

Abstract — an application for assuring the authenticity of

audio-video information is developed. The application is
implemented in Java by using Java Media Framework to send
audio and video information over RTP (Real-time Transport
Protocol). In order to guarantee that information is not altered
during transmission over public networks by malicious
adversaries some cryptographic functions and protocols are used
for achieving information authenticity. More concrete, a
cryptographic protocol which uses Message Authentication
Codes and elements of a one-way chain as keys is implemented.
The solution proves to be efficient and the computational costs
are kept to a minimum.

I. INTRODUCTION

Sending audio and video information is a common demand

in the present days. Information authenticity refers to a
guarantee over the source of information; this implies that
information was not altered during transmission. However,
assuring the authenticity of media information by
cryptographic techniques is quite often neglected.
Consequently the degree of trust in audio-video information
sent over public networks is limited since there is no proof that
the received information was not altered by malicious
adversaries during transmission. In this context assuring the
authenticity of audio and video information is a subject of
great interest and for this purpose cryptographic techniques
are the only alternative, since cryptography is the only security
guarantee when we are working with information.

This paper is concerned with the development of a Java
application that can be used to capture audio and video
information and then send it to some remote computers from a
public network. More concrete, the application captures
images from a web-cam connected to a computer and sends
the audio-video information through RTP to other computers.
A cryptographic authentication protocol is implemented in
order to prevent information from being altered during
transmission. The Java environment provides good support for
both managing multimedia streams and implementing
cryptography.

This paper is organized as follows. In section 2 we review
some cryptographic primitives that can be used to guarantee
the authenticity of information and some cryptographic
protocols that can be build upon them. Section 3 holds details

about our application and some experimental results while
section 4 holds our conclusions.

II. CRYPTOGRAPHIC CONSTRUCTIONS

A. Cryptographic primitives
We proceed by a brief account of some cryptographic

primitives that can be used to guarantee the authenticity of a
message. There are two constructions that can be used to
assure a guarantee over the source of a message:

a) Message Authentication Codes (MAC). A MAC,
denoted in this paper as ()kMAC M where k is the key of
the MAC and M is the message which is to be proved
authentic, is a symmetric primitive for assuring authenticity
which uses a secret shared key between the participants. The
great advantage of MAC codes is that they are easy to
compute and require only simple operations. The problem that
MAC codes are introducing is that as the number of
participants increases so does the number of secret shared
keys. In general, for a broadcast scenario where a server
broadcasts information to n participants, n distinct keys are
needed and, more, the server needs to compute n different
MAC codes for each broadcasted message, even if the
message is the same for all participants. In the case of a
communication where each entity needs to send authentic
information to any other entity, for n entities the number of
keys increases to ()1 / 2n n⋅ − . Fortunately, improvements
can be done, some authentication protocols that remove these
disadvantages are presented in the next section.

b) Digital Signatures. Digital signatures are asymmetric
primitives that use a private key to sign a given message and a
public key to verify the signature. Digital signatures assure the
non-repudiation of information which means that in case of
dispute information can be proved to originate from a
particular entity to any neutral party. The advantage is that the
same public key can be used by any number of entities in
order to verify the source of a signed message. Therefore the
number of keys does not increase with the number of
participants, each entity needs to store only its own private key
as a secret and has to be informed in an authentic manner of
the public keys that are used by the other entities. Also a
digital signature on some message can be verified by any other
participant that knows the public key. MAC codes are not a
substitute for digital signatures since they do not provide non-

Implementation of an authentication protocol
for sending audio-video information in Java

Bogdan Groza1, Dorina Petrica1, Simona Barbu2, Mariana Bilanin2
Politehnica University of Timisoara1, Alcatel-Lucent2, Romania

