
1/17

Blockchain Integration for in-Vehicle CAN Bus

Intrusion Detection Systems with ISO/SAE 21434
Compliant Reporting

Tudor Andreica1, Adrian Musuroi1, Alfred Anistoroaei1,

Camil Jichici1, and Bogdan Groza1,*

1Faculty of Automatics and Computers, Politehnica University of Timisoara, 300223 Timisoara, Romania
*email: bogdan.groza@aut.upt.ro

ABSTRACT

The development of Intrusion Detection Systems (IDS) for in-vehicle buses has gained a lot of momentum in recent years as the number of
reported vulnerabilities and the degree of interconnectivity for modern vehicles are on the rise. Since intrusion detection is resource
consuming, it can be performed on computationally capable Android head units that are now present inside vehicles. Moreover, these units
are connected to the internet, which enables the use of more complex algorithms that run in cloud environments. In this work we develop one
such approach: an IDS that consists of a locally installed copy, running on head units, and a centralized instance of it that runs in the cloud and
monitors traffic for groups of similar vehicles. Additionally, the centralized instance is part of a cloud service for intrusion detection which is
continuously updated with the most recent types of attacks. The classification results of the cloud-based service are further analyzed by an
incident response team which confirms the presence of known attacks, analyzes new types of attacks and assesses their impact. The output
of this activity is stored on the Blockchain as ISO/SAE 21434 compliant reports, ensuring the transparency and traceability of the reported
incidents.

Introduction

The automotive industry is evolving day by day and is changing in so many ways. In the last decade, the number of ECUs (Electronic
Control Units) increased to more than one hundred in high-end vehicles due to the introduction of new technologies and
functionalities. New automotive trends, such as electrification or automated driving, will increase the use of software and
controllers even more. The communication between ECUs, which is currently much more limited to in-vehicle networks, will be
extended to the outer world as vehicle-to-vehicle, vehicle-to-infrastructure or vehicle-to-cloud communications become more
prevalent. All these recent technologies will require proper security mechanisms to protect drivers, passengers and other road
users against security attacks that can lead to undesired events.

The automotive industry is already focusing on cybersecurity aspects, which have to be part of the entire life-cycle of modern
vehicles, from development to decommissioning. The ISO/SAE 214341 standard was released in 2021 and describes the
cybersecurity process that has to be established in the automotive industry. Much earlier, the AUTomotive Open System
ARchitecture (AUTOSAR) community also released a set of specifications that address security aspects for secure onboard
communication2, introducing mechanisms for authentication and freshness of CAN (Controller Area Network) messages, while
specifications for an Intrusion Detection System Manager (IdsM) on in-vehicle ECUs were later added3. Such systems will be used
in all future vehicles to detect attacks on various communication layers ranging from in-vehicle buses, such as the CAN bus, to
wireless interfaces like WiFi or 5G. Needless to say, once detected, such attacks need to be reported and the corresponding
information securely stored. Blockchain is a modern technology that offers several key advantages for this purpose, among which
the following three seem to be the most important: immutability, decentralized storage and the traceability of reporting actors.
Immutability, assured by the one-way nature of cryptographic hash functions and by the fact that each block added to the chain
contains the hash of the previous block, makes the Blockchain resilient against data alteration attacks. Since the Blockchain can
be stored in a distributed manner, it makes the whole reporting process more transparent, as multiple actors can be involved in
verifying the integrity of the reported data. Indeed, it is expected that an automotive scenario will involve a large number of
vehicles and manufacturer’s operatives that will contribute to the incident reporting process. Traceability allows to verify the
actors (autonomous cars or the incident response team) that are responsible for generating the data and the attack reports.
Without being able to trace the source of such information, adversaries that report false attack data or potentially corrupted
reports will greatly hinder the entire process.

In the light of the recently emerged standards, i.e., ISO 214341 and AUTOSAR IdsM3, we try to respond to this novel necessity
from the automotive domain by using a highly successful modern technology, i.e., Blockchain. This technology can be used for
the secure management of the IDS reports, as it provides a decentralized means of storage. We propose an IDS tailored for attacks

2/17

Figure 1. Overview of the proposed intrusion reporting system

on CAN networks, which uses a locally installed instance and a separate cloud-based instance with Blockchain incident reporting
capabilities. The local IDS is meant to run on the head unit of each vehicle, while the cloud-based IDS is centralized and operates
with data collected from multiple vehicles. The cloud service is updated with the latest discovered attacks and the detection
results are stored via the Blockchain Service as ISO/SAE 21434 reports, based on the analysis of specialized personnel (since this
type of impact assessment can be performed only with the help of human expertise). The incident response team is responsible
to verify the presence of attacks, report new types of attacks, update the cloud-based IDS with the new attack types and perform
the impact analysis on the newly identified attacks. A high-level representation of the concept is suggested in Figure 1, showing
the four actors in our system assigned with the previously described tasks, i.e., the Android Head Unit, the IDS Cloud Service, the
Blockchain Service and the Incident Response Center.

The contributions of our work can be summarized as follows: (i) we propose a cloud-based IDS that takes benefit of the
computationally capable Android head units inside cars and of the cloud infrastructure, (ii) to illustrate how intrusion detection
extends from one vehicle to another, i.e., transfer learning, we use real data collected from 3 identical vehicles that is augmented
with adversary traffic and prove that a learned attack from one of the vehicles can be identified on the others, (iii) we illustrate
the computational performances of the intrusion detection algorithms by providing benchmarks performed both on the Android
units as well as in the cloud, (iv) we organize the attack information and risk assessment into ISO/SAE 21434 compliant reports in
order to point out the specific impact, (v) we present a proof of concept application which uses Blockchain as a decentralized
mean to report intrusions and the resulting risk-assessment. To sum up the contributions, our work tries to accommodate ISO/SAE
21434 reporting into the Blockchain for a transfer learning IDS that runs both locally on Android head units inside cars as well as
in the cloud (allowing specialized staff to analyze incident-related data).

Related work

Recent attacks have proved serious concerns as vehicles were manipulated remotely by exploiting their web browser as the entry
point4 and compromising the over-the-air (OTA) software update functionality to attack ECUs5. Therefore, the need for
cybersecurity measures in modern vehicles became indisputable and generated a lot of interest for the research community.
There are multiple attack surfaces that have to be protected in modern vehicles, the in-vehicle networks being the most critical
ones and the most commonly exploited6,7. Consequently, in recent years, many security solutions for in-vehicle communication
have been proposed8. Some of the proposed solutions call for cryptography and are based on message authentication9 or message
encryption10.

Although ISO/SAE 214341 was released less than one year ago, there are already research works that reviewed the standard11

or used it to assess the cybersecurity of automotive components like gateway ECUs12. The analysis in the previous work was made
with the help of the ThreatGet tool, which is compliant with ISO/SAE 21434. Risk assessment methodologies based on this

3/17

standard have also been discussed13. Automotive-specific attack surfaces were addressed and the attack feasibility was rated
based on this standard14.

Being a topic of prime interest, a large number of IDS with various detection approaches were proposed. These approaches
use various techniques to detect anomalies, like Hidden Markov Models15, Bloom filters16, frame entropy17,18 or the offset of ratio
of responses to remote frames19. Some approaches also use deep learning techniques20, mosaic-coded convolutional neural
networks21 or compare various machine learning algorithms22. Intrusion detection schemes relying on transfer learning for the
Internet of Vehicles (IoV) are discussed as well23. Other security solutions for the in-vehicle networks include anomaly detection
systems relying on Long Short-Term Memory (LSTM) autoencoders24 or a hybrid model based on the Support Vector Machine
(SVM) and the wavelet method25. Other authors design intrusion detection solutions specifically for commercial vehicles buses
that use the SAE J1939 standard26.

