
Development of an AUTOSAR Compliant Cryptographic Library
on State-of-the-Art Automotive Grade Controllers

Pal-Ştefan Murvay, Alexandru Matei, Cristina Solomon and Bogdan Groza
Faculty of Automatics and Computers

Politehnica University of Timisoara, Romania
Email: {pal-stefan.murvay, bogdan.groza}@aut.upt.ro, alexandru.matei@msn.com, cristina_solomon@ymail.com

Abstract—In the light of the recently reported attacks on
intra-vehicle networks, it has become clear that cryptography
is vital for assuring the security of in-vehicle communica-
tions. The current preoccupation of industry professionals
in this direction is proved by the inclusion of a compre-
hensive cryptographic extension in the recent-most version
of the AUTOSAR (AUTomotive Open System ARchitecture)
standard. In this work we try to give an answer on how
prepared are current state-of-the-art automotive controllers
for implementing cryptographic primitives and what is the
exact cost of software implementations. We take into account
automotive grade controllers that range from some of the
most constrained platforms, e.g., from 8051 based tire sensors
with 8-bit cores, up to 32-bit Infineon TriCore architectures,
as well as devices that lay in between these two. We provide
experimental results on several symmetric cryptographic
primitives, i.e., block ciphers and hash functions, mainly
focusing on the lightest constructions proposed in the lit-
erature, e.g., Speck, Katan, Blake, as well as on past or
current standards, e.g., AES, SHA2 or SHA3. As expected,
the results are sparse, some of the platforms being well pre-
pared, capable to easily handle software implementation or
carrying dedicated hardware, while for others no dedicated
hardware exists while software implementation of current
cryptographic standards cannot be handled, especially with
the overhead incurred by the cohesion to the AUTOSAR
standard.

1. Introduction

As cars evolved in a similar manner to modern com-
puters, there are little doubts that cryptography is the only
alternative in assuring the necessary security objectives for
inter and intra vehicular networks. With few exceptions, all
of the attacks that are reported so far, e.g., [9], [12], [13]
take advantage of the absence of cryptographic security
(message authentication in particular) on the in-vehicle
communication interfaces.

The automotive industry was quite determined in de-
signing in-vehicle buses and currently there are several
communication buses that compete, persist or can be si-
multaneously found in a single vehicle. The traditional
Controller Area Network (CAN) is the most wide spread
in-vehicle bus, it also has a recently updated version,
the CAN-FD (CAN with Flexible Data Rate) that can

accommodate higher data rates and message length. The
low cost Local InterConnect (LIN) is generally used for
connecting peripherals, e.g., doors, windows, etc. Recently
designed, high performance buses such as FlexRay or
BroadR-Reach (an Ethernet based bus) can be found in
high-end vehicles. But regardless of the communication
layer, the same invariant persists: there is no security,
except for standard CRC codes that are required for the
correctness of the transmission. While bandwidth is a
realistic drawback in implementing security for CAN or
LIN, for the newer communication layers, e.g., CAN-FD,
FlexRay and BroadR-Reach, adding security is clearly
possible - if the suitable cryptographic primitives exists.
Here we try to answer to this question by determining to
what extent current automotive grade controllers are well
prepared for handling cryptography.

Given the intrinsic challenges in designing and build-
ing vehicles components that rely on software and (in-
evitably) originate from distinct manufacturers, the au-
tomotive industry was also opened toward standardiza-
tion. The AUTOSAR (AUTomotive Open System ARchi-
tecture) initiative, started in 2003, has the objective of
standardizing software architectures. Recently, AUTOSAR
started to include specifications for cryptographic primi-
tives. The AUTOSAR CAL (Specification of Crypto Ab-
straction Library) [3] and CSM (Specification of Crypto
Service Manager) [4] provide basic cryptographic func-
tionalities for software applications. CAL is designed as
an independent library that relies on software implemen-
tations. CSM is designed as a part of the system services
and to be accessed by the application through the run-time
environment, it can rely on software or hardware imple-
mentations. Both CAL and CSM provide specifications for
the following standard cryptographic primitives:

(i) Hash functions, which can be used for integrity
checks,

(ii) MAC (Message Authentication Codes), which are
used for checking authenticity,

(iii) Symmetric encryptions, in particular via block-
ciphers, which are mainly used for protecting infor-
mation against eavesdroppers,

(iv) Asymmetric encryptions, i.e., public-key encryp-
tions, having the main utility in exchanging sym-
metric session keys,

(v) Digital signatures, which are needed to test authen-



ticity of messages based on a public (non-secret) key.

In addition to these, there are a number of building
blocks that are required for key management. Randomness
is also addressed as it is needed for generating fresh
cryptographic keys. Key generation, key derivation, key
exchange and wrapping interfaces are also specified by
the standard.

