD classifier because it gave the best results and
had a fast prediction speed. In Figure [I8] we depict the
mean precision (left), mean recall (middle) and the accuracy
(right) for distinct noise levels. The noise level influences
the classification distinctly on the four sounds type. For the
barrier sound, at a SNR lower than -70dB the identification is
not working, at a SNR between -70 and -63dB the precision,
recall and accuracy are increasing from -0.2 to 0.9, while at
a SNR greater than -63dB the precision, recall and accuracy
are close to 1. For the horn sound, at a SNR lower than -60dB
the identification is not working, at a SNR between -60 and

10

-40dB the precision, recall and accuracy are increasing from
-0.2 t0 0.9, while at a SNR greater than -40dB the precision,
recall and accuracy are close to 1. For the locomotive sound
the influence of the noise is similar as in case of horn sound.
For the car tiers sound, at a SNR lower than -35dB the
identification is not working, at a SNR between -35 and -8dB
the precision, recall and accuracy are increasing from -0.2 to
0.9, while at a SNR greater than -8dB the precision, recall
and accuracy are close to 1.

As a partial conclusion, the least influence of the ambient
noise is on the screeching tiers, while fingerprinting based on
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FIGURE 18. Precision (left), recall (middle) and accuracy (right) obtained with linear discriminant classifier with noise between -80dB to 20dB with 5dB increment

the barriers, horn and locomotive sounds are influenced to a
higher degree.

V. FINGERPRINTING MICROPHONES BASED ON LIVE
RECORDINGS

In this section we evaluate microphone fingerprinting in
the more challenging scenario with live recordings. As an
additional comparison, we also add a deep-learning CNN
architecture and compare it with the traditional machine
learning algorithm LD (we keep only the LD algorithm since
it gave the best results in all the previous tests).

A. DETAILS ON THE TEST SCENARIO

In this section we analyze scenario C for which we build
our outdoor recordings with 16 smartphones that record:
i) a car honk for which we did 400 measurements for
each smartphone, totaling 6400 measurements, ii) in-vehicle
hazard lights blinking for which we did 300 measurements
for each smartphone, totaling 4800 measurements and iii)
vehicle wipers running at low speed for which we did 300
measurements for each smartphone, totaling 4800 measure-
ments. For each signal we extract the power spectrum which
is used as input for the classifiers. The power spectrum is an
array with 4096 elements, so for each audio signal the input
for the classifiers will be the 4096 features. For both, LD and
CNN we chose random 55% of measurements for training
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FIGURE 19. Smartphone recognition based on car honk

and the remaining 45% of measurements are used for testing.
To make the identification even more challenging, we also
add background music noise to the recordings. For this we
use the first 3 songs from Spotify top 10 list available in 2021.
In Figure[I9) we depict this scenario.
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A2ls J5 J5° J5" LE LE’ S6 S6° OoP STt AV LG A3 S7 N7 MT
LDhom LDhorn 0.001  0.001 0.001 0.001 0.001 0.001 0.001 0. 0.001  0.001 0.001 0.001 0.001 0. 0.001  0.001
LDhazard LDhazard | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
LDwipers LDwipers | 0. 0. 0. 0.001 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
CNNhom CNNhorn | 0. 0.001 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
CNNhazard CNNhazard | 0. 0. 0.002 0. 0.001 0. 0.004  0.001 0. 0.001 0. 0. 0. 0. 0. 0.
CNNwipers CNNwipers | 0. 0. 0. 0. 0.001 0. 0.001 0. 0. 0. 0. 0. 0. 0. 0.
A21s J5 U5 J5" LE LE' S6 S6' OP SMt AV LG A3 ST N7 MT
(i) FAR’s for 16 microphones for horn, hazard lights and wipers sounds
A2ls J5 15 15" LE LE S6 S6’ OP STt AV LG A3 S7 N7 MT
LDhom LDhorn 0. 0.016  0.016 0. 0. 0. 0. 0. 0.033 0. 0.027  0.055  0.005 0. 0.016 0.
LDhazard LDhazard | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
LDwipers. LDwipers | 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.006 0. 0. 0. 0, 0.
CNNhom CNNhorn | 0. 0. 0.005 0. 0. 0. 0. 0. 0. 0. 0.016 0. 0.005 0. 0. 0.
CNNhazard CNNhazard | 0. 0.007 0. 0. 0. 0.014 0. 0.007  0.007 0. 0. 0. 0.007  0.014 0. 0.037
CNNwipers CNNwipers | 0. 0. 0. 0.007 0. 0. 0. 0. 0.007 0. 0.007 0. 0.007 0. 0. 0.014
A21s J5 J5' J5" LE LE' S6 S6' OP S/t AV LG A3 ST N7 MT