The use of Software-Defined Networking (SDN), federated learning and Blockchain for an IDS have been considered27, as well
as cloud-based intrusion detection that relies on deep learning28. The authors of the previous work evaluated the extension of an
on-board protection mechanism with a cloud-based solution to overcome the high computational demands. However, the work
is focused on attacks against a robotic vehicle built with various communication interfaces but does not discuss attacks on the
CAN bus as we do. Another important aspect is that the IDS can be deployed on different in-vehicle components, e.g., it can be
installed on each ECU or on gateways29. We also discuss deployment options in our work. A comprehensive picture of the currently
proposed IDS for the automobile industry is provided by recent surveys30–32.

Since its abrupt emergence, the Blockchain technology has started to be used not only in cryptocurrency but in many other
domains as it can cover lots of specific needs for securing and distributing relevant information. In the automotive domain, the
Blockchain can be used to establish the liable party (car manufacturer, driver, pedestrian, attacker, etc.) in case of accidents33–35.
It was also proposed for automotive manufacturing traceability systems, allowing companies to trace and document the product’s
history and relevant production parameters36. More recently, Blockchain was also employed in a federated learning cyber-threat
detection approach for intelligent transport systems, where its functionality could ensure the integrity of data and smart contracts
can represent the machine learning models37. Other authors explore the use of Blockchain for on-demand ride-hailing platforms
during the recent pandemics to increase customers’ trust by offering safe cars38, or develop an evolutionary game model between
the car-hailing platform and the government, proposing the Blockchain as a technical governance measure39. Some works
envision Blockchain as a foundation for developing trust management systems for the IoV40 or securing communication and data
for unmanned aerial vehicles (UAVs)41,42, as well as drone node authentication in the Internet of Drone Things (IoDT)43. The
application of the Blockchain for intrusion detection in the cyber-physical system (CPS) environment is also being studied44.

CAN data collection

This section provides some background on CAN and discusses the data collection performed in three identical vehicles in order
to verify that data from one of them can be used to detect intrusions on the others.

CAN basics

Despite the fact that new communication protocols were adopted in the automotive industry, e.g., FlexRay and Ethernet, the
Controller Area Network (CAN), introduced by BOSCH in the 80s, remains the most commonly used in-vehicle network in modern
vehicles. The CAN network, deployed as a two-wire bus that implements differential signaling, is a multi-master serial bus that
enables two or more ECUs to communicate with each other. It supports bitrates up to 1 MBit/s and payloads of up to 8 bytes.
The structure of the CAN data frame is presented in Figure 2. The CAN frame is composed of an arbitration field, control field,
data field and CRC field. Besides these fields, CAN frames start with a start-of-frame (SOF) dominant (logical "0") bit and end with
an end-of-frame (EOF) marker that contains a sequence of 7 recessive (logical "1") bits. The CAN bus supports two message
formats, i.e., a base format and an extended format. The difference between the two is the bit-length of the identifier, i.e., 11
bits in the case of base format and 29 bits in the case of extended format. One bit is used as a marker for remote transmission
request (RTR), separating data frames from remote frames (which carry data requests). This bit must be recessive, a logical 1, for
remote frames and dominant, a logical 0, for regular data frames. The control field of the base format frame consists of an
identifier extension bit (IDE), which is always dominant in the basic format, a reserved bit and a data length field, which indicates
the length of the transmitted data. The data field contains the actual payload, while the CRC (cyclic redundancy check) field
contains a 15-bit CRC value and a delimiter bit. The CAN frame also contains an acknowledge slot bit (followed by a delimiter bit)
used by receiving nodes to confirm the correct frame reception.

4/17

Data collection

To support the proposal from this work, we have collected CAN data from three Dacia Duster cars (a budget family-sized SUV).
Using the same car model is relevant as we need to check whether an attack on one vehicle can be identified by the IDS on other
vehicles as well. Note that although the vehicles implement the same functionalities, there may be differences in the CAN bus
traffic due to various manufacturing conditions which make no system perfectly identical to another. All three vehicles have
similar specifications and an age difference of at most 2 years. The vehicles are equipped with 1.5 dCi diesel engines having 110
horsepower, 4 cylinders and are all-wheel drive capable. In order to distinguish between vehicles, we will reference them in this
paper as Vehicle A, Vehicle B and Vehicle C.

Figure 2. CAN 2.0 Standard Data Frame Figure 3. Data collection procedure

The procedure that we used to collect legitimate CAN traffic data from the three vehicles is suggested in Figure 3 and our
setup used for data collection that consists of a laptop, a VN5610A device and a CAN cable with OBD-II connector is depicted in
Figure 4. After we collected the CAN data from all three vehicles, we performed a short comparison. Perhaps not surprising, as
the three cars are identical models, we observed that the CAN logs of each vehicle contain similar CAN frames, i.e., frames with
the same IDs, same lengths and having the same periodicity. There are 12 IDs in total in each log, ranging from 0x161 to 0x65C.
The data length of these frames varies between 1 byte and 8 bytes, while their periodicity ranges from 10ms to 100ms. This is
illustrated in Figure 5 which depicts the periodicity and the data length of each CAN frame ID that is part of the collected datasets.

 Figure 4. Data collection setup Figure 5. CAN frames from the three Duster vehicles

However, on a closer inspection, even if the CAN frames are identical in terms of cycle times and IDs, traffic variations may occur
between the three vehicles as we show next. Differences may be caused by various factors. For example, clock skews may cause
the periodicity of CAN frames to have some deviations and driving style may also trigger distinct on-event frames that influence
the arrival of the cyclic frames. We provide an example in Figure 6 which depicts the periodicity and its histogram for the CAN
frames with ID 0x284 collected in each of the three vehicles. We can observe that the periodicity has disturbances, lower in
Vehicle A and higher in Vehicle B and Vehicle C.

5/17

 Vehicle A Vehicle B Vehicle C

(i) CAN frame periodicity (ID 0x284)

 Vehicle A Vehicle B Vehicle C

(ii) Histogram distribution of the CAN frame periodicity (ID 0x284)

Figure 6. Example for the periodicity (i) and the histogram distribution of periodicity (ii) of CAN frame with ID 0x284 collected
from vehicle A (left), vehicle B (center) and vehicle C (right)

Adversary model and preliminary detection results

In this section, we discuss the adversary model as well as the metrics that we use to evaluate the IDS performance, then we
present some preliminary detection results on traces that are augmented with attack frames.

Adversary model

The related literature on CAN bus attacks, generally considers three types of attacks: fuzzing, replay and flooding attacks. Fuzzing

attacks are attacks with frames containing random values in the data field and legitimate IDs. In the case of replay attacks, the

adversary intercepts legitimate frames and re-sends them at a later time. In this case, the attack frames are identical with the

legitimate frames thus being more difficult to detect. Flooding attacks consist of injecting frames with high priority IDs (low

values), thus delaying or even stopping other ECUs from transmitting legitimate frames, eventually resulting in a Denial of Service

(DoS) attack. Another kind of attack are the malfunction attacks45, which consist of frames with IDs chosen in advance (part of

the legitimate list of IDs) and random data fields. These attacks can be regarded as a subset of the fuzzing attacks.

One specific flavor of the adversary model in this paper is that we make the adversary behavior probabilistic. There is a good

practical reason that supports this choice. Since most of the CAN bus traffic is cyclic, increasing the frame rate on the bus by

injecting more adversarial frames, makes the presence of an attacker more obvious. Therefore, it is expected that a more

successful adversary will choose a low-rate attack to remain inconspicuous. Even more so, the attacks will be easier to detect if

the adversary acts in a deterministic manner. Thus, in order to make the attacks more difficult to predict, we assume that the

adversary has a fixed probability, e.g., p = 0.25, of executing an attack on a specific ID. In the experiments that follow, the attack

frames are injected at random points in time between two consecutive legitimate frames carrying the same ID with some fixed

probability, e.g., 25%.