Due to intrinsic limitations in terms of computational
power and storage space on the devices that we work here,
as well as due to the more limited scope of our work, here
we focus on symmetric cryptographic techniques alone.
We do target two classes of symmetric primitives: block
ciphers and hash functions. While Message Authentication
Codes (MACs) are of relevance they are not addressed
since these are built on the previous two primitives, e.g.,
the CBC-MAC or the HMAC, and the computational
results can be easily derived. AUTOSAR does not specify
which primitives should be used for each type of service
leaving the task of choosing the appropriate algorithms to
the system design phase. We now enumerate our choices
for block ciphers as well as hash functions along with the
motivation behind our choice:

(i) AES - the Advanced Encryption Standard is the
current standard in symmetric cryptography [14] and
neglecting it is not an option for any realistic deploy-
ment, it uses block of 128 bits and keys of 128, 192
or 256 bits,

(ii) SPECK - is a recent proposal from NSA [5] and
so far this is the lightest block cipher available for
software implementations, block size is of 2 words
of 16, 24, 32, 48 or 64 bits while the key is 2, 3 or
4 words, we choose it as a baseline for performance,

(iii) PRESENT - is another lightweight block cipher with
64 bit blocks and keys of 80 or 128 bits [7], we
choose it since it proved to be the maximum that
can be handled by our most constrained platform,
i.e., an 8051 based TPM sensor,

(iv) KATAN - is a lightweight block cipher with blocks of
32, 48 or 64 bits and keys of 80 bits [11], we choose
it for being a popular choice in many research works.

(v) MD5 - while insecure and recommended for modern
applications, it is one of the lightest designs for hash
functions and we use it a baseline in performance, it
outputs digests of 128 bits,

(vi) SHA1 - is also considered insecure for today needs,
but it is lighter than the standard SHA2 which is not
suitable for many of our platforms,

(vii) SHA2 - was the standard cryptographic hash until
2015, it is quite demanding from a computational
point of view, it outputs digests on 256, 384 or 512
bits,

(viii) SHA3 - is the standard released by NIST on 2015,
it is based on Keccak [6], the winner of the SHA-3
competition, it outputs digests of 224, 256, 384 or
512 bits,

(ix) Blake2 - is based on Blake, one of the SHA3 finalists
[1], and we choose it for being the lightest modern
design, it outputs digests of 224, 256, 384 or 512
bits.

TABLE 1. TOP 10 AUTOMOTIVE SUPPLIERS ACCORDING TO [10]

Rank Company Market Share
1 Renesas Electronics Corporation 10,4%
2 Infineon Technologies 9,3%
3 STMicroelectronics 7,4%
4 Freescale Semiconductor 7,2%
5 NXP 6,4%
6 Robert Bosch 5,6%
7 Texas Instruments 5,5%
8 On Semiconductor 3,7%
9 Toshiba 2,5%
10 Micron Technology 2,4%

2. Target devices

For comprehensive evaluation of the chosen crypto-
graphic primitives, we made a mixed selection of au-
tomotive grade platforms (on 8, 16 and 32-bit cores).
While not exhaustive, this selection of automotive grade
microcontrollers was made with the intent of covering
a wide range of ECUs from all in-vehicle domains and
market areas (i.e. devices ranging from the low-end to
the high-end sector). Since the architecture of the core is
the prime factor that influences the performance of code
across platforms we mainly selected one representative of
each microcontroller family included in our study. The
sole exceptions are the TriCore and RH850 platforms
for which we selected two representatives to illustrate
performance similarity. The manufacturer was also taken
into consideration as we picked only microcontrollers from
the top suppliers of the automotive industry [10] which are
presented in Table 1.

Our target devices and the microcontroller families of
which they are part of are presented in what follows while
Table 2 summarises this presentation.

(i) Freescale S08 (8bit). The S08 family from
Freescale1 is an 8-bit platform with several members
designed for various automotive applications such as
HVAC (Heating Ventilation and Air Conditioning),
lighting, doors, window lift, seat control, instrument
cluster and airbags. S08 family members can offer
between 2 and 128KB of Flash, up to 8KB of RAM
and maximum operating frequencies of 8, 20 and
40MHz. We selected the S08AC128 as the represen-
tative of the S08 family for our tests. It comes with
the top options of the family: 128KB Flash, 8KB
RAM and 40MHz operating frequency.

(ii) Infineon SP37 (8bit, 8051 based). On the 8-bit
architecture side we also looked at devices designed
for very specific applications. Such is the case of
the Infineon SP37 tire pressure monitoring sensor
(TPMS) which is built around an 8051 compatible
8-bit microcontroller. The SP37 is a very constrained
platform, having 6 KB Flash memory and only 256
bytes of RAM of which the upper 63 bytes are used
by the TPMS specific ROM functions library. The

1. Freescale has been recently merged under the NXP name, we will
refer to Freescale as the manufacturer for the devices known under this
brand



flash memory also has further restrictions as it allows
only 2 KB for the user program.

(iii) Freescale S12 (16bit). Our first choice for 16-bit
devices is the Freescale S12 and S12X family which
covers a broad array of mid-range vehicle body
applications. The S12X range extends the S12 core
with the integration of the XGATE coprocessor to
bring higher performances. Up to 1M of Flash and
64KB of RAM are available with the S12(X) family
members that operate at 16 to 80MHz. We selected
S12XDT512 which can operate at 80MHz and is
equipped with 512KB of Flash and 20KB of RAM.

(iv) Freescale S12Z (16bit). Built on the S12 technol-
ogy, the S12Z 16-bit microcontrollers are employed
for implementing entry level instrument clusters or
sensors and actuators for body, chassis and safety.
S12Z devices come with 16-192KB Flash, 1–12KB
RAM and operating frequencies up to 64MHz. For
our tests we used the S12ZVH64 derivative which
has 64KB Flash, 4KB RAM and runs at 64MHz.