E-mail: {bogdan.groza, dorina.petrica}@aut.upt.ro, {simona.barbu, mariana.bilanin}@alcatel-
lucent.ro

repudiation, however when referring strictly to authenticity the
drawback of digital signatures in front of MAC codes is that
they are more computationally intensive (digital signatures
involve more complex arithmetic operations such as
multiplication and exponentiation over groups of large
integers). More exactly they are thousands times more
expensive than a MAC code. Since they are so
computationally intensive, digital signatures are of course
inefficient for our application. It should be also underlined that
digital signatures can also be constructed on simple one-way
functions reducing in this way some of the computational
overhead; these digital signatures are called one-time
signatures because they can be used only once, by using
authentication trees they can be used multiple times. However,
even this kind of digital signatures are still more expensive
than simple MAC codes.

In order to set a more accurate look on the computational
requirements of these cryptographic primitives in section 3.2
some experimental results for the computational time of hash
functions, MAC codes and some public key operations are
given.

B. Cryptographic protocols
As stated in the previous section, using a digital signature is

too computational intensive for assuring the authenticity of
audio-video information; therefore the best alternative that we
have is to use a MAC code. In order to make such a protocol
useful we must avoid the use of secret shared keys, since using
n distinct secret shared keys on the server side and computing
n distinct MAC codes for each message will of course
decrease the performance of the protocol. Fortunately, a good
solution for this purpose exists: to disclose the key of the
MAC only after all the entities that receive information have
stored the MAC computed on the particular message

()kMAC M (in this way the same key and the same MAC on
some message can be used for multiple entities). Of course,
after key k is disclosed the problem that we have is that this
key cannot be used again. However, there is an elegant
solution that can be used to remove this problem. The solution
is to use as keys elements from a one-way chain. In this way
each disclosed key can be used as a commitment for a new
key which is used to compute a new MAC and so on. A one-
way chain is a recurrent array generated by the successive
composition of a one-way function; each element of a one-
way chain can be used as a key and is defined as follows:

()0 , 1,i

ik f x iη η−= = (1)

Here ik is the thi key, η is the length of the one-way chain,

0x is a random element value and f is a one-way function.
Usually in constructing a one-way chain a cryptographic hash
function [3] is chosen for implementing f ; therefore, one-
way chains are usually referred as hash chains. However other
cryptographic functions, such as encryption functions, can be
also used for this purpose. It is also relevant that using the

discrete power function over groups of large integers [5] has
the advantage that the length of the chain becomes unbounded
since the computational time will depend only logarithmically
on the length of the chain.

The first proposal for the use of one-way chains in
authentication is in [8] and the first use of such a protocol in a
system is in [7], however, the system from [7] is insecure. A
more recent proposal of authentication protocols, which is an
important step towards the most recent protocols, is in [1].
One-way chains are used by some recent protocols proposed
in [2], [4], [5], [9], [10], [11], [12] for assuring information
authenticity. These protocols can be divided in two categories
according to the construction principles that are used:

a) Time synchronization. Disclosing each key at precise
time intervals and using a loose time synchronization which
lets each client have an upper bound on the time from the
sender’s side is probably the best solution for a broadcast
protocol. This principle is used in the TESLA protocol that
was proposed by Perrig et. al. in [9], [10], [11], [12]. Several
variants of the TESLA protocol were proposed and it was used
even in constrained environments such as sensor networks
where computational power and communication abilities are
drastically limited. A different protocol where the one-way
chains are constructed with the discrete squaring function and
allows broadcasting over long time periods (there is almost no
limitation on the duration of such a broadcast) is in [5].

The use of a protocol based on time synchronization is
useful for broadcasting authentic audio-video information. In
this case, in the , 1,thi i η= communication session, the same
packet iP containing authentic information is sent to all our
clients:

Server → Clients: () (){ }1
, , ,

ii i i iKD kP i M MAC M k
+

=

Here i is the session counter, iM is the message from the

session (for example some part of the audio-video content), ik
is the current session key and ()1iKD k + is a key derivation
process used to derive the key of the MAC from the
forthcoming session key.

b) Authentic confirmation. Waiting for an authentic
confirmation about the arrival of the MAC is the principle
used in [2], [4]. Of course, an element of a one-way chain can
play the role of such a confirmation.