Besides the attack dataset that we specifically build for this work, consisting in the aforementioned real-world CAN bus data
augmented with attack frames, in order to have a common ground for comparing our IDS performance with related works, we
also evaluate our IDS on the public dataset available from https://ocslab. hksecurity.net/Datasets/survival-ids which were used
by a prior work45. The data comes from three different vehicles (Hyundai YF Sonata, Kia Soul, and Chevrolet Spark) and contains
three attack types: flooding, fuzzy and malfunction. Note that in this dataset fuzzy attacks refer to attacks performed with random
IDs and datafields, which makes them distinct from the case of the fuzzing attacks from our adversary model (which have
legitimate IDs and random datafield and are harder to detect). From this dataset, we use the malfunction attacks. We omit the
fuzzy and flooding attacks from this dataset, since they are performed with IDs that do not belong to the network and are trivial

https://ocslab.hksecurity.net/Datasets/survival-ids
https://ocslab.hksecurity.net/Datasets/survival-ids

6/17

to recognize with a binary search in a look-up-table containing the known IDs (there is no need for intricate machine learning
algorithms).

Metrics for IDS evaluation

In order to assess the performance of the machine learning algorithms employed in our IDS proposal, we used some of the most
popular classification metrics, i.e., accuracy, precision, recall and specificity. The IDS will classify each CAN frame as a genuine or
attack frame. The evaluation metrics are computed based on the following quantifiers: true positives (TP) - attack frames that
were correctly classified, true negatives (TN) - genuine frames that were correctly classified, false positives (FP) - genuine frames
that were incorrectly classified as intrusions and false negatives (FN) - attack frames that were incorrectly classified as genuine.
Accuracy is a metric that is used to measure the percentage of frames that are correctly classified, equal to the ratio of the
correctly classified frames to all processed frames: accuracy =(TP+TN)/(TP+TN +FP+FN). Precision, also called positive predictive
value (PPV), is the ratio of the correctly classified attack frames to all frames that were classified as attacks: precision =
TP/(TP+FP). Recall, also known as sensitivity, is the fraction of the reported attack frames compared to the total number of attack
frames: recall = TP/(TP+FN). On the opposite side, specificity is the fraction of the reported genuine frames compared to the total
number of genuine frames: specificity = TN/(TN +FP).

Detection results on existing datasets and newly collected data

The framework that we propose for managing the intrusions and reporting them to the cloud, works with any detection
algorithm that has been proposed in the literature. For our deployment in this work, we relied on classification trees algorithms
that are supported by Matlab Statistics and Machine Learning Toolbox (https://www.mathworks.com/help/stats/classification-
trees.html). The classification model was created in MATLAB and then by using MATLAB Coder we generated C code that was
compiled and integrated in the Android head unit application and cloud environment to be used for intrusion classification.

The feature extraction procedure for the IDS is graphically depicted in Figure 7. The left side of the figure depicts a sequence
of 9 CAN frames arranged in the order of their arrival. In the middle of the figure, the feature extraction is highlighted for the
most recently arrived CAN frame, i.e., the frame carrying ID a. The classification features consist of the CAN ID of the current
frame, the IDs of the previous 4 CAN frames and the datafield of the currently arrived CAN frame. For frames with a datafield
length of less than 8 bytes, the features corresponding to the missing bytes are filled with zeros. The resulting dataset contains
on each row the information related to the current CAN frame. All features are stored as decimal values, as suggested in the
example from the right side of Figure 7. The figure also suggests the adversary intervention by injecting a frame with random
content, i.e., a fuzzing attack as discussed in the adversary model.

To serve as an initial assessment of our IDS performance and as a direct comparison, we ran the detection algorithm on the
datasets with malfunction attacks made available by a previous work45. In this case we used 50,000 frames for training and 20,000
frames for testing. This amounts to using around 70% of the dataset for training and 30% for testing. Increasing the training
dataset to 80% which is the usual amount in the related works was not necessary since the maximum score (100%) was already
achieved for accuracy, precision, recall and specificity. But this mostly proves the simplicity of the attacks considered in this
previous work45. The results are presented in the first three rows of Table 1.

Dataset Attack type TN FP FN TP Accuracy Precision Recall Specificity

Hyundai Sonata42 Malfunction 16414 0 0 3586 1.00 1.00 1.00 1.00
Kia Soul42 Malfunction 18907 0 0 1093 1.00 1.00 1.00 1.00
Chevrolet Spark42 Malfunction 16662 0 0 3338 1.00 1.00 1.00 1.00
Dacia Duster (our dataset) Fuzzing 90818 26 1 9155 0.99 0.99 0.99 0.99
Dacia Duster (our dataset) Replay 90540 280 1880 7300 0.97 0.96 0.79 0.99
Dacia Duster (our dataset) Combined 88791 1080 3011 7118 0.95 0.86 0.70 0.98

Table 1. IDS Detection accuracy with the Classification Tree (various datasets)

Next, we have to assess the efficiency of the IDS in terms of detection performance of fuzzing, replay and combined, i.e.,
replay and fuzzing, attacks. For this, we created three datasets, each of them with a different type of attack. To mount the attacks,
we made use of the CANoe environment configuring two CAN nodes, the first one to replay the trace with legitimate traffic and
the other one to inject attacks according to the predefined logic that we implemented in CAPL (Communication Access
Programming Language). In the first dataset, we mounted fuzzing attacks with three CAN IDs, i.e., 0x181, 0x161 and 0x244. The

https://www.mathworks.com/help/stats/classification-trees.html
https://www.mathworks.com/help/stats/classification-trees.html
https://www.mathworks.com/help/stats/classification-trees.html
https://www.mathworks.com/help/stats/classification-trees.html

7/17

same logic was applied for the second dataset, but with replay attacks. In the third dataset, we injected fuzzing attacks with CAN
IDs 0x284 and 0x354 and replay attacks with CAN IDs 0x161 and 0x1A5. The detection accuracy is presented in the last three rows
of Table 1. Here, we used 400,000 frames for the training phase and 100,000 frames for the testing phase (this represents an 80%
cut-off for the training dataset). The fuzzing attacks are easier to be detected and therefore our IDS reached a score of 0.99 in
terms of accuracy, precision, recall and specificity. In the case of replay attacks, the accuracy, precision and specificity were
greater than 0.96 and the recall was 0.79. For the combined attacks, the precision was 0.86, the recall was 0.70, while the accuracy
and specificity were greater than 0.95.

Figure 7. Feature extraction and encoding

System architecture and cloud-based intrusion detection

This section describes the proposed intrusion management system, addressing scalability via transfer learning and performance
requirements.

System architecture

We now provide a brief description of how each component contributes to the proposed concept. The interaction of the
components is illustrated in Figure 8.

The Android Head Unit monitors the traffic from the CAN bus and runs the local installed IDS. If attacks are detected, the head
unit reports the attack sequences to the IDS Cloud Service. In addition to this, the head unit makes periodic reports with CAN data
sequences which are subsequently used for sanity checks (the exact timing of such reports should be prescribed by the
manufacturer, e.g., monthly, or every 5,000 km, etc.). The local IDS algorithm can be updated over the air when new versions are
released by the Incident Response Center. However, due to the prolonged life-span of a vehicle and other technical or human
constraints, it may be that the head unit cannot run the most recent version of the IDS and thus cloud detection of intrusions is
welcome.

The IDS Cloud Service receives the attack sequences, as detected by the Android Head Unit, and random sequences for sanity
checks. These CAN sequences are stored in the cloud and evaluated against attacks using the cloud-based IDS, which is always
updated to the latest version, being capable of detecting all types of attacks that were discovered so far. The output results of
the cloud-based IDS, which can either indicate that a known attack was detected or that no attack is present, are documented in
the form of a Request Report and stored on Blockchain. Each report issued by the IDS Cloud Service has to be further analyzed by
the specialized personnel of the next actor.

The Incident Response Center consists of an Incident Response Team that evaluates the Request Report issued by the IDS
Cloud Service and takes the appropriate incident response actions based on the impact and severity of the detected attacks. When
a new report is issued by the IDS Cloud Service, the team checks the CAN sequences against attacks. If no attacks are detected, a
Response Report, indicating the absence of attacks in the analyzed CAN trace, will be uploaded on Blockchain. If the presence of
an attack is detected, the Incident Response Team has to assess the attack in detail, identify the impact, document the results in
the Response Report and store it on Blockchain. Subsequently, in case of a new type of attack, the team has to update the cloud-
based IDS, by retraining and testing the IDS with the new attack, and prepare the software update packet for the local IDS running
on the in-vehicle head unit.