(v) Renesas RL78/D1x (16bit). The RL78/D1x is a 16-
bit low power microcontroller produced by Renesas
for low-end instrument clusters. Members of this
group operate at 32MHz and provide 24–512KB
of Flash and 2–24KB of RAM. The RL78/D1A,
equipped with 512KB of Flash and 24KB of RAM
was included in our study.

(vi) Texas Instruments MSP430 (16bit). Another 16-
bit platform on our list is MSP430 from Texas
Instruments. The MSP430 family includes several
members that target various body and infotainment
applications offering up to 120KB of Flash, 8KB
RAM and 16MHz operating frequency. We used an
MSP430F2274, with 32KB Flash and 1KB RAM, as
a representative of this family.

(vii) Freescale Qorivva MPC56xx (32bit). We switch
to 32-bit architectures with the Freescale Qorivva
MPC56xx family designed for applications in engine
management, powertrain, ADAS (Advanced Driver
Assistance Systems), BCM (Body Control Module),
gateways, chassis and safety and instrument clusters
from low up to high-end projects. This family is
equipped with the e200 Power Architecture core and
can operate at 32-270MHz. Some family members
have two e200 cores while the MPC564xB-C has
an e200z4 and comes with an integrated security
module that offers functionalities for generating ran-
dom numbers and using AES-based encryption and
authentication. Given the wide range of target appli-
cations the memory options in this family also has
a considerable coverage with up to 6000KB Flash
and 1088KB RAM. As a member of this family, the
MPC5606B, which comes with 1MB Flash, 80KB
RAM and a top operating frequency of 64MHz, was
employed in our tests.

(viii) Freescale iMX6 (32bit, ARM based). Another 32-
bit platform from the same manufacturer is the iMX
application processor family. The I.MX6DualLite is a
32-bit application processor that features two ARM

Cortex-A9 cores which are operating at speeds of
up to 800MHz. In terms of memory is has an
128KB RAM and only 96KB of flash destined for
bootloader functionality as this architecture mainly
relies on external flash. This processor is designed
to be used in applications such as: automotive nav-
igation and entertainment, graphics rendering for
Human Machine Interfaces (HMI), high-performance
speech processing with large databases, audio play-
back, video processing and display. It also features
hardware enabled security functionalities that can
be used in e-commerce, digital rights management,
information encryption, secure boot and secure soft-
ware downloads.

(ix) Infineon Tricore TC1797 & TC1782 (32bit). Infi-
neon’s solution for computationaly demanding ap-
plications is the TriCore architecture. The AUDO
family offers a variety of microcontrollers with 1-
4MB of Flash, 48-288KB RAM and operating fre-
quencies between 80 and 300MHz for mid- to high-
end powertrain, chasis and safety applications. We
considered 2 members of this family, TC1797 and
TC1782, each from a different subcategory, AUDO
Future and AUDO MAX respectively. Both are based
on the same core version (TriCore V1.3.1), can work
at 180MHz and have 176KB of RAM, therefore
we expected to obtain similar performance results.
TC1797 has 4MB of Flash , while TC1782 comes
with 2.5MB of Flash. As with most of the members
of the AUDO family, our 2 choices come with an
additional coprocessor called PCP (Peripheral Con-
trol Processor) designed to manage on-chip module
decreasing the load of the main core.

(x) Renesas RH850 (32bit). Our last selections come
from the Renesas RH850 32-bit family which offers
a wide array of single and multi core devices in-
tended for virtually all in-vehicle functionalities of
the high-end sector: powertrain, instrument cluster,
body, safety, ADAS and other. The cores of the
RH850 family members come in two flavours, G3M
for improved data processing and G3K with a sim-
plified design and improved low power behaviour.
Given the variety of target applications the options
available in this family are also very diversified: up
to 8MB Flash, 512KB RAM and maximum, fre-
quencies of 320MHz. We used two members of this
family to represent each of the two core architectures
available. The first one is RH850/F1L, equipped with
a G3K core running at 80MHz, 2MB of Flash and
192KB of RAM. RH850/E1x-FCC1, the second one,
is powered by a G3M core running at 320MHz with
4MB of Flash and 352KB of RAM.

3. Implementation details

We first give a brief overview on the general structure
of an AUTOSAR compliant deployment. Then we give
concrete details on our specific implementations.



TABLE 2. PLATFORMS TARGETED IN OUR WORK

Device Core Flash size RAM size Frequency Manufacturer
S08AC128 S08 128KB 8KB 40MHz NXP(Freescale)

SP37 8051 6B 256B 12MHz Infineon
S16XDT512 S12(X) 512KB 20KB 80MHz NXP(Freescale)
S16ZVH64 S12Z 64KB 4KB 64MHz NXP(Freescale)
RL78/D1A RL78 512KB 24KB 32MHz Renesas

MSP430F2274 MSP430 32KB 1KB 16MHz Texas Instruments
MPC5606B e200 1MB 80KB 64MHz NXP(Freescale)

iMX6 Cortex-A9 96KB 128KB 800MHz NXP(Freescale)
TC1782 TriCore 1.3.1 2.5MB 176KB 180MHz Infineon
TC1797 TriCore 1.3.1 4MB 176KB 180MHz Infineon

