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ABSTRACT
Accelerometers provide a good source of entropy for boot-
strapping a secure communication channel in autonomous
and spontaneous interactions between mobile devices that
share a common context but were not previously associated.
We propose two simple and efficient key exchange protocols
based on accelerometer data that use only simple hash func-
tions combined with heuristic search trees. Using heuristics
such as the Euclidean distance proves to be beneficial as it
allows a more effective recovery of the shared key. While
the first protocol seems to give just some performance im-
provements, the second, which we call hashed heuristic tree,
is more secure than previous proposals since it increases the
difference in protocol execution between benign and mali-
cious parties. Nevertheless, the hashed heuristic tree is an
entirely new approach which has the advantage of allowing
different heuristics in the search, leaving plenty of room for
future variants and optimizations.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS]: Security and Protec-
tion—Authentication; K.6.5 [MANAGEMENT OF COM-
PUTING AND INFORMATION SYSTEMS]: Secu-
rity and Protection—Authentication

General Terms
Security

Keywords
authentication, accelerometer, key-exchange

1. MOTIVATION
While today’s mobile devices embed countless applica-

tions that boost up usability, they still heavily rely on man-
ual input for performing day by day routines such as pairing,
i.e., bootstrapping a communication channel. Examples for
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such manual input are the PIN code that needs to be entered
for Bluetooth pairing, the WPS password for connecting to
many WiFi networks, or a shared password for many secure
chat, telephone, or file transfer applications. Depending on
user data not only reduces usability, but inextricably gam-
bles security since such input usually lacks the desired en-
tropy for making a connection secure (as evidenced by the
standard pairing PIN codes ’0000’ or ’1234’ for many Blue-
tooth headsets).

In contrast, using environmental information is an at-
tractive mechanism for secure pairing between devices in
autonomous and spontaneous interactions where previously
shared information such as public key certificates does not
exists. While manually entered information is time consum-
ing and requires additional input interfaces, using motion,
sound, light, etc., seems to be an attractive alternative that
provides a fast and more scalable solution that can be also
used by unskillful users. A complete survey on different
techniques that can be used for this purpose can be found
in [17].

In particular, motion characteristics acquired from ac-
celerometers are considered to be a rich source of entropy,
easy to produce or re-produce and difficult to guess by out-
siders. Mayrhofer and Gellersen explore the use of shaking
patterns to pair mobile devices in [22] and apply this tech-
nique to secure a bluetooth connection. Bluetooth pairing
is known to be particularly vulnerable [13] to man-in-the-
middle attacks caused by external adversaries and shaking
patterns can be used to remove this problem. The same idea
is also explored by Castelluccia and Mutaf in [5], Kirovski
et al. in [16] and by Bichler et al. in [3]. All methods are
distinct in the way key extraction from sensor data is per-
formed. More specifically, in [22] data is extracted in the
frequency domain by using a coherence function, initially
used in [18] while the other two proposals extract data in
the time domain. Our approach also uses the time domain
but the way in which we extract data by using heuristic
trees and hashed heuristic trees appears to be entirely dis-
tinct from any previous procedure. The closest method to
our extraction procedure could be [3], but the concept of
hashed heuristic tree that we introduce seems to be entirely
new.

In a non-adversarial setting, accelerometer data can be
directly used to distinguish whether or not two devices are
carried together [14], [18], to recognize activities and ges-
tures [15], [24], [19], [1] or an individual gait [2], [11], [10] by
simply exchanging the information acquired from sensors.
But it is not straight-forward to establish a common secret