The use of an authentic confirmation is useful for the case
when a response from the other communication participant is
expected, this is important for our scenario in the case when
the camera is controlled from a remote computer and both
commands and responses are sent and received from the
camera. The importance of such an authentication protocol for
remote control systems is discussed in [6]. For this case the

, 1,thi i η= communication session between two entities,
denoted as A and B, is as follows:

A → B : ()
, 1, () , ,, ,

A iA i KD k A i A iM MAC M k
+

B → A : ()
, 1, () , ,, ,

B iB i KD k B i B iM MAC M k
+

The significance of the notations is the same as previously.

Note that in this case the communication takes place between
only one sender and receiver. For the case of multiple
receivers, each receiver needs to compute its own one-way
chain and the sender must wait for a confirmation from all
receivers before sending a new packet, this mechanism was
proposed in [2]. Such a protocol is not very efficient for a
broadcast scenario, but is extremely useful when B has also to
send information to A (note that the previous type of protocol
allows only a one-way communication).

III. JAVA IMPLEMENTATION

A. Implementing Cryptography
Java [13] provides support for most cryptographic

primitives, such as hash functions and encryption functions. It
also provides support for working with large integers with the
BigInteger class, these operations are needed to perform
public key operations. In order to provide a more accurate
look on the computational requirements of cryptographic
primitives some experimental results are given in Table 1.
Further details on implementing cryptography can be found in
Java documentation [13].

TABLE 1. COMPUTATIONAL TIME FOR SOME CRYPTOGRAPHIC PRIMITIVES

IN JAVA.
CPU

Cryptographic function
Intel Centrino

1.7 GHz
Intel Dual Core

1.6 GHz
Intel Core Duo 6600

2.4 GHz
512 7.8 x 10-3 s 6.1 x 10-3 s 3.1 x 10-3 s

1024 48.4 x 10-3 s 44.6 x 10-3 s 20.3 x 10-3 s

Modular
exponentiation,

basic operation for
a digital signature

(module and
exponent size in

right column)

2048 359.4 x 10-3 s 323.8 x 10-3 s 153.2 x 10-3 s

Mac with SHA1 160 0.00859 x 10-3 s 0.00812 x 10-3 s 0.00406 x 10-3 s
Mac with MD5 128 0.00579 x 10-3 s 0.00354 x 10-3 s 0.00219 x 10-3 s

Sha-1 160 0.00281 x 10-3 s 0.00212 x 10-3 s 0.00109 x 10-3 s
Sha-256 256 0.0086 x 10-3 s 0.00592 x 10-3 s 0.00282 x 10-3 s
Sha -384 384 0.01359 x 10-3 s 0.01234 x 10-3 s 0.00579 x 10-3 s
Sha-512 512 0.02625 x 10-3 s 0.02324 x 10-3 s 0.01141 x 10-3 s

MD5 128 0.00156 x 10-3 s 9.5E-4 x 10-3 s 4.6E-4 x 10-3 s

B. Sending media streams
It is commonly known that the TCP/IP (Transmission

Control Protocol/Internet Protocol) is beneficial for its
reliability, but guaranteeing reliable data transfer slows the
overall transmission rate and is unnecessary for most
multimedia applications. By contrast, the UDP (User
Datagram Protocol) is unreliable but consumes less processing
power than TCP/IP. Therefore UDP can be used more
efficient for transmitting audiovisual content. Still UDP is not
optimized for multimedia transfer and for this purpose RTP
(Real-time Transport Protocol) is built on top of UDP and is
beneficial for applications used to transmit real-time data, in
our particular case audio-video information.