RH850/F1L RH850 G3K 2MB 192KB 80MHz Renesas
RH850/E1x-FCC1 RH850 M3K 4MB 352KB 320MHz Renesas

3.1. AUTOSAR generic system structure

According to the specification [2] an AUTOSAR com-
pliant system follows a layered software architecture com-
prised of three main software layers: Application, Run-
time Environment (RTE) and Basic Software (BSW). The
BSW layer contains drivers and services needed by the
application. The RTE is an interfacing layer providing
application access to BSW functionality. An additional
Libraries layer (LIB) provides a container for various
functions that are needed by system modules. LIB modules
can be accessed by all other AUTOSAR layers but can
only call functions residing within LIB. Figure 1 presents a
simplified representation of the AUTOSAR layer structure
and the positioning of the CAL and CSM modules in this
architecture.

Microcontroller

Application

LIB

RTE

CSM

CAL

CPL

HSM

BSW

CRY CRY

Figure 1. AUTOSAR layered architecture

Both CAL and CSM consist of a wrapper layer acting
as the interface for the calling modules to the primitive
implementation layers. The implementation layer of CAL
is called CPL (Cryptographic Primitive Library) while
the corresponding layer of CSM is named CRY (Cryp-
tographic Library Module). CPL and CRY modules can
directly provide the implementation of a certain primitive
or an interface to a cryptographic library component. The
second alternative is particularly required by the AU-
TOSAR specification when both CRY and CPL use the
same building blocks for avoiding duplicate code. In our
particular case both CAL and CSM provide their ser-
vices by calling the same set of primitive implementations
through corresponding CPL and CRY interfaces. Obvi-
ously, it is hard to find a practical scenario which would

require the access to the same software implementations
of cryptographic primitives through 2 types of interfaces
but keeping with the configurable nature of AUTOSAR
this allows the system designers to chose between using
CAL and CSM.

While in the case of software implementations there
are few differences between using CAL and CSM, a
significant distinction comes in that the CSM can use
cryptographic HW if available on the microcontroller. The
CRY accesses the functionality of the HSM (Hardware
Security Module) through a dedicated driver. From the
upper layers perspective, choosing between a software
implementation and one based on an HSM is the same
as selecting between different software implemented al-
gorithms for the same type of cryptographic service and
only requires the calling of the wrapper functions with the
corresponding configuration identifier.

Most of the cryptographic primitives which can be
accessed through CAL and CSM are implemented for
usage in streaming mode (hash functions and block ciphers
fit in this category). This means that their interface consists
of:

• a Start function used for initialising the algorithm
context,

• an Update function which is called repeatedly to
process smaller blocks of data from a larger seg-
ment,

• a Finish function which is called to finalise the
processing before getting the result.

Some services (e.g. random number generation) are devi-
ating from this rule and are to be used through a single
function call.

3.2. Specifics of primitive implementations

The implementations for the cryptographic primitives
included in our library are based on the reference source
codes (in the case of hash functions) and on the open-
source BLOC library [8] (in the case of block ciphers). For
the moment, it was not in our focus to make platform de-
pendent optimizations for these implementations. Mostly
we had to adapt code due to specific compiler needs
(e.g. some compilers cannot handle 64-bit variables). For
SHA2 and SHA3 we only implemented their 256 bit block



versions while for Blake2 we used the Blake2s implemen-
tation, which is optimised for 8 to 32-bit platforms, with
the same digest size of 256 bit. For block ciphers, we used
AES with 128-bit key, the bit-sliced implementation with
32 slices of Katan32, Present for both 80 and 128-bit keys
and Speck with 128-bit block and key.

From our list of target devices only the iMX6 platform
provides hardware support for implementing cryptography.
We therefore made use of the hardware based AES imple-
mentation by using the Cryptographic Acceleration and
Assurance Module (CAAM). CAAM can be programmed
through a ring interface which works as follows: the pro-
cessing requests are given as entries in the input ring while
results are taken from the output ring. This mechanism
allows multiple jobs to be queued for hardware execution
enabling the CPU to execute other tasks until the CAAM
signals the end of each job by means of dedicated flags.

In the case of the SP37 we could not use all of
the library implementations due to the major memory
constraints. However, we tried to make target-specific
implementations considering also the device basic scope
and functionality. In contrast to the other platforms used in
this paper, this device is designed for a specific application
- tire sensors. The AUTOSAR architecture was not used
for this platform due to the aforementioned constraints.
From the selected hash functions we attempted to fit an
MD5 implementation on the chip as it is on the lightweight
side. In spite of our efforts of manually optimizing the
code for size and the additional compiler optimizations
we were unable to fit MD5 in the SP37 flash memory.
Our best implementation still exceeded flash capacity
by 290 bytes (14%). Similar unsuccessful attempts were
made for implementing the other hash functions in our
study. For block ciphers we were able to use the same
implementation of Present as on the other platforms. For
Speck platform specific optimizations were needed to fit
an implementations with a block size larger than 32 bits,
this allowed us to fit Speck with a 64 bit block and 128
bit keys.

4. Experimental results

We used our AUTOSAR CAL implementation to test
the capabilities of each target platform. Only the SP37
had to be treated separately as we could only test it
with specific implementations and not with the generic
AUTOSAR compliant source code.