shared key from such data. The difficulty comes from the
fact that information is measured on different sensors from
different devices, and thus it is not 100% identical while
the communication channel is (yet) insecure. This is dis-
tinct to the classical use of acceleration patterns in biometry
where the communication channel between the sensor and
the matcher is usually assumed to be secure. Therefore, a
secure way to compare information and to extract entropy
is needed. In [22] two protocols are presented: ShaVe and
ShaCK. The first protocol is based on the Diffie-Hellman-
Merkle key exchange. By using such public-key primitives
it is easy to protect the feature vectors extracted from ac-
celerometers even if they have low entropy. It is commonly
known that trapdoor permutations can be used to construct
protocols that are resilient to guessing, extensive theoretical
results on protecting low entropy secrets in key agreements
are available from Goldreich and Lindell [12]. However, pub-
lic key primitives are by far more computational intensive
and may be unsuitable for devices that merge in spontaneous
interactions since usually these devices have low computa-
tional power, small energy resources, etc. For this purpose
a second protocol based entirely on hash functions is pro-
posed in [22]. This protocol is based on a previous proposal
called the Candidate Key Protocol (CKP) [20]. In brief,
CKP works as follows: each feature vector vi obtained from
the accelerometer is hashed along some random salt value
si (to prevent a dictionary attack) and sent as H(vi, si) to
the other party which searches in its own extracted feature
vectors to find a match. If this succeeds, then the vector is
added to the corresponding key pool (which is, upon finding
a sufficient number of matches, hashed again to compute the
shared secret key), otherwise it is dropped.

Contribution in a nutshell. We devise a protocol that can
be used to securely exchange low entropy vectors without
relying on classical alternatives such as fuzzy cryptography
or expensive public-key primitives. The issue that we try to
improve is the following: if the hashed feature vectors ex-
tracted from the accelerometer are too small, then one can
mount an exhaustive search attack while if they are too large
the probability that they are dropped increases due to the
inability of the second party to find a match. We improve
on this as follows. To make it suitable to exchange larger
vectors we allow the protocol to use a heuristic search in
order to find a match. That is, we use a function to evalu-
ate the probability that a particular value was recorded by
both parts. Note however that such a search over regular
hashes can also be mounted by an adversary, thus, inter-
estingly enough, the potential improvement of the protocol
may be viewed up to some point as a new potential attack.
To fix this, we propose a much stronger variant in which
heuristics are embedded in the search tree by each party,
thus forcing the potentially malicious party to perform in
the same manner as the other party (potentially honest). If
the pattern matches on both sides, then this gives a higher
chance of success. We call these two proposals heuristic
tree and hashed heuristic tree. As heuristic we simply used
the Euclidean distance between the extracted bits and some
challenge, but we believe there is room for future work as
other suitable heuristics can be found. In the experimental
section we tested the approach by using two WiiMotes and
the results were satisfactory.

2. THE PROTOCOLS
On an abstract level, both protocols have a commitment-

challenge-response nature. The steps of both protocols are
depicted in Fig. 2. We use standard notations: A,B are the
participant identities, also used as subscripts for values to
associate them to a participant identity. All notations are
summarized in Fig. 1. Thus, in the first stage, both partic-
ipants commit the future challenges – which take the form
of vectors of random threshold values – by exchanging their
hashes. Afterwards, data is collected from the accelerome-
ters. In the second stage, these challenges are revealed and
in the third stage the responses are computed. If the re-
sponses match, then authentication succeeds, otherwise the
protocol is dropped, but can be subsequently restarted.

A, B protocol participants (also used as subscripts to
values originating on their sides)

r randomly generated value

v values extracted from accelerometers

t threshold to which accelerometer values are com-
pared (thresholds need not be exchanged as they
are derived from the commitments)

k extracted key

T algorithm used to derive thresholds from random
material

E extraction algorithm used to extract key bits by
comparing accelerometer values to threshold val-
ues

O ordering algorithm used in the hashed heuristic
tree

H,E standard hash and encryption functions

Figure 1: Summary of notations

By using the commitment stage, we force the challenge
to be established before the features are actually extracted,
thus making it impossible for an adversary to select a more
convenient challenge (if the challenge is released after data is
collected) or to alter data collection in such way that it will
be easier to answer the challenge (if the challenge is known
before data is collected). Such an attempt may be feasi-
ble on CKP since a man-in-the-middle (MITM) adversary
can simply detect low entropy vectors by exhaustive search
and then replace high entropy vectors with random values
making them fail as parts of the key pool. Subsequently,
authentication will rely only on weak vectors vectors.