Since RTP is built on an unreliable protocol, it does not
guarantee whether RTP packets are being transported
successfully. RTP is augmented by a control protocol (RTCP),

to allow monitoring the network traffic and track the session's
participants. Both RTP and RTCP are independent of the
underlying transport and network layers. RTP can be used for
both unicast and multicast network; in a unicast network the
source sends separate copies of the data to each destination
while in a multicast network, the source sends data only once
and the network is responsible for sending the data to multiple
locations. Multicasting is more efficient for many multimedia
applications, such as video conferences. The standard Internet
Protocol (IP) supports multicasting.

For dealing with audio-video streams Java Media
Framework (JMF) API was used [15]. JMF is an application
programming interface for incorporating time-based media
into java programs. It provides support for media playback,
capturing and storing media data and performing custom
processing on media data streams. It supports media data
reception and transmission using RTP and RTCP. JMF
provides interfaces/classes that handle the construction of
Players, Processors, DataSources and DataSinks (Manager),
describe the location of media stream (MediaLocator), manage
the transfer of media-content (DataSource).

C. The developed application and experimental results
A client-server application was developed in Java; the

general setting of our application is suggested in figure 1. The
application is based on the solutions for JMF given by Sun
Developer Network [14].

SERVER

CLIENT

AUDIO/VIDEO CONTENT (RTP)

AUTHENTICATION
PROTOCOL (TCP/IP)

Figure 1. Application setting (media streams are sent over RTP while
authentication is done over TCP/IP).

In order to preserve the efficiency, our application sends

media streams through RTP while authentication is done
through TCP/IP. The authentication protocol that is used, is a
variation on the DeMA/DiCA protocol from [4]. We decide to
use this protocol in order to let the client request the
authenticity of packets at its own choice from the server,
making in this way the protocol more flexible. Each session of
the protocol is as follows:

Session i
A → B : ()()

, 1() 2 ,,
A iKD k i A iMAC H M k

+ −

B → A : () ()()
, 1() ,, ,

B ii KD k i B iH M MAC H M k
+

Here ()iH M is the hash of the message for which the

client request to be authenticated by the server, this request is
authenticated by the client with ()()

, 1()B iKD k iMAC H M
+

 and the

server answers by sending a MAC code on this hash (note that

()iH M will prove to be authentic only in session i+1 while
the response of the server can be sent only in session i+2 - that
is why A sends to B the value of ()()

, 1() 2A iKD k iMAC H M
+ − only

in session i). In order to store the hash of the messages sent to
clients the servers stores them in a HashTable, this data
structure allows efficient store and retrieve of objects in Java.
Also note that this protocol description holds only for one
sender A and one receiver B, but it can be easily be extended
for any number of participants.

The server application is responsible for capturing audio-
video data, compressing data and encapsulating the data in a
format suitable for transmission over the network. The clients
are responsible for creating RTP sessions to receive
audio/video streams. The video streams are compressed in
JPEG format using the software codec. The audio data is
compressed using a RTP-specific format. After compression,
both audio and video streams are transmitted over the network
using RTP over UDP. The system also provides QoS features;
the receivers can get the reports about the quality of the
audio/video streams which include information like bit rate,
packets received and packets loss. Authentication is done with
the previously described protocol on a separate channel via
TCP/IP.

We tested our application on two Dell Optiplex 745 with
Intel Core Duo 6600, at 2.4 GHz connected on a local area
network by a MSI RG54SE router and video information was
acquired from a Logitech QuickCam Chat webcam (video
format was RGB at 320x240 resolution). Some experimental
results on sending authentic audio-video information with our
application are in tables 2 and 3; these results were determined
by using two interfaces:GlobalTransmissionStats and
GlobalReceptionStats, further details about them can be found
in JMF [15].