8/17

The Blockchain service is used to store each report, ensuring in this way that all the reported events with their corresponding
information are traceable and stored in an immutable manner, providing non-repudiation from any party that is involved. In
addition, this service shall also support the version control of the head unit IDS software by broadcasting notifications whenever
a new release is published. However, software updates are beyond the scope of this paper and can be subject of future work.

Figure 8. Interaction between system components

Scalability of the IDS over multiple vehicles

To demonstrate scalability over multiple vehicles, we performed the learning stage on Vehicle A and evaluated the IDS
performance in detecting similar attacks on all three vehicles. Another important aspect regarding scalability that we must
consider is the progressive learning. The IDS algorithm should be capable of learning new attacks on top of the already learned
attacks. This can be done by retraining with the new attack data. But re-evaluation is necessary to check that the system does not
perform worse on previously known attacks. Therefore, in our assessment, the attacks were learned progressively in three steps.
As a precondition to learning of attacks, we have included in the learning phase 300,000 genuine frames from the attack-free
datasets of all three vehicles so that the IDS learns the legitimate CAN traffic as there may be differences in CAN traffic between
vehicles caused by various factors, e.g., clock skews, even if the vehicles are identical. Then, in the case of fuzzing attacks, we
started learning with the attack that targeted CAN ID 0x181. As a second step, we retrain on top of the already learned attack to
which we added in the learning phase a dataset containing a new attack, i.e., fuzzing CAN frames with IDs 0x161 and 0x244. In
the last step, on top of these two datasets, we included another dataset that contained fuzzing attacks on the rest of the CAN
frames. From each new training dataset, we used 400,000 frames for learning and we tested the IDS algorithm on 100,000 frames.
The datasets are publicly available at https://github.com/andrtu2/CloudIDS to serve for future investigations.

The results are presented in Table 2. We highlighted in gray the results that come from the evaluation of the IDS algorithm on
datasets from the vehicle on which the learning phase was done. The IDS algorithm proves to be highly efficient in detecting
fuzzing attacks, achieving scores of at least 0.99 in accuracy, precision, recall and specificity, regardless of the assessed vehicle.
For the replay attacks, we used the same approach as for the fuzzing attacks. The results are listed in Table 3, showing that the

https://github.com/andrtu2/CloudIDS

9/17

detection of replay attacks is more difficult. When assessing the vehicle that was also used for the training phase (i.e., Vehicle A),
the accuracy ranges from 0.90 to 0.99, the precision from 0.87 to 0.98, the recall from 0.59 to 0.96 and the specificity from 0.97
to 0.99. The detection performance decreased by a few percents when new attacks were included in the assessment.

Table 2. Fuzzing attacks

Table 3. Replay attacks

Table 4. Combined attacks

The results from the evaluation performed on the Vehicle B and Vehicle C datasets are, in some cases, lower by a few percents
than the results from Vehicle A. In the case of combined attacks, we started with learning a replay attack performed on CAN ID

Training dataset Testing dataset TN FP FN TP Accuracy Precision Recall Specif
icity

Vehicle A - 0x181 Vehicle A - 0x181 96036 2 1 3961 0.99 0.99 0.99 0.99
(+) Vehicle A - 0x161, 0x244 Vehicle A - 0x181, 0x161, 0x244 90816 28 9 9147 0.99 0.99 0.99 0.99

(+) Vehicle A - rest of IDs Vehicle A - all IDs 79943 5 9 20043 0.99 0.99 0.99 0.99

Vehicle A - 0x181 Vehicle B - 0x181 96088 0 3 3909 0.99 1.00 0.99 1.00

Vehicle C - 0x181 96019 0 2 3979 0.99 1.00 0.99 1.00

(+) Vehicle A - 0x161, 0x244 Vehicle B - 0x181, 0x161, 0x244 90697 1 5 9297 0.99 0.99 0.99 0.99

Vehicle C - 0x181, 0x161, 0x244 90696 1 6 9297 0.99 0.99 0.99 0.99

(+) Vehicle A - rest of IDs Vehicle B - all IDs 79956 5 10 20029 0.99 0.99 0.99 0.99

Vehicle C - all IDs 80028 9 8 19955 0.99 0.99 0.99 0.99

Training dataset Testing dataset TN FP FN TP Accuracy Precision Recall Specif

icity

Vehicle A - 0x181 Vehicle A - 0x181 96107 64 118 3711 0.99 0.98 0.96 0.99
(+) Vehicle A - 0x161, 0x244 Vehicle A - 0x181, 0x161, 0x244 90550 270 2489 6691 0.97 0.96 0.72 0.99
(+) Vehicle A - rest of IDs Vehicle A - all IDs 78088 1739 8083 12090 0.90 0.87 0.59 0.97

Vehicle A - 0x181 Vehicle B - 0x181 96044 71 358 3527 0.99 0.98 0.90 0.99

Vehicle C - 0x181 95878 87 102 3933 0.99 0.97 0.97 0.99

(+) Vehicle A - 0x161, 0x244 Vehicle B - 0x181, 0x161, 0x244 90114 746 2982 6158 0.96 0.89 0.67 0.99

Vehicle C - 0x181, 0x161, 0x244 90542 311 2811 6336 0.96 0.95 0.69 0.99

(+) Vehicle A - rest of IDs Vehicle B - all IDs 77608 2340 8786 11266 0.88 0.82 0.56 0.97

Vehicle C - all IDs 78717 1407 9129 10747 0.89 0.88 0.54 0.98

Training dataset Testing dataset TN FP FN TP Accuracy Precision Recall Specif
icity

Vehicle A - Replay 0x181 Vehicle A - Replay 0x181 96107 64 118 3711 0.99 0.98 0.96 0.99
(+) Vehicle A - Fuzzing 0x244 Vehicle A - Replay 0x181,

Fuzzing 0x244 94137 85 129 5649 0.99 0.98 0.97 0.99

(+) Vehicle A - Replay 0x161,
0x1a5, Fuzzing 0x284, 0x354

Vehicle A - Replay 0x181, 0x161,
0x1a5, Fuzzing 0x244, 0x284,
0x354

84657 821 3918 10604 0.95 0.92 0.73 0.99

Vehicle A - Replay 0x181 Vehicle B - Replay 0x181 96044 71 358 3527 0.99 0.98 0.90 0.99

Vehicle C - Replay 0x181 95878 87 102 3933 0.99 0.97 0.97 0.99

(+) Vehicle A - Fuzzing 0x244 Vehicle B - Replay 0x181,
Fuzzing 0x244

94226 63 159 5552 0.99 0.98 0.97 0.99

Vehicle C - Replay 0x181,
Fuzzing 0x244

94214 66 130 5590 0.99 0.98 0.97 0.99

(+) Vehicle A - Replay 0x161,
0x1a5, Fuzzing 0x284, 0x354

Vehicle B - Replay 0x181, 0x161,
0x1a5, Fuzzing 0x244, 0x284,

0x354
84391 857 5282 9470 0.93 0.91 0.64 0.98

Vehicle C - Replay 0x181, 0x161,
0x1a5, Fuzzing 0x244, 0x284,
0x354

84653 691 4511 10145 0.94 0.93 0.69 0.99

10/17

0x181, then we added a fuzzing attack on CAN frames with ID 0x244, and ultimately, we added in the training phase a dataset in
which two CAN IDs are attacked using replays and two CAN IDs using fuzzing. Table 4 lists the results for combined attacks. The
detection performance seems to be overall better than the detection of replay attacks. The results from Vehicle A range between
0.92 and 0.99 for accuracy, precision and specificity and between 0.73 and 0.97 in the case of recall. Similar to the results from
replay attacks, the detection performance drops by a few percents when assessing the datasets from Vehicle B and Vehicle C.
Figure 9 depicts as barcharts the detection performance for all types of attacks, i) Fuzzing, ii) Replay and iii) Combined attacks.