2.1 First Variant
To summarize the proposed key extraction procedure, Fig. 3

shows data collected from two accelerometers and the ran-
domized values used as the challenge threshold. In order to
extract one bit of the key, accelerometer data is compared



Device (A) Device (B)

Commitment Stage

1. rA ∈R 1k

H(rA)-
2. rB ∈R 1k

H(rB)�

Generate Accelerometer Data (Shaking)

Challenge-Response Stage

3. NA ∈R 1k, tA ← T (rA)
oA ← O(vA, tA), kA ← E(vA, tA, oA)
cA = EkA(NA)

rA, oA, cA-
4. NB ∈R 1k, tB ← T (rB)

oB ← O(vB , tB), kB ← E(vB , tB , oB)
cB = EkB (NB), k ′A ← E−1(vB , tA, oA)

N ′A = E−1
k′
A

(cA)

rB , oB , cB , N
′
A�

5. if NA = N ′A then kA was correctly extracted
k ′B ← E−1(vA, tB , oB)
N ′B = E−1

k′
B

(cB)

N ′B -
6. if NB = N ′B then kB was correctly extracted

Figure 2: Modified protocol for the case of hashed heuristic tree

to the value of the threshold and the bit is set to 0 if the
accelerometer value is less or equal and 1 otherwise.
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Figure 3: Data collected from two accelerometers
shaken together (left) and the challenge threshold
(right)

For the first protocol variant, the ordering algorithm O
and its output o from Fig. 2 will be ignored. The proto-
col works as follows. First, the commitments are exchanged
between the participants, random values r are generated on
each side and their hashes exchanged. Second, after ac-
celerometer data is generated by shaking, challenges are
computed. To compute the challenges and responses the
following publicly known algorithms, that we depict in cal-
ligraphic style, are used: T is the algorithm used to gener-

ate a threshold to which the vector items are compared (in
particular a deterministic PRNG which receives random r
as a seed can be used), E is the key extraction algorithm
which extracts each key bit by comparing the values ob-
tained from the accelerometer to the corresponding value
from the thresholds and E−1 is the inverse of the extrac-
tion algorithm which tries to recover the key. Thus, the
thresholds are extracted from the committed random values,
i.e., t ← T (r), then the key is extracted, i.e., k ← E(v, t)
and finally the challenge is computed, i.e., c = Ek (N). To
answer the challenge, the nonce is recovered by computing
k ′ ← E−1(v, t) and then decrypting N ′ = E−1

k′ (c).

The extraction algorithm E−1 works as follows. Instead of
simply extracting the bits by comparing the threshold with
the accelerometer value, the algorithm produces a search
tree by placing the extracted bits in a list and sorting them
in a decreasing order of the heuristic function for which we
use the Euclidean distance ∆(x, y) = |x − y|. This will
lead to a search tree which has closest to the root all those
values which are more distant from the threshold and should
have better chances for being identically measured on both
sides. The reason is that accelerometer values that are more
distant from the threshold have a bigger chance to give the
same binary output on both sides.

To explain why this is the case, consider the case of one



random threshold value fixed to ti and the corresponding
accelerometer value set to vA,i and vB,i on each side. To
extract the same bit on each side, the sign of the distance
between values and thresholds has to be the same on each
side, i.e., sgn(vA,i − ti) = sgn(vB,i − ti). Note that this
happens with probability:

Pr [vA,i > ti ∧ vB,i > ti] + Pr [vA,i ≤ ti ∧ vB,i ≤ ti] =

= 1− Pr [vA,i ≤ ti ∧ vB,i > ti]− Pr [vA,i > ti ∧ vB,i ≤ ti] .