We focused on two performance metrics which are
important in the development of embedded systems in
general and for the automotive grade software in particu-
lar: execution speed and memory consumption. Execution
speed is important as it can affect the speed at which one
device can send messages containing authentication data
or cipher texts. The flash memory available on a certain
device may not be enough to hold the application and
the cryptographic library, therefore it is essential to have
an image on the memory requirements for using such a
library.

4.1. Execution speed

For the majority of platforms, the code was deployed
and executed on the platform. In the case of the S08,
RL78 and RH850 platforms a simulator was used for
evaluating execution speeds. For fairness in comparison,
basic compiler settings were used in all cases without
enabling specific optimisations for speed or size. For the
block ciphers, besides Katan which had 80 bits keys for
all variants, we used 128-bit keys for all input sizes.

Measurement for execution speed was done using an
oscilloscope for the platforms for which we had the cor-
responding hardware. For the other platforms, simulator
capabilities for clock cycle counting were used. Table 3
shows the execution speed of all primitives in our CAL
implementation on the selected target platforms for various
input sizes. For the block ciphers, the values represent the
time for encryption of the input block. The approximation
for very long inputs was calculated as the difference in
cycles/bytes between the result for 4096 byte inputs and
2048 byte inputs divided by 2048.

It can be noticed that the ranking of the cryptographic
primitives may differ depending on the platform. This
is caused by the fact that the same code is used on all
platforms without any specific improvements. Therefore,
the implementation may prove to be better suited on some
platforms than the others. One clear example for this is
Speck which will outperform the other ciphers in most
cases but proves to be slower on S08 and S12 devices.

Current uses of cryptographic primitives in automotive
applications are mainly for device reprogramming func-
tionalities the where the amount of data which needs to be
processed is very large divided into hundreds or thousands
of messages (depending on the size of the firmware that
needs to be signed). We therefore graphically illustrate
the execution times for 4096 byte inputs in Figures 2
and 3. These plots were synthetically obtained based on
the determined cycle/byte value and considering that the
frequency used on each platform is the maximum possible
(Table 2).

Hardware support for AES on iMX6. From our list
of selected devices, only iMx6 has hardware support for
cryptographic primities, i.e., AES. We also evaluated the
AES HW-based implementation on iMx6 which for 64-
byte messages was only 8.9 times faster that the SW im-
plementation - the longer than expected execution time is
due various calls from the software layer and measurement
difficulties due to the multi-tasking OS that runs on the
iMx6. For the longer 4KByte messages the execution time
was 67.5 faster and at 379.33 cycles/byte is faster than the
software implementation in any of our target platforms.

Limitations on MSP430 and SP37. While testing the
implementations for result correctness we found that the
SHA3 implementation was not providing correct results
on our MSP430 device due to stack overflowing during
execution. We could not resolve this issue by any further
straightforward optimisation; for this reason the results in
Table 3 for SHA3 on MSP430 are not provided. On the
SP37 we only evaluated Present and Speck as these were
the only primitives we could implement on the device.



TABLE 3. EXECUTION SPEED (CYCLES/BYTE) FOR THE IMPLEMENTED PRIMITIVES ACROSS VARIOUS PLATFORMS

Platform Input size
Cryptographic primitive (block size and key length)

MD5 SHA1 SHA2 SHA3 Blake2 AES Katan Present Speck
128 160 256 256 256 128-128 32-80 64-128 128-128

S08

8 34177.88 60201.75 135030.38 1952959.50 81942.25 7481.75 356709.00 94472.63 64011.63
64 8367.11 15421.53 33319.19 253866.42 10255.02 2688.56 58850.25 85394.72 20599.17
576 4573.71 8796.18 18295.47 128830.82 9784.00 2377.86 39572.49 84241.97 17213.73
1536 4277.35 8278.58 17121.74 114808.04 9748.71 2353.54 37437.09 84151.91 16949.87
4096 4166.21 8084.48 16681.59 110612.63 9735.48 2344.72 37265.64 84118.14 16518.22

long msgs 4099.53 7968.02 16417.50 106819.63 9727.54 2349.27 37162.77 84097.88 16126.53

S12

8 5052.38 14418.13 31543.63 445194.00 13409.00 3821.13 56714.88 33277.13 9054.75
64 1205.66 3679.77 7756.36 58188.17 1683.81 1495.81 10254.45 31001.03 2943.23
576 645.36 2092.81 4247.22 28985.94 1584.79 1373.15 7745.72 30712.00 2463.86
1536 601.59 1968.65 3973.07 25769.49 1577.28 1363.56 7464.92 30754.53 2426.41
4096 585.18 1922.15 3870.26 28391.24 1574.46 1359.97 7446.62 30680.96 2412.36

long msgs 575.33 1894.25 3808.58 31121.57 1572.77 1357.81 7432.13 30675.88 2403.94

S12Z

8 2076.00 8016.00 12864.00 428000.00 9424.00 9824.00 109760.00 44720.00 5936.00
64 385.50 2070.00 2940.00 54900.00 1204.00 4075.00 16260.00 40050.00 1656.00
576 156.89 1195.56 1522.22 27888.89 934.44 3827.78 9600.00 39500.00 1288.89
1536 138.75 1127.08 1412.50 24791.67 914.58 3808.33 8854.17 39416.67 1260.42
4096 132.03 1101.56 1370.31 23875.00 906.25 3796.88 8812.50 39453.13 1250.00

long msgs 127.97 1087.50 1345.31 23031.25 901.56 3787.50 8781.25 39468.75 1243.75