For a more in-depth interpretation of the results, we present precision-recall curves as well as ROC curves in Figure 10, based
on the datasets containing: i) fuzzing attacks on CAN IDs 0x181, 0x161 and 0x244, ii) replay attacks on IDs 0x181, 0x161 and 0x244
and iii) combined attacks with replay on 0x181, 0x161, 0x1A5 and fuzzing on 0x244, 0x284, 0x354. The precision-recall curves
demonstrate that a high precision can be achieved at the expense of the recall (which is due to an increase in the false negatives).
This is a well-known false-positive/false-negative trade-off that can help in fine-tuning the system such that either the detection
rate is high, possibly leading to more false alarms, or the detection rate is lower, but less false alarms are triggered. The ROC
curves show the trade-offs between the false positives and true positives and lead to a similar interpretation as the precision-
recall curves. In the case of fuzzing attacks, the curve sticks to the top left corner as the detection is almost perfect, i.e., between
99–100%. In the case of replay attacks, a decrease in the sensitivity is necessary in order to lower the false positives rate. This is
expected since replay attacks are harder to detect as they mimic existing CAN packets.

 i) Fuzzing attacks ii) Replay attacks iii) Combined attacks

Figure 9. Transfer learning results: detection for attacks on all vehicles with training performed exclusively on Vehicle A

i) Fuzzing attacks on 0x181, 0x161, 0x244 ii) Replay attacks on 0x181, 0x161, 0x244 iii) Replay attacks on 0x181, 0x161, 0x1A5 and fuzzing

attacks on 0x244, 0x284, 0x354

Figure 10. Precision-Recall and ROC curves for various fuzzing and replay attacks

To prevent over-fitting or selection bias, we also tried to use k-fold cross-validation (k = 5) in our Matlab models. For this, we
generated five partitioned models from each original classification model, which we then evaluated using the testing datasets.
Generally, the results were in the ±4% range from the values presented in Tables 2, 3 and 4 with any of the models.

Computational and bandwidth requirements

In order to assess the IDS computational time and bandwidth, we built an experimental model which includes a head unit and a
cloud-based virtual machine. Our head unit is a PNI A8020 that runs Android 7.1 and is equipped with a Quad-core 1.63 GHz
Cortex A7 CPU, 1 GB of RAM memory and 8 GB of ROM memory. For the cloud environment, we used Microsoft Azure and we
have deployed a virtual machine (VM) running Windows 10. The VM is a general purpose VM (i.e., Standard B2ms) equipped with
2 vCPUs running at 2.80 GHz and 8 GB of RAM memory.

First, we evaluated the intrusion detection algorithm in terms of execution speed on the head unit and cloud environment.
For the head unit, as we compiled the C code of the IDS algorithm into a native library and accessed it from the Android application
using JNI calls, we provide two sets of results. The first set contains the IDS execution time including the JNI calls, while the second

11/17

set contains only the execution time at the native layer. We assessed the execution time for the IDS algorithm trained on multiple
datasets and different attacks. The results contain the average classification time per frame and are presented in Table 5. Not
surprisingly, the IDS executed in the cloud performs the best, being more than ten times faster than the IDS executed on the head
unit (without considering the JNI calls). The execution time of the cloud-based IDS varies between 0.62 µs and 171.89 µs. Based
on our results, on the head unit, the JNI calls seem to bring an execution overhead between 500 µs and 1000 µs.

Attack Training dataset Testing dataset Head unit - with JNI Head unit - C only Cloud

Fuzzing Vehicle A - 0x181 Vehicle A - 0x181 536.85 8.67 0.62
(+) Vehicle A - 0x161, 0x244 Vehicle A - 0x181, 0x161, 0x244 538.34 19.79 1.88
(+) Vehicle A - rest of IDs Vehicle A - all IDs 644.97 27.24 2.34

Replay Vehicle A - 0x181 Vehicle A - 0x181 657.95 105.78 9.06
(+) Vehicle A - 0x161, 0x244 Vehicle A - 0x181, 0x161, 0x244 1661.98 942.97 58.60
(+) Vehicle A - rest of IDs Vehicle A - all IDs 4505.22 3699.24 171.89

Combined Vehicle A - Replay 0x181 Vehicle A - Replay 0x181 592.79 91.37 7.81
(+) Vehicle A - Fuzzing 0x244 Vehicle A - Replay 0x181, Fuzzing 0x244 748.14 116.90 9.84
(+) Vehicle A - Replay 0x161,
0x1a5, Fuzzing 0x284, 0x354

Vehicle A - Replay 0x181, 0x161, 0x1a5,
Fuzzing 0x244, 0x284, 0x354

2022.04 1126.92 72.04

Table 5. IDS execution time per frame [µs]

Since our proposed IDS concept implies wireless connectivity between the head units and the IDS Cloud Service, the
transmission delay and the data rate (upload speed) are important aspects that have to be discussed. Consequently, we
performed some practical testing with our setup, measuring the time needed to upload data from our head unit to the Azure VM
which hosts the cloud-based IDS. The measurements were done in our laboratory using 4G connectivity and the results are listed
in Table 6. We measured the transmission delay by sending 1 byte of data from the head unit to the cloud application. The delay
was approximately 106.56 ms. To compute the data rate, we sent data with different lengths from the head unit and measured
the time required for the data to reach the cloud environment. Based on our measurements, the data rate was 1.12 Mbits/s for
100 kB of data, 2.40 Mbits/s for 1 MB of data and 2.96 Mbits/s for 10 MB of data (4G allows a maximum data rate of more than
20Mbit/s). Considering that usually the CAN bus inside vehicles is set at bit rates up to 500 KBits/s, our measurements indicate
that the CAN data can be transferred to the IDS Cloud Service in real-time.

Transmission delay Data rate (100 kB blocks) Data rate (1 MB blocks) Data rate (10 MB blocks)

106,56 ms 1.12 Mbits/s 2.40 Mbits/s 2.96 Mbits/s

Table 6. Transmission delay and data rate (head unit to IDS Cloud Service)

Blockchain incident reporting

This section presents the Blockchain Service, which in our implementation is deployed as a smart contract on the Ethereum
Blockchain46. We use a decentralized data storage paradigm with the goal of enforcing the resilience, availability and integrity of
the attack reports.

Blockchain reports

For each attack evaluation event performed by the IDS Cloud Service, an attack reporting procedure is triggered. The attack
reporting procedure consists of uploading a pair formed by a Request Report and Response Report on the Blockchain. The
information that has to be filled for each report is based on the guidance provided by ISO/SAE 214341 which is the current
standard in automotive cybersecurity.

The Request Report is uploaded by the IDS Cloud Service and contains the report unique identifier, the date when the report
was made, the VIN (Vehicle Identification Number) of the vehicle from which the CAN data was extracted, the request type (which
is a binary for the moment, either "No incident" if no attacks were detected or "Known attack" if the attacks were already detected
by the cloud-based IDS, while new attacks are addressed later as "New attack type" by the Incident Response Team) and the hash

12/17

(SHA256) of the CAN data. Subsequently, the Incident Response Team performs a detailed analysis on the CAN data considering
the information from the Request Report and uploads the Response Report with the results of the analysis.

Each Response Report consists of the report unique identifier (that has to match the unique identifier of the corresponding
Request Report) and report classification (which this time falls under three categories: "No incident", "Known attack" or "New
type of attack"). These fields will be filled in regardless of the report classification. However, in case of attacks, a Threat Analysis
and Risk Assessment (TARA) will be performed by the Incident Response Team, and subsequently the following fields (that contain
details about the detected attack) will also be completed: the attack type (e.g., fuzzing, replay, combined), the asset (the frame
that was attacked), the transmitter and receiver ECU(s), the security property (three properties according to ISO/SAE 21434
Confidentiality/Integrity/Availability) that is violated by the mounted attack, a detailed explanation of the possible damage
scenario, the impact category and the impact rating. According to ISO/SAE 214341 the impact category covers the safety (S),
financial (F), operational (O) and privacy (P) aspects of assets, while the impact rating falls under the following categories: severe,
major, moderate and negligible.

Rep.
no.

Rep.
classif.