But Pr [vA,i > ti ∧ vB,i ≤ ti] ≤ Pr [∆(vA,i, vB,i) > ∆(vA,i, ti)]
since if the values from A and B are on opposite sides of the
threshold then the distance between them must be bigger
than the distance between any of the values and the thresh-
old. Now as can be seen in Fig. 4, the probability that two
accelerometers shaken together drift with a certain distance,
i.e., Pr [∆(vA,i, vB,i) > ∆(vA,i, t)], drops almost exponen-
tially with the distance and so must Pr [vA,i > ti ∧ vB,i < ti].
The same holds for the second term Pr [vA,i ≤ ti ∧ vB,i ≤ ti]
and this completes our intuition. To avoid locking E−1 when
there are too many elements that do not match, the algo-
rithm must be forced to stop after a predefined number of
steps (for example 1000 hashes in our experimental results).
An authenticated encryption algorithm is used for E such
that E−1 can stop precisely when the correct response is
reached.
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Figure 4: Drift probability from two WiiMotes
shaken together (left) and success probability for
different thresholds (right)

2.2 Second Variant
As already stated, the search over regular hashes can also

be mounted by an adversary. While this will not help much
if the entropy is high enough, it can be considered a new
potential attack, to best of our knowledge not analysed in
related proposals.

We use a small example to clarify our intentions with the
hashed heuristic tree. In the first protocol variant one bit
is extracted by comparing accelerometer data to the corre-
sponding threshold value. In the second variant we proceed
in the same way but with two modifications. First we sort
the bits in decreasing order of the distance to the threshold,
i.e, ∆(vi, ti). Second, we do a bit-by-bit hashing as sug-
gested in Fig. 5 which illustrates a hashed heuristic tree. To
build the hashed heuristic tree we use a fresh random value
r (rA in the case of A and rB in the case of B) to avoid a
precomputed dictionary attack on the hashed tree. Now the
hash of r forms the root of the tree.

For example, consider the following three random val-
ues returned by A’s accelerometer vA = {17, 31, 7} and a
three value random threshold tA = {10, 17, 37}. The cor-
responding key bits are kA = {1, 1, 0} and by subtracting
the vectors we get the distance ∆(vA − tA) = {7, 14, 30}
which means that the key bits are reordered before hash-
ing to k̃A = {0, 1, 1} (note the reverse order). Getting back

to Fig. 5, A will follow the path that is marked with con-
tinuous line and extract the key k011. Now consider that
B’s accelerometer collected vB = {8, 29, 9}, indeed the key
bits for B are kB = {0, 1, 0} but the distance ∆(vB − tA) =
{2, 12, 28} leads to the same order as in the case of A plac-
ing the mismatched first bit as the last one and accordingly
at a leaf node in the search tree. This makes B end up
with k010 which makes it spend only one additional hash to
recover the correct key k011. In comparison, if the bit-by-
bit hashing would not be performed in decreasing order of
the distance, then instead of one additional hash, B would
have needed four more hashes to get from k010 to k110. This
is because of the aforementioned reason: key bits that are
more distant to the threshold have a higher chance to be
identical on both sides. Thus, if data is indeed collected
from accelerometers shaken together, the hashed heuristic
tree constructed by one participant will also provide a fast
key recovery for the other participant. Note that an adver-
sary cannot decide on the order in which they choose the
values to extract the key bits and the heuristic search tree
in the previous protocol cannot be used by the adversary.
This leads to a more secure variant and we will define its
exact security bound in a forthcoming section.

The protocol is outlined in Fig. 2. Now the ordering al-
gorithm O is used to sort the values according to heuristic
h and modified the extraction algorithm. E and E−1 are
used as previously to extract the bits and compute the key,
but this time each bit is hashed along with the hash of the
previous bit and so on in a predefined order o as described
above.

3. EXPERIMENTAL RESULTS
As a primary testbed we used two Nintendo Wii Remotes,

also known as WiiMotes, which are wide spread devices, easy
to use and program. To test the protocol even further, we
used the shaking data sets from the Open Source Ubiquitous
Authentication Toolkit (http://www.openuat.org/datasets).
These sets contain a rich amount of shaking values from dif-
ferent individuals but the similarity of the data recorded by
the sensors is weaker compared to WiiMotes (notably, the
experimental setup was made from off-the-shelf components
before WiiMotes reached the market).