RL78 D1A

8 849.75 12274.00 4613.50 461547.87 2876.75 2909.62 40351.12 19021.87 1307.62
64 182.23 3075.38 1099.17 60454.98 362.22 1063.52 7464.80 17963.34 395.55
576 87.93 1714.38 587.06 29950.12 284.22 947.78 5985.94 17828.93 323.95
1536 80.56 1608.05 547.05 26609.24 278.27 938.74 5828.97 17818.43 318.36
4096 77.80 1568.18 532.05 25595.80 276.04 935.35 5811.54 17814.49 316.26

long msgs 76.15 1544.26 523.06 24700.48 274.70 933.31 5801.09 17812.13 315.00

TC1782

8 281.25 1102.50 1327.50 117225.00 1399.50 1287.00 10687.50 7863.75 632.25
64 41.23 271.69 290.81 14821.88 168.75 502.31 1614.38 7228.13 168.47
576 16.47 151.88 149.84 8015.63 129.69 465.00 962.50 7109.38 128.13
1536 14.58 142.50 138.75 7183.59 126.80 461.13 888.28 7101.56 124.92
4096 13.84 139.09 134.91 6952.15 125.68 459.67 883.30 7110.35 123.71

long msgs 13.43 137.20 132.36 6723.63 124.80 458.79 880.66 7110.35 123.13

TC1797

8 282.60 1113.75 1332.00 117225.00 1401.75 1284.75 10676.25 7751.25 627.75
64 41.23 271.69 291.38 14821.88 169.31 501.75 1611.56 7059.38 167.91
576 16.50 151.88 150.63 8015.63 129.84 464.38 962.50 6984.38 127.97
1536 14.55 142.50 139.69 7183.59 126.80 461.13 888.28 6972.66 124.69
4096 13.84 138.87 135.57 6952.15 125.68 459.67 883.30 6978.52 123.66

long msgs 13.41 136.76 133.15 6723.63 124.98 458.79 880.66 6978.52 123.05

MSP430

8 854.13 7284.13 7381.50 N/A 4525.00 3310.25 43154.63 20993.88 3154.63
64 177.27 1825.91 1779.19 N/A 567.38 1054.02 9180.23 19613.02 993.30
576 82.92 1020.67 958.44 N/A 467.96 875.49 6706.38 19309.26 824.68
1536 75.55 957.76 894.32 N/A 460.36 861.64 6426.41 19288.99 811.27
4096 72.78 934.17 870.27 N/A 457.51 856.39 6408.12 19277.00 806.07

long msgs 71.13 920.02 855.84 N/A 455.80 853.21 6397.15 19270.41 802.95

MPC5606B

8 403.00 2280.00 2408.00 158800.00 1772.00 2976.00 43154.63 16960.00 844.00
64 74.13 578.75 563.75 19125.00 224.00 1277.50 4405.00 15850.00 231.75
576 29.72 329.44 297.78 10041.67 176.11 1215.28 2605.56 15777.78 178.06
1536 26.25 309.90 277.08 8979.17 172.50 1210.42 2395.83 15750.00 173.96
4096 24.96 302.73 269.14 8671.88 171.09 1210.94 2390.63 15742.19 172.46

long msgs 24.18 298.44 264.45 8390.63 170.31 1209.38 2386.72 15742.19 171.48

iMX6

8 1038.51 4582.12 3861.89 276594.12 5228.98 16213.63 124730.10 113939.10 2804.67
64 201.24 1107.10 883.64 35730.34 660.64 6084.42 81259.20 110448.11 766.11
576 81.90 605.34 451.47 18310.13 507.73 5488.07 78579.88 110119.63 583.15
1536 72.88 565.34 417.84 16308.63 493.68 5441.57 78133.33 110055.31 569.43
4096 69.38 673.24 405.45 15738.47 488.39 5421.07 78013.76 109997.74 563.99

long msgs 67.27 718.38 397.84 15196.68 485.57 5407.57 77871.30 109989.03 560.22

RH850 G3K

8 295.48 1858.60 1429.36 129263.00 1576.72 2306.24 16128.72 13551.48 559.48
64 48.78 469.75 321.59 16505.17 201.09 962.78 2507.11 12593.59 159.78
576 16.34 266.11 163.54 8673.26 145.95 906.92 1531.55 12471.95 127.97
1536 13.80 250.20 151.19 7757.24 141.71 902.56 1419.99 12462.45 125.49
4096 12.85 244.24 146.56 7489.74 140.13 900.91 1413.50 12458.89 124.56

long msgs 12.28 240.66 143.78 7238.03 139.17 899.91 1409.61 12456.75 124.00

RH850 G3M

8 240.24 1134.48 857.60 101158.48 1205.24 1556.72 11818.84 9340.84 400.84
64 37.72 284.75 187.72 12867.73 150.95 630.70 1732.48 8522.08 114.58
576 13.71 163.00 95.90 6824.79 122.26 591.69 1025.05 8419.67 93.10
1536 11.83 153.49 88.74 6110.75 120.04 588.64 943.02 8411.67 91.44
4096 11.13 149.92 86.05 5903.47 119.23 587.50 939.02 8408.67 90.81

long msgs 10.70 147.78 84.44 5706.54 118.73 586.81 936.63 8406.88 90.44



Given the nature of this device, the data that it has to send
over a wireless channel will fit be lower than 8 bytes.
Therefore, we evaluated them for small input sizes. For
an 8 byte input, a Present encryption with an 80 bit key
will be executed in 303.3ms (at 16451 cycles/byte) while
for Speck with 64 bit block and 128 bit key it will take
29.1ms (at 1578 cycles/byte). We consider these speeds as
being reasonable due to the low transmission frequencies
required from this kind of devices.