TABLE 2. TRANSMITION STATISTICS

Server Client RTP
sent

RTCP
sent

Local
Collisions

Transmit
Failed

Dell Optiplex 745,
Core Duo 6600 @

2.4GHz

Dell Optiplex 745,
Core Duo 6600 @

2.4GHz

1746 26 0 0

TABLE 3. RECEPTION STATISTICS

Reception Statistic
(for 60 seconds)

Client: Dell Optiplex 745, Core
Duo 6600 @ 2.4GHz

Bad RTCP packets 0
Bad RTP packets 2
Packets received 1776
RTCP received 53

SR received 25
Local Collisions 0
Malformed RR 0

Malformed SDES 0
Malformed Bye 0
Transmit failed 0

IV. CONCLUSIONS
A Java application was developed for sending authentic

audio-video information that is captured from a remote
camera. The Java environment proved to be very useful since
both support for managing audio-video content is available in

JMF and cryptographic support is present as well. The
experimental results show that these protocols are efficient for
sending audio and video information and therefore can be used
in practice. As future work we are interested in building a
complete solution for sending authentic audio-video
information which can be efficiently used in many unicast and
broadcast scenarios.

Acknowledgements: This work was partially supported by

national research grant MEDC-CNCSIS TD-122/2007.

REFERENCES
[1] R. Anderson, F. Bergadano, B. Crispo, J.H. Lee, C. Manifavas, R.

Needham, “A New Family of Authentication Protocols”, ACM OSR,
1998.

[2] F. Bergadano, D. Cavagnino, B. Crispo, “Individual Authentication in
Multiparty Communications”. Computer & Security, Elsevier Science,
vol. 21 n. 8, 2002, pp.719-735.

[3] FIPS 180-1, National Institute of Standards and Technology (NIST).
“Announcing the Secure Hash Standard”, U.S. Department of
Commerce, 1995.

[4] B. Groza, “Using one-way chains to provide message authentication
without shared secrets”, Second International Workshop on Security,
Privacy and Trust in Pervasive and Ubiquitous Computing, SecPerU
2006, IEEE Comp. Soc., 2006.

[5] B. Groza, "Broadcast authentication protocol with time synchronization
and quadratic residues chains", Second International Conference on
Availability, Reliability and Security (ARES’07), pp. 550-557, IEEE
Comp. Soc., 2007.

[6] B. Groza, T.L. Dragomir, "On the use of one-way chain based
authentication in secure control systems", Second International
Conference on Availability, Reliability and Security (ARES’07), pp.
1214-1221, IEEE Comp. Soc., 2007.

[7] N. Haller, C. Metz, P. Nesser, M. Straw, “A One-Time Password
System”, RFC 2289, Bellcore, Kaman Sciences Corporation, Nesser and
Nesser Consulting, 1998.

[8] L. Lamport, “Password Authentication with Insecure Communication”,
Communication of the ACM, 24, 770-772, 1981.

[9] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar, “SPINS:
Security Protocols for Sensor Network”, Proceedings of Seventh Annual
International Conference on Mobile Computing and Networks
MOBICOM, 2001.

[10] A. Perrig, “The BiBa one-time signature and broadcast authentication
protocol”, Proc. of ACM Conference on Computer and Communications
Security, 2001, pp.28-37.

[11] A. Perrig, R. Canetti, J. D. Tygar, D. Song, “The TESLA Broadcast
Authentication Protocol”, In CryptoBytes, 5:2, Summer/Fall, pp. 2-13,
2002.

[12] A. Perrig, R. Canetti, J. D. Tygar, D. Song, “Efficient Authentication
and Signing of Multicast Streams Over Lossy Channels”, IEEE
Symposium on Security and Privacy, 2000.

[13] Java.sun.com: The Source for Java Developers, http:// java.sun.com/.
[14] JMF 2.1.1 Solutions from Sun Developer Network (SDN),

http://java.sun.com/products/java-media/jmf/2.1.1/solutions/.
[15] Java Media Framework at Java.sun.com : Sun Developer Network ,

http://java.sun.com/products/javamedia/jmf/2.1.1/download.html