3.1 Nintendo WiiMotes
To test the efficiency of the protocol we used two WiiMotes

connected via Bluetooth to a notebook. The bit-rate taken
from all three axes of the accelerometer is around 256 bits
per second which come at a sample rate of around 80–90
samples per second on each of the three axes. Each sam-
ple adds 1 bit of entropy to the key by comparing it to the
threshold, but indeed the resolution of accelerometer data is
around 7 bits (the WiiMotes return a float which we convert
to a byte but the value is roughly in the interval [−64, 64]).
For security reasons, it should be preferable to take a ma-
jority function of the protocol outcome from several runs
during a fixed time period (for example 5-10 seconds).

Figure 6 provides the success rate taken for keys of 32,
64, and 128 bits extracted with hashed heuristic trees and
a search depth limited to 128, 256, 512 and 1024 hashes.
Obviously, the success rate increases with the depth limit,
but variations are possible since this greatly depends on the
way in which accelerometers are shaken by the user. The
results are somewhat non-uniform on the three axes and
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Figure 5: Hashed heuristic tree

this is mostly due to the tendency of individuals to shake
devices mostly vertically. The success rate is very high for
32 bits and even for 64 bits if 1024 hashes are allowed the
success rate is generally over 75%. However, 32 or 64 bits
may be insufficient to be used directly as a symmetric ses-
sion key. Extracting larger keys of 128 bits is also feasible
with good probability if 256–1024 hashes are allowed. If
only 128 hashes are allowed in the case of 128 bits, then the
success probability is close to 0 (a successful result would
require at most 7 out of the 128 bits to be different) but if
256–1024 hashes are allowed then a success probability of
20%–60% is achieved. For the case when only short keys
can be extracted, they can be safely used with asymmetric
cryptography in an authenticated key establishment proto-
col, in particular we propose to use these key bits as a (short)
shared secret in the confidential short input variant of UA-
CAP [21], which then allows a secure, non-interactive key
establishment based on this common input.

3.2 Shaking Data from OpenUAT
Indeed the similarity of the data is not as high as in the

case of WiiMotes. One reason is that the sensors are not spa-
tially aligned as accelerometers were mounted inside ping-
pong balls. Figure 7 shows data collected on the three axes
(i), (ii), (iii); it is easy to note that there are significant drifts
on the second and the third axes. After carefully merging
the three axes by computing the arithmetic mean, the values
recorded by the two sensors become more similar as can be
seen in Figure 7 (iv). On this particular data the protocol
succeeds, but unfortunately there are many samples that are
less correlated than this.

The tests done over the Experiment 1 data sets from
OpenUAT showed a success rate of around 20%–40% for
a key of 64 bits at 1024 hashes. This is significantly reduced
compared to the case of WiiMotes. While not efficient from
a practical point of view, statistically this still means that
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Figure 6: Success rate for 32, 64, and 128 bit keys
with search depth limited to 128, 256, 512 and 1024
hashes

the protocol can be used to pair such devices. But indeed,
using the coherence function and the protocol from [22] is
much more reliable (this at the cost of more computational
power). Finally, the coherence function can be embedded
in the hashed heuristic tree proposed here and this should
increase the reliability of the protocol.

4. SECURITY ANALYSIS, COMPARISON AND
FURTHER IMPROVEMENTS

We make a brief security analysis of the proposed method
in order to derive a security bound. Then we proceed to
compare this proposal with protocols from related work in-
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Figure 7: Example of data collected on the three
axes (i), (ii), (iii) and the result after preprocessing
(iv)

cluding fuzzy cryptography. We find this method to be com-
plementary to related techniques in the sense that hashed
heuristic trees can be added on top of the other protocols.
We also enumerate some improvements that can be added
to our proposal.