Attack

type Asset Affected

data Transmitter Receiver Security
property Damage scenario Impact

category
Impact

rating

1 Known

attack Fuzzing

CAN
frame
with

ID
0x284

Vehicle

Speed

ABS
module

Instrument

cluster

I
Provided speed value is less than the vehicle
measured speed. Driver is misinformed and
could drive the vehicle with a higher speed than
the desired speed.

S Moderate

I
Provided speed value is greater than the vehicle
measured speed. Driver is misinformed and
could drive the vehicle with a lower speed than
the desired speed.

O Negligible

ABS
module

Radars

I
Provided speed value is less than the vehicle
measured speed. Radars could deactivate the
Driver Assistance System features.

S Severe

I
Provided speed value is greater than the vehicle
measured speed. Radars could provide incorrect
warnings of Driver Assistance System features.

S Severe

Table 7. Response Report as suggested by the TARA according to ISO/SAE 21434

We will now give a synthetic example of a report that is uploaded in the Blockchain. The example consists of a situation in
which the IDS Cloud Service reports that a known attack was detected in the received CAN trace. After the automatic inspection
of the trace, the Incident Response Team confirms the attack presence and proceeds to the completion of the ISO/SAE 21434
specific fields that contain the TARA assessment. In this case, as an example, we assume that the impacted asset is the CAN frame
that carries the vehicle speed signal. The receiving ECUs will use the manipulated signal values, leading to four possible damage
scenarios with respect to safety or operational impact. In each of the four scenarios, the integrity of the signal is affected. The
first two scenarios are related to the vehicle speed being incorrectly displayed by the instrument cluster ECU. In this situation,
the driver is misinformed and could drive the vehicle faster or slower than desired. The impact rating is considered moderate for
the first case, i.e., faster driving, and negligible for the opposite case, i.e., slower driving. The other two damage scenarios in
which the radars receive false information are classified as severe because this could lead to the deactivation of the Driver
Assistance System features or incorrect warnings displayed to the driver. The structure of a Response Report containing the
information from the previous example is presented in Table 7.

IDS smart contract

In order to store the previously described reports on Blockchain, we developed the IDS Smart Contract employing Solidity
(https://soliditylang.org/) as the underlying programming language. The goal of the contract is to provide necessary API methods
for uploading the report information. The following three rules are enforced by the code that we developed: (1) all uploaded data
must be immutable, i.e., it cannot be subsequently altered or removed, (2) only the Incident Response Team can upload ISO/SAE
21434 assessment data and (3) only the Incident Response Team can classify reports. All data on the Blockchain is verifiable by
any external party.

Figure 11 illustrates the anatomy of the IDS Smart Contract. The Contract state, i.e., the information that gets permanently
stored on the Blockchain, is composed of six public state variables. Three of them are mappings, i.e., key-value pairs, in which
reports data is organized, while the others are primitives allocated for operational purposes. Listings 1 and 2 provide a
comprehensive view of the state variables as well as their types. The mappings, i.e., report_requests, report_responses and

https://soliditylang.org/
https://soliditylang.org/
https://soliditylang.org/

13/17

tara_info, bind 32-bit integers to user-defined typed values. The values from the mappings are then grouped together into
reports, as shown in Figure 12.

Figure 11. IDS Smart Contract design and state changes during method calls Figure 12. Contract composition

A report is generated whenever a request is issued by the IDS Cloud Service, which causes a new value to be added to
report_requests. This value incorporates the type of the request, a timestamp captured at the moment of the contract call, the
VIN and the trace hash. Subsequently, the Incident Response Team classifies the event and sends a response. This leads to the
addition of a new report_response, i.e., a value in the report_responses mapping, which contains the report classification and, in
case of an attack, references to ISO/SAE 21434 assessment data. For every report, there is a one-to-one association between its
report_request and report_response values, hence the mapping keys are sufficient in order to prevent ambiguities, e.g., for
Report#4, the request and response information is mapped to key 4 in report_requests and report_responses, respectively. In
contrast, an attack may affect multiple assets and cybersecurity properties, therefore, the relationship between report_response
and tara_info is one-to-many. This aggregation is implemented as a table of references, i.e., tara_info_refs, which holds an
arbitrary number of tara_info keys. We note that since an asset may be subject to more than one attack, referencing keys
minimizes storage consumption as it prevents redundancy.

Figure 11 also exemplifies the usage of the contract API, as well as the state transitions that consequently occur. First, the
request_new_report method is called, marking the creation of Report#N, i.e., a new value is added to report_requests at key N,
and the update of req_next_entry, which always holds the number of the next report. This variable can never be decremented,
thus guaranteeing the immutability of all past requests. Second, the register_tara_info method is called with the purpose of
registering ISO/SAE 21434 assessment data. Before executing the method, the contract checks if the address of the caller matches
the address stored in the irt_address state variable, enforcing the second rule from the beginning of this section. The value of
irt_address is set during the execution of the contract constructor. If the verification succeeds, a new value is added to tara_info,
mapped to key M −1. Also, the tara_next_entry state variable is incremented so that it points to the next empty entry. This
variable can never be decremented as well. Finally, the Incident Response Team responds to Report#N by calling the
respond_to_report method. Here, N is provided as an argument. Again, the identity of the caller is checked against irt_address
beforehand. This time however, the contract also verifies that the referenced report is not already processed, i.e., a response was
added previously, and that the report classification to be stored has a non-zero value. If all checks pass, the report_responses
variable is updated accordingly.

Contract deployment and testing

The development, deployment and testing processes were technologically supported threefold. We began by developing the
IDS Smart Contract in the Remix IDE environment (https://remix.ethereum.org/), an open source application that integrates
cloud storage, a text editor, compilers and many other plug-ins. For deployment, Remix IDE implements compatibility with
multiple cloud and local Blockchain providers.

We opted for local deployment on an Ethereum test network, created using the Ganache simulator (https://trufflesuite.
com/ganache/). In addition to the server configurator, Ganache offers numerous features, including Ethereum accounts
management, block explorer, mining controls and log listing. Finally, we developed Python plug-in applications that enable

https://remix.ethereum.org/
https://remix.ethereum.org/
https://trufflesuite.com/ganache/
https://trufflesuite.com/ganache/
https://trufflesuite.com/ganache/

14/17

the interaction between the smart contract and other system components. These applications make use of the Python Web3
library (https://web3py.readthedocs.io/en/stable/) in order to read state variables and trigger transactions. We note that
although we used a Windows laptop to host and benchmark the Blockchain Service component, a real-world deployment is
not limited to this environment as the software tools that we employed are supported on all major desktop operating
systems, i.e., Windows, macOS and Linux. Nevertheless, in order to benefit from an already large user base, the system
integrator may choose to deploy the IDS Smart Contract on popular Ethereum networks, e.g., the Ethereum Mainnet.

 Listing 1 Smart Contract: defined types (Solidity)

 1: enum request_type_t { /* Types of requests */

 2: NO_INCIDENT, KNOWN_ATTACK_DETECTED

 3: }

 4: enum response_classification_t { /* Report classification */

 5: NO_RESPONSE, NO_INCIDENT, KNOWN_ATTACKS_DETECTED

 6: NEW_ATTACKS_DETECTED

 7: }

 8: enum attack_type_t { /* Attack type */

 9: FUZZING, REPLAY, COMBINED

 10: }

 11: enum cyse_property_t { /* Cybersecurity properties */

 12: CONFIDENTIALITY, INTEGRITY, AVAILABILITY

 13: }

 14: enum impact_category_t { /* Impact categories */

 15: SAFETY, FINANCIAL, OPERATIONAL, PRIVACY

 16: }

 17: enum impact_rating_t { /* Impact rating */

 18: NEGLIGIBLE, MODERATE, MAJOR, SEVERE

 19: }

 20: struct ids_event_info_t { /* IDS event metadata */

 21: uint256 timestamp_u256;

 22: uint32 vin_u32;

 23: uint256 trace_hash_u256;

 24: }

 25: struct report_request_t { /* Report request information */

 26: request_type_t request_type_et;