4.2. Memory consumption

To get an image on the impact of the usage of security
in AUTOSAR on the flash memory consumption we ob-
tained object code dimensions from map files generated
by the linker of each platform. Table 4 shows the flash
memory needed to store the primitive implementation
while Table 5 illustrates the overhead brought by using
the AUTOSAR wrapper.

Adding software security mechanisms to an embedded
system should not obstruct the implementation of the main
functionalities due to insufficient memory. More than this,
usually a memory area is reserved for future use (e.g. up-
dates or hotfixes). With this in mind we evaluated the im-
pact of using security primitives and the AUTOSAR CAL
interface on memory usage for our set of target devices and
illustrated this in Tables 4 and 5 as the percentage of the
total available memory occupied by each of them. In some
cases more than 10% of the Flash memory is occupied by
the object code of the primitive alone. These occurrences,
highlighted in gray, add a considerable limit to the memory
that can be used to implement the actual ECU functionality
and could be viewed as unacceptable depending on the
application complexity. We consider a second category of
memory occupation where the occupied percent is smaller
than 10% and greater than 5%, this is acceptable when
the complexity of the target functionality for the device
is moderate. Most of the primitives occupy less than
5% on the majority of platforms which should fit most
applications.

Although some of the iMX6 implementations also fall
in the first two categories this is perfectly acceptable as the
on-chip flash is destined for storing the bootloader which
needs considerable less memory than the application. This
platform is designed to work with external flash chips
that hold the application code. The HW implementation
of AES occupies 4874 bytes of flash being ≈ 10% smaller
than the software one.

The overhead brought by the usage of the AUTOSAR
interface is mostly within reasonable bounds. Exceptions
come from the devices that exhibited larger memory con-
sumption for the primitive implementations, namely the
S12Z and MSP430 device.

On the SP37 our Present implementation for 80 bit
keys occupies 1159 bytes (18.8 % of the flash memory)
while the Speck-64-128 implementation takes 1059 bytes
(17.2 % of the flash memory). In both cases a considerable
part of the available memory is used but as shown in
[15] this would still allow the implementation of the basic
TPMS functionality along with an authentication protocol.

(i) S08 (ii) S12

(iii) S12Z (iv) MSP430

(v) RL78 D1A (vi) TC1782

(vii) TC1797 (viii) MPC5606B

(ix) iMX6 (x) RH850 G3K

(xi) RH850 G3M

Figure 2. Execution time for 4096 byte inputs(ms) platform-based view

These results are just a baseline and in some scenar-
ios the memory consumption could be lowered through
memory code optimizations or could be even increased if
by adding speed optimizations the code size increases. We
also stress that even though the memory consumption will



TABLE 4. FLASH MEMORY CONSUMPTION OF PRIMITIVE IMPLEMENTATIONS

Platform

Code size
MD5 SHA1 SHA2 SHA3 Blake2 AES Katan Present Speck

256 256 128-128 32-80 64-128 128-128
bytes % bytes % bytes % bytes % bytes % bytes % bytes % bytes % bytes %

S08 14120 11.03 1227 0.96 2675 2.09 7005 5.47 5275 4.12 2119 1.66 3185 2.49 4113 3.21 4918 3.84
S12 5528 1.08 1042 0.20 2251 0.44 4021 0.79 3455 0.67 1692 0.33 2741 0.54 2186 0.43 2596 0.51
S12Z 5374 8.40 902 1.41 2081 3.25 4922 7.69 4828 7.54 2688 4.20 2761 4.31 4252 6.64 3659 5.72
MSP430 6394 19.98 1338 4.18 2610 8.16 5384 16.83 4046 12.64 1810 5.66 2628 8.21 1776 5.55 1376 4.30
RL78 D1A 8606 1.68 1137 0.22 2304 0.45 5436 1.06 3606 0.70 2611 0.51 3005 0.59 2247 0.44 1309 0.26
TC1782 2856 0.11 730 0.03 1360 0.05 3924 0.16 2634 0.11 1682 0.07 2004 0.08 3080 0.12 1396 0.06
TC1797 2856 0.07 730 0.02 1360 0.03 3924 0.10 2634 0.07 1682 0.04 2004 0.05 3080 0.08 1396 0.03
MPC5606B 3998 0.40 880 0.09 1730 0.17 5916 0.59 3244 0.32 2258 0.23 2518 0.25 3720 0.37 3324 0.33
iMX6 7688 8.01 1516 1.58 2820 2.94 11296 11.77 4628 4.82 5428 5.65 3552 3.70 7756 8.08 5040 5.25
RH850 G3K 2216 0.11 734 0.04 1194 0.06 4464 0.22 2082 0.10 2528 0.13 2182 0.11 2842 0.14 746 0.04
RH850 G3M 2216 0.06 734 0.02 1194 0.03 4464 0.11 2082 0.05 2528 0.06 2182 0.05 2842 0.07 746 0.02