4.1 Security and efficiency considerations
For the proposed protocols it is possible to find both the

security and efficiency bounds given the vector of probabil-
ities p =< p0, p1, p2, ..., pd−1 > where pi, i ∈ [0..d− 1] is the
probability of honest client (or of the adversary if the secu-
rity level is to be determined) to get the right bit at step i.
Here d− 1 represents the maximum depth of the search tree
and it corresponds to the bit-length of the extracted key.
Due to the key extraction procedure, in both protocol vari-
ants, a search tree is obtained where leaf nodes correspond
to one particular value of the key (see Fig. 8 for an example).
On each branch of the three, pi denotes the probability that
the bit is correctly identified.
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Figure 8: Heuristic search tree

For the general case, we have a search tree of depth d with
probabilities p0, p1, p2, ..., pd−1 associated to each level from
root to leaves. Let Pi denote the product of probabilities on

the i-th path, e.g., P0 = p0 ·p1 ·p2... ·pd−1, P1 = p0 ·p1 ·p2... ·
(1 − pd−1), etc. For example in the case of the search tree
from Figure 8 we have P0 = p0 ·p1 ·p2, P1 = p0 ·p1 · (1−p2),
P3 = p0 · (1− p1) · p2, etc. Each leaf node corresponds to a
particular value of the key and the probability that the key
is located in the i-th leaf is equal to the product of the path
that leads to the leaf and which is Pi. Since the leaf nodes

cover all possible values for the key we have
∑i=2d−1

i=0 Pi =
1, i.e., the key is certainly in one of the leaf nodes. The
minimum number of steps of the searching algorithm is d in
the case when the key is located in the rightmost leaf and
d+2d−1 in the worst case when the key is in the leftmost leaf
node. By definition, the average solving time of the search
algorithm is the weighted average of the possible number of
steps, i.e.,

T =

i=2d−1∑
i=0

(d + i) · Pi = d ·
i=2d−1∑

i=0

Pi︸ ︷︷ ︸
=d

+

i=2d−1∑
i=0

i · Pi

Now let P(n)
i denote the path to leaf i cut at level d− n.

Note that in the general case if we take any pair of leaf
nodes that descend from the same parent (e.g., in Fig. 8 we
have (P0,P1), (P2,P3), etc.) we have ∀i ∈ [0..2d−1 − 1],
2 · i · P2·i + (2 · i + 1) · P2·i+1 = 2 · i · pd · P ′2·i + (2 · i + 1) ·
(1− pd−1) · P ′2·i = 2 · i · P ′2·i + (1− pd−1) · P ′2·i. Now we can
reduce further derive the average solving time to:

T = d +

i=2d−1∑
i=0

i · Pi

= d +

i=2d−1−1∑
i=0

(2 · i · P2·i + (2 · i + 1) · P2·i+1)

= d +

i=2d−1−1∑
i=0

(
2 · i · P ′2·i + (1− pd−1) · P ′2·i

)
Again

∑i=2d−1
i=0 P ′2·i = 1. Now by recurrence it follows:

T = d + 1− pd + 2 ·
i=2d−1−1∑

i=0

i · P ′2·i =

= d + 1 + 2 + ... + 2d−1 −
− pd−1 − 2 · pd−2 − ...− 2d−1 · p0 =

= d + 2d − 1−
d−1∑
i=0

2i · pd−i

This relation can be further used to calibrate the secu-
rity level of the protocol having the success probabilities for
the honest users and adversaries. In particular the success
probabilities of honest users can be easily computed from
experimental data as shown in Fig. 4. Note that in the case
when ∀i, pi = 1 we get T = d + 2d − 1 − (2d − 1) = d.
In the case of an adversary that has no better chance to
guess each bit extracted from the accelerometer value we
have ∀i, pi = 1/2 which leads to T = d+2d−1−2−1(2d−1) =
d + 2d − 1 − 2d−1 + 1/2 = 2d−1 + d − 1/2. That is, an ad-
versary will need roughly around 2d−1 computations which
are infeasible for d = 128 in the case of an 128 bit key.