 27: ids_event_info_t ids_event_info_st;

 28: }

 29: struct tara_info_t { /* TARA information entry */

 30: attack_type_t attack_type_et;

 31: uint16 asset_id_u16;

 32: uint16 data_id_u16;

 33: uint16 transmitter_id_u16;

 34: uint16 receiver_id_u16;

 35: cyse_property_t cyse_property_et;

 36: string damage_scenario_str;

 37: impact_category_t impact_category_et;

 38: impact_rating_t impact_rating_et;

 39: }

 40: struct report_response_t { /* Report response information */

 41: response_classification_t response_classification_et;

 42: uint32[] tara_info_refs_au32;

 43: }

Listing 2 Smart Contract: variables & modifiers (Solidity)

1: /* Address of the Incident Response Team (IRT) */

2: address public irt_addr;

3:

4: /* TARA information */

5: uint32 public tara_next_entry_u32;

6: mapping(uint32 =>tara_info_t) public tara_info_m;

7:

8: /* Report requests */

9: uint32 public req_next_entry_u32;

10: mapping(uint32 =>report_request_t) public report_requests_m;

11:

12: /* Report responses */

13: mapping(uint32 =>report_response_t) public report_responses_m;

14:

15: /* Require that the method was called by IRT */

16: modifier require_irt_address() {

17: require(msg.sender == irt_addr);

18: _;

19: }

20:

21: /* Require that the request exists and it was not processed yet */

22: modifier require_valid_response_attempt(uint32 _request_no_u32) {

23: require(_request_no_u32 >0 &&

24: _request_no_u32 <req_next_entry_u32 &&

25: report_responses_m[_request_no_u32].response_classification_et

26: == response_classification_t.NO_RESPONSE);

27: _;

28: }

29: /* Require that the referenced TARA entries exist */

30: modifier require_valid_tara_entries(uint32[] memory _tara_info_refs_au32) {

31: uint32 i;

32: for(i = 0; i < _tara_info_refs_au32.length; i++) {

33: require(_tara_info_refs_au32[i] >0 &&

34: _tara_info_refs_au32[i] <tara_next_entry_u32);

35: }

36: _;

37: }

38:

39: /* Require a classification value different than NO_RESPONSE */

40: modifier require_classification(response_classification_t _classification_et) {

41: require(_classification_et != response_classification_t.NO_RESPONSE);

42: _;

43: }

Table 8 shows the performance of the IDS Smart Contract, measured in the average gas consumption per operation (in
Ethereum’s terminology, gas represents the fee to successfully execute a contract on the Ethereum Blockchain). The first column
names the evaluated operation, together with additional information regarding the uploaded data which by itself influences gas
consumption, e.g., setting the state of a variable to zero consumes less gas than setting a non-zero value. The second column
reports the average gas consumption as estimated by Ganache. Finally, the third column approximates the maximum supported

https://web3py.readthedocs.io/en/stable/
https://web3py.readthedocs.io/en/stable/
https://web3py.readthedocs.io/en/stable/

15/17

number of transactions per second (TPS) for every operation except for the contract deployment which is required only once. At
the time of writing this work, the nominal Ethereum block size is 15 million gas and the average block generation time is 13
seconds. These values were used for computing the TPS. Our results conclude that the operations which are expected to be
performed most frequently, i.e., periodic checks labeled and classified as no incidents, are also the least expensive ones. However,
the cost associated with the discovery of attacks is substantially higher, mostly proportional to the number of affected assets.
Based on the tests we performed, registering a report response referencing 100 assets reaches the limit of one transaction per
second.

Operation Average gas consumption TPS

Contract deployment 1393094 N/A
Register a report request, type "No incident" 92446 12
Register a report request, type "Known attack" 111646 10
Register a TARA entry 106782 10
Register a report response, classified "No incident" 48705 23
Register a report response, classified "Known attack" or "New type of attack" w. one TARA entry referenced 102984 11
Register a report response, classified "Known attack" or "New type of attack" w. 10 TARA entries referenced 151550 7
Register a report response, classified "Known attack" or "New type of attack" w. 100 TARA entries referenced 670534 1

Table 8. IDS Smart Contract performance

Conclusion

Our work enriches existing in-vehicle IDS with cloud support and Blockchain reporting in accordance with the threat analysis
standardized in the ISO/SAE 21434. By using the extensive computational and communication capabilities of in-vehicle head units,
the support of a modern operating system, Android, the deployment of such a system becomes feasible. Our experiments prove
that both the computational and communication capabilities of such units are able to support the demands of in-vehicle
networks. Regarding Blockchain reporting, the gas consumption evaluated in the previous section suggests that an attack scenario
with one hundred TARA entries reaches a limit of one commitment per second. Arguably, this may lead to delays for reporting
attacks on larger vehicle fleets but an upper bound of one hundred entries per second for a single attack seems sufficient for
current needs. If this appears as a practical limitation, multiple Blockchains may be maintained. Also, the next Ethereum
generation, i.e., Ethereum 2.0, targets to dramatically increase TPS capabilities by adopting a more efficient proof-of-stake
consensus layer (https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/).

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

1. ISO/SAE 21434:2021 Road vehicles — Cybersecurity engineering. Standard, 1st edition, International Organization for
Standardization (2021).

2. AUTOSAR. Specification of Secure Onboard Communication (2020).
3. AUTOSAR. Specification of Intrusion Detection System Protocol (2020).
4. Nie, S., Liu, L. & Du, Y. Free-fall: Hacking tesla from wireless to can bus. Black Hat USA 25, 1–16 (2017).
5. Nie, S., Liu, L. & Zhang, W. Over-the-air: How we remotely compromised the gateway, bcm, and autopilot ecus of tesla cars.

Black Hat USA (2018).
6. Checkoway, S. et al. Comprehensive experimental analyses of automotive attack surfaces. In USENIX Security Symposium

(San Francisco, 2011).
7. Miller, C. & Valasek, C. A survey of remote automotive attack surfaces. Black Hat USA (2014).
8. Aliwa, E., Rana, O., Perera, C. & Burnap, P. Cyberattacks and Countermeasures For In-Vehicle Networks. arXiv e-prints

arXiv:2004.10781 (2020). 2004.10781.
9. Groza, B., Murvay, S., Herrewege, A. V. & Verbauwhede, I. Libra-can: Lightweight broadcast authentication for controller area

networks. ACM Trans. Embed. Comput. Syst. 16, DOI: 10.1145/3056506 (2017).

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/

16/17

10. Farag, W. A. Cantrack: Enhancing automotive can bus security using intuitive encryption algorithms. In 2017 7th International
Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), 1–5, DOI: 10.1109/ICMSAO. 2017.7934878 (2017).

11. Macher, G., Schmittner, C., Veledar, O. & Brenner, E. ISO/SAE DIS 21434 automotive cybersecurity standard-in a nutshell. In
International Conference on Computer Safety, Reliability, and Security, 123–135 (Springer, 2020).

12. Schmittner, C., Schrammel, B. & König, S. Asset driven ISO/SAE 21434 compliant automotive cybersecurity analysis with
threatget. In European Conference on Software Process Improvement, 548–563 (Springer, 2021).

13. Püllen, D., Liske, J. & Katzenbeisser, S. ISO/SAE 21434-based risk assessment of security incidents in automated road vehicles.
In International Conference on Computer Safety, Reliability, and Security, 82–97 (Springer, 2021).

14. Plappert, C. et al. Attack surface assessment for cybersecurity engineering in the automotive domain. In 2021 29th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP), 266–275 (IEEE, 2021).

15. Narayanan, S. N., Mittal, S. & Joshi, A. Obd_securealert: An anomaly detection system for vehicles. In Smart Computing
(SMARTCOMP), 2016 IEEE International Conference on, 1–6 (IEEE, 2016).

16. Groza, B. & Murvay, P. Efficient intrusion detection with bloom filtering in controller area networks. IEEE Transactions on Inf.
Forensics Secur. 14, 1037–1051 (2019).