(ii) FRR's for 16 microphones for horn, hazard lights and wipers sounds

FIGURE 20. FAR (up) and FRR (down) as heatmap (left) and numerical values (right) for the linear discriminant classifier and CNN for 16 microphones for horn,

hazard lights and wipers sounds

A2s IS 5 15" LELE S6 S¢ OP STt AV LG A3 §7 N7 MT
LDhom LDhom  |0.002 0010 0.008 0004 0017 0008 0013 0006 0006 0011 0020 0010 0008 0009 0008 0.020
Lohazard LDhazard |0.001 0001 0006 0001 0001 0001 0003 0007 0002 0003 0001 0001 O. 0.006  0.001  0.001
Lowipers LDwipers | 0.001  0.009  0.007 0. 0003 0003 0006 0014 0001 0007 0. 0004 0006 0020 0001 0.002
CNNhom CNNhom |0.001 0007 0.001 0004 0012 0008 0001 0001 0017 0001 0017 0003 0010 0001 0015 0.001
CNNhazard CNNhazard | 0.004  0.026  0.008 0. 0.008 0001 0042 0061 0004 0010 0001 0008 0015 0014 0001 0.021
CNNwipers CNNwipers | 0.001  0.006  0.009 0001 0008 0015 0023 0.045 0. 0002 0. 0001 0.025 0014 0001 0.029
Ais 5 Uy Jv LE LE S5 S OP SU AV LG A3 S N MT
(i) FAR’s for 16 microphones for horn, hazard lights and wipers sounds affected by music
A2s I5 55"  LELE  S6 S¢ OP STt AV LG A3 §7 N7 MT
Lohom || B Dhom |0016 0.55 0127 0077 0066 0116 0.00 0.00 0266 0083 0177 0516 0083 0072 0511 0.061
LOhazard LDhazard |0.010 0025 0.050 0055 0010 0005 0070 0095 0055 0009 0. 0.005 0.005 0.080 0065 0.
Lowipers LDwipers | 0. 0113 0113 0. 0040 0040 0133 0.40 0053 0122 0006 0066 0226 0106 0053 0.073
CNNhom CNNhom | 0. 0283 0322 072 0138 0138 0255 0388 0055 088 061 0077 0072 088 0066 0.305
CNNhazard \ CNNhazard | 0.044 0074 0214 0. 0.140 0. 0348 0355 0037 0103 0. 0059 0163 0059 0. 0.140
CNNwipers CNNwipers | 0.007  0.096  0.059 0. 0259 0.148 0066 0.148 0022 0044 0. 0022 0237 0074 0037 0074

A21s J5 U5 U5 LE LE' S6 S6' OP STt AV LG A3 ST N7 MT

(ii) FRR's for 16 microphones for horn, hazard lights and wipers sounds affected by music

FIGURE 21. FARs (up) and FRRs (down) as heatmap (left) and numerical values (right) for the linear discriminant classifier and CNN for 16 microphones for horn,

hazard lights and wipers sounds affected by music

B. DEEP-LEARNING APPROACH WITH CNN

For each smartphone i, we induce a CNN-based binary clas-
sifier that is responsible for authenticating it (i.e., return ’ 1’ if
a given input sample is associated with smartphone i, and 0’
otherwise). The dataset for training binary classifier i consists
of positive and negative examples. The positive examples are
associated with smartphone i, and the negative examples are
associated with other smartphones.