4.2 Comparison to related methods
A comparison to previous approaches may be relevant.

The main difference with ShaVe and ShaCK [22] is in how ac-
celeration data is compared to find a match. In both ShaVe
and ShaCK [22] the coherence function is used. The main
advantage of this function, initially proposed in [18], is that
it is very sensitive allowing to distinguish whether or not
the devices are carried by the same person. Indeed this was
proved to be feasible in the experimental results from [18]
outside the context of spontaneous authentication. How-
ever, while this creates a more reliable protocol, there are
also two disadvantages. First, this require more processing
power, e.g., computing FFT coefficients. Second, the dis-
cussion is more complicated when it comes to security since
the coherence function works over the power spectrum in
the frequency domain. Estimating the exact security of this
transformation may be subject of future work for us.

From a computational point of view, ShaVe is based on
public key cryptography thus it is more computational ex-
pensive. In contrast, ShaCK is based only on symmetric
primitives, thus it has somewhat similar computational re-
quirements to SAPHE.

Finally, fuzzy cryptography is the technique of choice when
it comes to matching data affected by random noise [7], [8].
This technique is highly efficient as it makes use only of sim-
ple error correcting codes and symmetric primitives. How-
ever, this technique is commonly used to validate biometric
data that are transfered on channels that are generally se-
cure. When it comes to matching data on an insecure chan-
nel, care should be taken since if a fuzzy scheme will allow
to correct at most n bits out k then an adversary can correct
this number of bits as well. Thus, if the adversary is able to
recover k−n bits from external observation (such as from a
high speed camera) then the protocol is broken. Therefore
there is clear dependence of the security level on the degree
of similarity between two devices, the guessing probability
of an adversary and the recovery rate of the fuzzy scheme.

Bottom line, there are advantages and disadvantages in
any of the approaches and indeed fuzzy cryptography may
be the most efficient technique. Fuzzy cryptography does
not appear to exclude the hashed heuristic trees proposed
here since mixing these techniques is possible and more, the
hashed heuristic tree can benefit from different optimizations
that we discuss next.

4.3 Further Improvements
The protocol variants provided above are simple and ef-

ficient, but both the key generation and the key extraction
procedures are flexible and can be modified to gain even
more efficiency.

The key extraction procedure can be improved to extract
more than 1 bit of entropy from each value since the ac-
celerometers return float values that have more than 1 bit
of entropy. This can be done simply by comparing the ac-
celerometer value with more than one threshold or using a
distinct function. Even more, this can be further strengthen
with gesture recognition techniques [4], [6].

Using specific portions of the shaking patterns can also
be relevant. In particular the features used in [2] and the
Symbolic Aggregate approXimation (SAX) from [23] are of
particular interest. Since all these feature are extracted in
the time domain it should be easy to embed them in our
protocol.

For the heuristic, it may be possible to find better func-
tions. On brief improvement of the Euclidean distance could
be the use of the acceleration derivative, indeed, if the deriva-
tive is high, then the drift probability is even likely to be
higher. Preprocessing techniques can be also used in this
respect, a comprehensive list can be found in [9].

5. CONCLUSIONS
Our proposed protocol improves previous results in terms

of a simple and efficient way for using accelerometer data
for an authenticated key exchange. The solution is also gen-
eral and allows modification and use with different heuristics
that can be more suitable for other kinds of data. Also, the
hashed heuristic tree is more secure and efficient as it hin-
ders an adversary from performing a more efficient heuris-
tic search over the candidate key bits and therefore par-
tially addresses the issue of low-entropy input sensor data
streams originally identified for the Candidate Key Protocol
(CKP) [20]. In contrast to previous approaches, we out-
line a mathematical bound on the hardness of recovering
the keys, which can be further used to configure the proto-
col parameters, such as the bit-length of the exchanged key.
Experiments that we performed in a setting with two Nin-
tendo WiiMotes confirmed the correctness of our approach.
This work may open road for using other pattern recognition
techniques in wireless device pairing based on accelerome-
ter data. Finally, it is an open question to us whether it
is easy or hard to estimate accelerometer values by exterior
observations (such as from a high speed camera) and up to
what extent pattern recognition techniques may help in this
respect. We believe that such a study is highly welcome
because it will establish a more concrete bound over the se-
curity level of this procedure which is employed in several
papers [3], [16], [22].
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