17. Müter, M. & Asaj, N. Entropy-based anomaly detection for in-vehicle networks. In Intelligent Vehicles Symposium (IV), 2011
IEEE, 1110–1115 (IEEE, 2011).

18. Marchetti, M., Stabili, D., Guido, A. & Colajanni, M. Evaluation of anomaly detection for in-vehicle networks through
information-theoretic algorithms. In 2016 IEEE 2nd International Forum on Research and Technologies for Society and
Industry Leveraging a better tomorrow (RTSI), 1–6 (IEEE, 2016).

19. Lee, H., Jeong, S. H. & Kim, H. K. Otids: A novel intrusion detection system for in-vehicle network by using remote frame. In
2017 15th Annual Conference on Privacy, Security and Trust (PST), 57–5709 (IEEE, 2017).

20. Gao, L., Li, F., Xu, X. & Liu, Y. Intrusion detection system using soeks and deep learning for in-vehicle security. Clust. Comput.
22, 14721–14729 (2019).

21. Hu, R., Wu, Z., Xu, Y. & Lai, T. Multi-attack and multi-classification intrusion detection for vehicle-mounted networks based
on mosaic-coded convolutional neural network. Sci. Reports 12, 6295, DOI: 10.1038/s41598-022-10200-4 (2022).

22. Berger, I., Rieke, R., Kolomeets, M., Chechulin, A. & Kotenko, I. Comparative study of machine learning methods for in-vehicle
intrusion detection. In CyberICPS/SECPRE@ESORICS (2018).

23. Li, X., Hu, Z., Xu, M., Wang, Y. & Ma, J. Transfer learning based intrusion detection scheme for internet of vehicles. Inf. Sci.
547, 119–135, DOI: https://doi.org/10.1016/j.ins.2020.05.130 (2021).

24. Longari, S., Nova Valcarcel, D. H., Zago, M., Carminati, M. & Zanero, S. Cannolo: An anomaly detection system based on lstm
autoencoders for controller area network. IEEE Transactions on Netw. Serv. Manag. 18, 1913–1924, DOI:
10.1109/TNSM.2020.3038991 (2021).

25. Kavousi-Fard, A., Jin, T., Su, W. & Parsa, N. An effective anomaly detection model for securing communications in electric
vehicles. IEEE Transactions on Ind. Appl. 1–1, DOI: 10.1109/TIA.2020.3005062 (2020).

26. Jichici, C., Groza, B., Ragobete, R., Murvay, P.-S. & Andreica, T. Effective intrusion detection and prevention for the
commercial vehicle sae j1939 can bus. IEEE Transactions on Intell. Transp. Syst. 1–15, DOI: 10.1109/TITS.2022.3151712
(2022).

27. Aliyu, I., Feliciano, M. C., Van Engelenburg, S., Kim, D. O. & Lim, C. G. A blockchain-based federated forest for sdn-enabled in-
vehicle network intrusion detection system. IEEE Access 9, 102593–102608, DOI: 10.1109/ACCESS.2021. 3094365 (2021).

28. Loukas, G. et al. Cloud-based cyber-physical intrusion detection for vehicles using deep learning. Ieee Access 6, 3491–3508
(2017).

29. Lokman, S.-F., Othman, A. T. & Abu-Bakar, M.-H. Intrusion detection system for automotive controller area network (can) bus
system: a review. EURASIP J. on Wirel. Commun. Netw. 2019, 184 (2019).

30. Wu, W. et al. A survey of intrusion detection for in-vehicle networks. IEEE Transactions on Intell. Transp. Syst. 21, 919–933,
DOI: 10.1109/TITS.2019.2908074 (2020).

31. Elkhail, A. A. et al. Vehicle security: A survey of security issues and vulnerabilities, malware attacks and defenses. IEEE Access
9, 162401–162437, DOI: 10.1109/ACCESS.2021.3130495 (2021).

32. Karopoulos, G., Kambourakis, G., Chatzoglou, E., Hernández-Ramos, J. L. & Kouliaridis, V. Demystifying in-vehicle intrusion
detection systems: A survey of surveys and a meta-taxonomy. Electronics 11, DOI: 10.3390/electronics11071072 (2022).

33. Oham, C., Kanhere, S. S., Jurdak, R. & Jha, S. A blockchain based liability attribution framework for autonomous vehicles. arXiv
preprint arXiv:1802.05050 (2018).

34. Ugwu, M. C., Okpala, I. U., Oham, C. I. & Nwakanma, C. I. A tiered blockchain framework for vehicular forensics. Int. J. Netw.
Secur. & Its Appl. (IJNSA) Vol 10 (2018).

https://doi.org/10.1016/j.ins.2020.05.130

17/17

35. Guo, H., Meamari, E. & Shen, C.-C. Blockchain-inspired event recording system for autonomous vehicles. In 2018 1st IEEE
international conference on hot information-centric networking (HotICN), 218–222 (IEEE, 2018).

36. Kuhn, M., Funk, F. & Franke, J. Blockchain architecture for automotive traceability. Procedia Cirp 97, 390–395 (2021).
37. Moulahi, T. et al. Privacy-preserving federated learning cyber-threat detection for intelligent transport systems with

blockchain-based security. Expert. Syst. DOI: https://doi.org/10.1016/j.jisa.2020.102670 (2022).

38. Choi, T.-M. & Shi, X. On-demand ride-hailing service platforms with hired drivers during coronavirus (covid-19) outbreak: Can

blockchain help. IEEE Transactions on Eng. Manag. 1–16, DOI: 10.1109/TEM.2021.3131044 (2022).

39. Wan, X., Liu, J. & Zhao, S. Evolutionary game study on the governance and development of online car-hailing based on

blockchain technology. Sci. Reports 12, 9388, DOI: 10.1038/s41598-022-11741-4 (2022).

40. Zhang, H., Liu, J., Zhao, H., Wang, P. & Kato, N. Blockchain-based trust management for internet of vehicles. IEEE Transactions

on Emerg. Top. Comput. 9, 1397–1409, DOI: 10.1109/TETC.2020.3033532 (2021).

41. Tan, Y., Wang, J., Liu, J. & Kato, N. Blockchain-assisted distributed and lightweight authentication service for industrial

unmanned aerial vehicles. IEEE Internet Things J. 9, 16928–16940, DOI: 10.1109/JIOT.2022.3142251 (2022).

42. Ch, R., Srivastava, G., Reddy Gadekallu, T., Maddikunta, P. K. R. & Bhattacharya, S. Security and privacy of uav data using

blockchain technology. J. Inf. Secur. Appl. 55, 102670, DOI: https://doi.org/10.1016/j.jisa.2020.102670 (2020).

43. Akram, J., Akram, A., Jhaveri, R. H., Alazab, M. & Chi, H. Bc-iodt: Blockchain-based framework for authentication in internet

of drone things. In Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications

for 5G and Beyond, DroneCom ’22, 115–120, DOI: 10.1145/3555661.3560874 (Association for Computing Machinery, New

York, NY, USA, 2022).

44. Mansour, R. F. Artificial intelligence based optimization with deep learning model for blockchain enabled intrusion detection

in cps environment. Sci. Reports 12, 12937, DOI: 10.1038/s41598-022-17043-z (2022).

45. Han, M., Kwak, B.-I. & Kim, H. K. Anomaly intrusion detection method for vehicular networks based on survival analysis. Veh.

Commun. 14, DOI: 10.1016/j.vehcom.2018.09.004 (2018).

46. Buterin, V. et al. Ethereum: A next-generation smart contract and decentralized application platform (2014).

Author contributions statement

T.A. (First Author): Conceptualization, Software, writing—original draft preparation, writing—review and editing, M.A.: Software,
writing—review and editing, investigation, validation, A.A.: Software, review and editing, investigation, C.J.: Review and editing,
validation, data collection, B.G. (Corresponding Author): Conceptualization, methodology, writing—review and editing, project
administration, supervision. All authors reviewed the manuscript.

Additional information

Competing interests

The authors declare no competing interests.

https://doi.org/10.1016/j.jisa.2020.102670
https://doi.org/10.1016/j.jisa.2020.102670