To induce the best binary classifier for authenticating
smartphone i, we first execute a hyperparameter tuning pro-
cedure which is based on a random search over 50 trials.
On each trial, the best hyperparameters are chosen using
a stratified 3-fold cross-validation procedure [45]]. On each
fold iteration, to address the data unbalance, we use the cost-
sensitive learning method described in [46]. We choose the
known cross-entropy score [47]] to measure the best set of
hyperparameters.

Finally, given the best set of hyperparameters for binary
classifier i, we generate the model. We first divide the training
dataset, which represents 55% of the entire dataset as the
remaining 45% was used for testing, into 70% for training
and 30% for validation. Then we train the model until the
loss function reaches its minimum on the validation set. Also,
at this step, we use the same cost-sensitive learning method
as we used during the hyperparameter tuning [46]. The
loss function that we pick to minimize is the binary cross-
entropy, and the optimizer that we use for this mission is
the RMSProp. The learning rate is optimized over the set of
[0.001, 0.0001]

Regarding the CNN architecture, it consists of filter layers
followed by fully connected layers. We vary the number of
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filter layers in the set of [1, 2, 3]. All the filter layers are
applied with a kernel size in the set of [3, 4, 5] and a filters
count in the set of [16, 32, 64]. To avoid overfitting, the filter
layers are followed by a dropout in the set of [0, 0.1, 0.2,
0.3, 0.4]. Regarding the fully connected layers, we vary the
number of them in the set of [2, 3, 4, 5], and the number of
neurons for each fully connected layer in the set of [16, 32,
64, 128]. Finally, another dropout is attached, varied in the
set of [0, 0.1, 0.2, 0.3, 0.4].

C. RESULTS ON CLEAN RECORDINGS

In Figure 20] we depict the FAR (up) and FRR (down) as
heatmap (left) and numerical values (right) for the linear
discriminant classifier and CNN for 16 microphones for
horn, hazard lights and wipers sounds. For the horn sound,
recorded outdoors, it is obvious that for both algorithms the
FAR and FRR are very low. But even so, the best results are
obtained with CNN, i.e., only for the J5 the FAR is 0.1% and
for the rest of the smartphones the FAR is zero. In case of
the LD classifier, the FAR is between 0% and 0.1%. Also,
the FRR are more accurate for the CNN, i.e., only for three
smartphones the FRR are not zero, but it is kept very low
between 0.5% and 1.6%. For the linear discriminant classi-
fier, seven smartphones have non-zero FRR that are between
0.5% and 5.5%. For hazard lights, the blinking sound was
recorded inside the vehicle. Again, for both algorithms the
FAR and FRR are very low, but in this scenario the best
results are obtained with the LD classifier. Both the FAR and
FRR are zero in case of the LD classifier while in case of
the CNN the FAR is between 0% and 0.4% and the FRR are
between 0% and 3.7%. For wipers, the sound was recorded
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inside the vehicle. Again, for both algorithms the FAR and
FRR are very low, but the best results are obtained with the
LD classifier. The FAR and FRR are zero in case of the LD
classifier, except for a smartphone where the FAR is 0.1%
and the FRR is 0.6%. In case of CNN the FAR is zero, except
for two smartphones where the FAR is 0.1%, while the FRR
is not zero for four smartphones with values between 0.7%
and 1.4%.