(i) MD5 (ii) SHA1

(iii) SHA2 (iv) SHA3

(v) BLAKE2 (vi) AES

(vii) Katan (viii) Present

(ix) Speck

Figure 3. Execution time for 4096 byte inputs(ms) primitive-based view

TABLE 5. AUTOSAR INTERFACE MEMORY OVERHEAD

Platform Hash functions Block ciphers
bytes % bytes %

S08 345 0.27 746 0.58
S12 259 0.05 566 0.11
S12Z 305 0.48 656 1.03
MSP430 360 1.13 480 1.50
RL78 D1A 242 0.05 512 0.10
TC1782 266 0.01 528 0.02
TC1797 266 0.01 528 0.01
MPC5606B 444 0.04 918 0.09
iMX6 711 0.74 1498 1.56
RH850 G3K 288 0.01 624 0.03
RH850 G3M 288 0.01 624 0.02

be the same on all members of the microcontroller families
we studied, the memory occupation percentage will differ
depending on the particular memory characteristics of each
family member. A good illustration of this statement is
given by our TriCore and RH850 devices.

5. Conclusion

To the best of our knowledge, our work is the first
academic research effort for implementing an AUTOSAR
compliant cryptographic library. The main scope was to
establish the performance, in terms of execution speed
and memory requirements, on a representative set of au-
tomotive grade platforms. The results that we obtained
are mixed. In general, cryptography is well handled by
all platforms, but clear exception exists. For example the
SP37 sensor is unable to cope with most of the cryp-
tographic primitives and even the overhead induced by
the AUTOSAR interface exceeds its memory. For other
platforms, e.g., the case of SHA3 on the MSP430, the
code and variables may apparently fit in memory giving
the feeling that it can be handled by the controller but the
final results are erroneous due to more subtle overflows. In
particular the newer SHA3 standard was a poor performer,
giving a general feeling that a light-weight hash standard
for embedded devices may be needed. The AUTOSAR
wrapper brings an overhead which might be considered too
large on some devices. In general, given the constrained



nature of embedded devices we expect that AUTOSAR
compliant architectures will be present only on high-end
devices.

A general impression is that cryptographic hardware is
added only to devices that are already from the high-end
side of the table, and are capable of good performance for
software implementations, while more constrained devices
tend to be left behind. It remains an open question on
how to secure an entire car body when certain components
cannot be secured as they cannot handle cryptography, but
this question is out of scope for our work.

References

[1] J.-P. Aumasson, S. Neves, Z. Wilcox-OâĂŹHearn, and C. Winner-
lein. Blake2: simpler, smaller, fast as md5. In Applied Cryptogra-
phy and Network Security, pages 119–135. Springer, 2013.

[2] AUTOSAR. Layered Software Architecture, 4.2.2 edition, 2015.

[3] AUTOSAR. Specification of Crypto Abstraction Library, 4.2.2
edition, 2015.

[4] AUTOSAR. Specification of Crypto Service Manager, 4.2.2 edition,
2015.

[5] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers. The SIMON and SPECK lightweight block ciphers.
In Proceedings of the 52nd Annual Design Automation Conference,
page 175. ACM, 2015.

[6] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak
sponge function family main document. Submission to NIST (Round
2), 3:30, 2009.

[7] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An ultra-
lightweight block cipher. Springer, 2007.

[8] M. Cazorla, K. Marquet, and M. Minier. Survey and benchmark
of lightweight block ciphers for wireless sensor networks. In
P. Samarati, editor, SECRYPT 2013 - Proceedings of the 10th
International Conference on Security and Cryptography, Reykjavík,
Iceland, 29-31 July, 2013, pages 543–548. SciTePress, 2013.

[9] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al.
Comprehensive experimental analyses of automotive attack sur-
faces. In USENIX Security Symposium. San Francisco, 2011.

[10] M. Culver. 2014 Automotive Semiconductors Supplier
Rankings Adjusted Based on Further Analysis, IHS Says.
http://press.ihs.com/press-release/automotive/2014-automotive-
semiconductors-supplier-rankings-adjusted-based-further-ana.
2016-03-28.

[11] C. De Canniere, O. Dunkelman, and M. Knežević. KATAN and
KTANTAN-a family of small and efficient hardware-oriented block
ciphers. In Cryptographic Hardware and Embedded Systems-CHES
2009, pages 272–288. Springer, 2009.

[12] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Check-
oway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, et al.
Experimental security analysis of a modern automobile. In Security
and Privacy (SP), 2010 IEEE Symposium on, pages 447–462. IEEE,
2010.

[13] C. Miller and C. Valasek. A survey of remote automotive attack
surfaces. Black Hat USA, 2014.

[14] N. F. Pub. 197: Advanced encryption standard (AES). Federal In-
formation Processing Standards Publication, 197:441–0311, 2001.

[15] C. Solomon and B. Groza. Limon - lightweight authentication for
tire pressure monitoring sensors. In 1st Workshop on the Security
of Cyber-Physical Systems (affiliated to ESORICS 2015), 2015.