D. RESULTS ON RECORDINGS INFLUENCED BY NOISE
In Figure 21] we depict the FAR (up) and FRR (down) as
heatmap (left) and numerical values (right) for the linear
discriminant classifier and CNN for 16 microphones for
horn, hazard lights and wipers sounds when affected by
background music. In case of the horn sound, the results are
close between the CNN and the LD classifier. For the CNN,
the FAR is between 0.1% and 1.7% and the FRR between 0%
and 38.8% while for LD the FAR is between 0.2% and 2%
with the FRR are between 1.6% and 51.6%. In case of the
hazard lights affected by noise, the best results are obtained
with the LD classifier. The FAR for the LD classifier is
between 0% and 0.6% and the FRR is between 0% and 9.5%.
For the CNN, the FAR is between 0% and 6.1% and the FRR
is between 0 and 35%. In case of the wipers sound affected by
music, the FAR is little bit lower for the LD classifier, while
the FRR is close between the CNN and LD. The FAR for the
LD classifier is between 0% and 2% and the FRR is between
0% and 22%. For the CNN, the FAR is between 0% and 4.5%
and the FRR between 0% and 25.9%.

VI. DISCUSSION AND CONCLUSION
In this work, we explored smartphone microphone finger-
printing based on microphone data by using the power spec-
trum of the recorded signal with distinct supervised machine
learning algorithms, i.e., Linear Discriminant, Ensemble-
Subspace Discriminant, Decision Tree, Fine KNN and Linear
SVM. We tested three major use cases of fingerprinting based
on human speech, synthetically reproduced environmental
sound and finally live recordings. In all the scenarios, noise
was added to make identification more challenging. For the
first two scenarios the LD classifier behaved almost perfect.
The last scenario was more demanding and we added a
CNN deep-learning architecture to serve as a comparison.
There was no clear cut between the accuracy of the LD and
CNN, on the recordings unaffected by noise they performed
similar. When noise was added, the LD gave poor identi-
fication results for 2 phones (the LG and Nexus 7), while
the CNN had no particular problem with these 2 phones
but the identification was slightly poorer for the rest of the
phones. Since the LD classifier has a fast prediction speed
and uses small amounts of memory, it may be still preferable
to the CNN architecture. The rest of the traditional machine
learning classifiers gave poorer results.

As expected, separating between identical smartphones,
i.e., same model and manufacturer, is more challenging
than separating smartphones of different types or brands.
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This is visible as for clean recordings, in case of different
smartphones, in Figure [8] the maximum FAR is 0.004 for
Samsung S6 with CNN for the sound produced by the hazard
lights, while the maximum FRR is 0.055 for LG with the LD
classifier in case of the car honk. While in case of identical
smartphones, the FAR reaches 0.042 for smartphone E in the
case of DT on the locomotive sound, and the FRR reaches
0.62 for several smartphones and classifiers — this means
a one order of magnitude higher FARs and FRRs when
identical phones are used.

It may also be expected that some smartphones may be
easier to identify than others due to specifics related to the
manufacturing process or quality control, etc. Our results do
not necessarily indicate that this is so. By inspecting Figures
[20]and[2T) which show the heatmaps and numerical results for
the batch of 16 distinct phones, the FAR and FRR are small
and comparable between different smartphones. It seems that
the results are much more influenced by the type of sounds
that are used as some sounds contain frequencies that are
reproduced differently by the smartphones, making identifi-
cation easier. Concretely, in the case of the live recordings
with 16 identical smartphones, the best results were obtained
for the locomotive and car honk sounds which gave better
results than the barrier and hazard lights sounds.

Possible applications of such fingerprints are manifold:
security minded use cases could include attestation of pos-
session of a particular phone to act as second, unclonable
factor token; however, such fingerprinting could also be
abused by apps to fingerprint devices without otherwise
having access to device-unique identifiers. While this could
indeed be a powerful fingerprint, we argue that malicious
apps (or libraries embedded within) with high-fidelity access
to microphone sampling already has more serious security
and privacy impact [48]] without the added device fingerprint.
Nonetheless, on-device countermeasures to this particular
method — such as adding noise or lowering sampling fidelity
— are still subject to future work.
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